NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

Melting Permafrost and Camping with Muskoxen: Planning for Oil Spills on Arctic Coasts

 Muskoxen near the scientists' field camp on Alaska's Espenberg River.

Muskoxen near the scientists’ field camp on Alaska’s Espenberg River. (NOAA)

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

Alaska’s high Arctic coastline is anything but a monotonous stretch of beach. Over the course of more than 6,500 miles, this shoreline at the top of the world shows dramatic transformations, featuring everything from peat and permafrost to rocky shores, sandy beaches, and wetlands. It starts at the Canadian border in the east, wraps around the northernmost point in the United States, and follows the numerous inlets, bays, and peninsulas of northwest Alaska before coming to the Bering Strait.

Planning for potential oil spills along such a lengthy and varied coastline leaves a lot for NOAA’s Office of Response and Restoration to consider. We have to take into account a wide variety of shorelines, habitats, and other dynamics specific to the Arctic region.

This is why fellow NOAA Office of Response and Restoration scientist Catherine Berg and I, normally based in Anchorage, jumped at the opportunity to join a National Park Service–led effort supporting oil spill response planning in the state’s Northwest Arctic region.

Our goal was to gain on-the-ground familiarity with its diverse shorelines, nearshore habitats, and the basics of working out there. That way, we would be better prepared to support an emergency pollution response and carry out the ensuing environmental impact assessments.

Arctic Endeavors

Man inflating boat next to ATV and woman kneeling on beach.

At right, NOAA Regional Resource Coordinator Dr. Sarah Allan collects sediment samples while National Park Service scientist Paul Burger inflates the boat near the mouth of the Kitluk River in northwest Alaska. (National Park Service)

Many oil spill planning efforts have focused on oil drilling sites on Alaska’s North Slope, especially in Prudhoe Bay and the offshore drilling areas in the Chukchi Sea. However, with increased oil exploration and a longer ice-free season in the Arctic, more ship traffic—and a heightened risk of oil spills—extends to the transit routes throughout Arctic waters.

This risk is especially apparent in the Northwest Arctic around the Bering Strait, where vessel traffic is squeezed between Alaska’s mainland and two small islands. On top of the growing risk, the Northwest Arctic coast, like much of Alaska, presents daunting logistical challenges for spill response due to its remoteness and limited infrastructure and support services.

To help get a handle on the challenges along this region’s coast, Catherine Berg and I traveled to northwest Alaska in July 2015 and, in tag-team fashion, visited the shorelines of the Chukchi Sea in coordination with the National Park Service. Berg is the NOAA Scientific Support Coordinator for emergency response and I’m the Regional Resource Coordinator for environmental assessment and restoration.

The National Park Service is collecting data to improve Geographic Response Strategies in the Bering Land Bridge National Preserve and the Cape Krusenstern National Monument, both flanking Kotzebue Sound in northwest Alaska. These strategies, a series of which have been developed for the Northwest Arctic, are plans meant to protect specific sensitive coastal environments from an oil spill, outlining recommendations for containment boom and other response tools.

Because our office is interested in understanding the potential effects of oil on Arctic shorelines, we worked with the Park Service on this trip to collect information related to oil spill response and environmental assessment planning in northwest Alaska’s Bering Land Bridge National Preserve.

The Wild Life

From the village of Kotzebue, two National Park Service scientists and I—along with our all-terrain vehicle (ATV), trailer, and all of our personal, camping, and scientific gear—were taken by boat to a field camp on the Espenberg River. After arriving, we could see signs of bear, wolf, and wolverine activity near where this meandering river empties into the Bering Sea. Herds of muskoxen passed near camp.

Considering most of the Northwest Arctic’s shorelines are just as wild and hard-to-reach, we should expect to be set up in a similar field camp, with similarly complex planning and logistics, in order to collect environmental impact data after an oil spill. As I saw firsthand, things only got more complicated as weather, mechanics, shallow water, and low visibility forced us to constantly adapt our plans.

Heading west, we used ATVs to get to the mouth of the Kitluk River, where the Park Service collected data for the Geographic Response Strategies, while I collected sediment samples from the intertidal area for chemical analysis. These samples would serve as set of baseline comparisons should there be an oil spill in a similar area.

Traveling there, we saw dramatic signs of coastal erosion, a reminder of the many changes the Arctic is experiencing.

The next day, the boat took us around Espendberg Point into Kotzebue Sound to the Goodhope River estuary. There, we used a small inflatable boat with a motor to check out the different sites identified for special protection in the Geographic Response Strategy. I also took the opportunity to field test the “Vegetated Habitats” sampling guideline I helped develop for collecting time-sensitive data in the Arctic. Unfortunately, the very shallow coastal water presented a challenge for both our vessels; the water was only a few feet deep even three miles offshore.

After an unplanned overnight in Kotzebue (more improvising!), I returned to the field camp via float plane and got an amazing aerial view of the coastline. The Arctic’s permafrost and tundra shorelines are unique among U.S. coastlines and will require special oil spill response, cleanup, and impact assessment considerations.

Sound Lessons

After I returned to the metropolitan comforts of Anchorage, my colleague Catherine Berg swapped places, joining the Northwest Arctic field team.

As the lead NOAA scientific adviser to the U.S. Coast Guard during oil spill response in Alaska, her objective was to evaluate Arctic shoreline types not previously encountered during oil spills. Using our Shoreline Cleanup and Assessment Technique method, she targeted shorelines within Kupik Lagoon on the Chukchi Sea coast and in the Nugnugaluktuk River in Kotzebue Sound. She surveyed the profile of these shorelines and recorded other information that will inform and improve Arctic-specific protocols and considerations for surveying oiled shorelines.

Though we only saw a small part of the Northwest Arctic coastline, it was an excellent opportunity to gauge how its coastal characteristics would influence the transport and fate of spilled oil, to improve how we would survey oiled Arctic shorelines, to gather critical baseline data for this environment, and to field test our guidelines for collecting time-sensitive data after an oil spill.

One of the greatest challenges for responding to and evaluating the impacts of an Arctic oil spill is dealing with the logistics of safety, access, transportation, and personnel support. Collaborating with the Park Service and local community in Kotzebue and gaining experience in the field camp gave us invaluable insight into what we would need to do to work effectively in the event of a spill in this remote area.

First, be prepared. Then, be flexible.

Thank you to the National Park Service, especially Tahzay Jones and Paul Burger, for the opportunity to join their field team in the Bering Land Bridge National Preserve.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


2 Comments

From Board Games to Cookbooks, How the Exxon Valdez Oil Spill Infiltrated Pop Culture

Big oil spills, those of the magnitude which happen only once every few decades, often leave a legacy of sorts.

In the case of the 1989 Exxon Valdez oil spill, which dumped roughly 11 million gallons of crude oil into Alaska’s Prince William Sound, that legacy took many forms. Legislative, ecological, and even cultural—yes, that extends to pop culture too.

In short order, the Exxon Valdez oil spill prompted monumental changes in the laws governing maritime shipping and oil spill response. In 1990, Congress passed the Oil Pollution Act, empowering NOAA and the U.S. Environmental Protection Agency to better respond to and plan for spills and setting up a trust fund (paid for by an oil tax) to help with cleanup operations.

Furthermore, this important legislation mandated that oil tankers with single hulls (like the easily punctured Exxon Valdez) would no longer be permitted to operate in U.S. waters, instead requiring double-hull vessels to carry oil. (However, the full phaseout of single-hull tankers would take decades.)

More than 25 years later, researchers are still uncovering this spill’s ecological legacy, its stamp on the natural world, and learning what happens when oil interacts with that world. The spill affected some two dozen species and habitats, some of which have not yet recovered.

Of course, the Exxon Valdez oil spill also left a complicated cultural legacy, imparting health, social, psychological, and economic impacts on the people living and working in the area, particularly those whose livelihoods are closely tied to the ocean. Commercial fishers, the recreation and tourism industry, and more than a dozen predominantly Alaskan Native communities relying on fish, waterfowl, and other natural resources for subsistence were dramatically affected by the oil spill.

Yet the cultural echoes of this environmental disaster spread beyond Alaska. It inspired a second grader to write an impassioned letter about the plight of otters threatened by the spill to the Alaska director of the Fish and Wildlife Service. After working at this spill, it inspired one NOAA marine biologist to begin collecting some of the strange pieces of memorabilia related to the incident, from a piece of the ill-fated tanker to an Exxon safety calendar featuring the ship in the very month it would run aground.

These echoes even managed to permeate the ranks of pop culture. Take a look at these five ways that the Exxon Valdez oil spill has shown up in places most oil spills just don’t go:

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

  1. A board game. Local bartender Richard Lynn of Valdez, Alaska, created the game “On the Rocks: The Great Alaska Oil Spill” after working part-time to clean up the spill. Each player navigates through the game using an authentic bit of rock from Prince William Sound. The goal was to be the first player to scrub all 200 miles of oily shore. The catch was that you only had about 6 months and $250 million in play money to accomplish this. You could pick up your own copy of the game for $16.69, which was the hourly rate Exxon’s contracted workers earned while cleaning up the spill.
  2. A movie. Dead Ahead: the Exxon Valdez Disaster was the 1992 made-for-TV movie that dramatized the events of the oil spill and ensuing cleanup. This film even featured some well-known actors, including John Heard as Alaska inspector Dan Lawn and Christopher Lloyd as Exxon Shipping Company President Frank Iarossi.
  3. A cookbook. Fortunately, the recipes in The Two Billion Dollar Cookbook don’t feature dishes like “oiled herring” or “otter on the rocks.” Instead, this 300 page cookbook compiled by Exxon Valdez cleanup workers and their friends and families highlights meals more along the lines of barbeque sandwich mix and steak tartare, in addition to being peppered with personal stories from its contributors. Proceeds from the sale of this cookbook benefit a homeless shelter and food bank based in Anchorage, Alaska. Why two billion dollars? That was how much Exxon had shelled out for responding to the spill when the cookbook hit the presses.
  4. A play. Two plays, in fact. Dick Reichman, resident of Valdez, Alaska, during the momentous spill, has twice written and directed plays that examined this disaster—and the high emotions that came with it—through the theatrical lens. His first play, written in 1992 and dubbed “The official Valdez oil spill melodrama,” was Tanker on the Rocks: or the Great Alaskan Bad Friday Fish-Spill of ’89. His second, The Big One: a Chronicle of the Exxon Valdez Oil Spill, was received with some acclaim during its 2009 run in Anchorage. You can watch a short video of the actors and director preparing for the 2009 performance (warning: some explicit language).
  5. Children’s books, novels, and poetry. From a children’s book about a young girl rescuing an oiled baby seal to a novel written by the tugboat captain who towed the Exxon Valdez out of Prince William Sound, there exists a bounty of literature exploring the many human and environmental themes of this oil spill. As you peruse them, keep in mind this NOAA scientist’s recommendations for evaluating what you’re reading about oil spills, especially when doing so with kids.

Have you seen other examples of the Exxon Valdez or perhaps, more recently, the Deepwater Horizon oil spill showing up in pop culture?

A special thanks to the Alaska Resources Library and Information Services (ARLIS) for compiling an excellent list of Exxon Valdez related information [PDF] and for helping procure an image of the rare “On the Rocks” board game.


Leave a comment

Transforming Dusty Fields into Vibrant Salt Marshes in San Francisco Bay

Vibrant marsh with lots of ducks and trucks on the highway in the background.

Just after the Cullinan Ranch restoration site was re-flooded, huge flocks of waterfowl began using the marsh, including Canvasback, Scaup, Northern Pintail, Mallards, and American Wigeon. (Ducks Unlimited)

What happens when you fill a dry, dusty 1,200 acre field at the northern edge of San Francisco Bay with tide waters unseen in that place for more than a century?

You get a marsh with a brand new lease on life.

In January 2015, this is exactly what took place at the salt marsh restoration site called Cullinan Ranch (known as that due to its history as a hay farm).

Check out the photos taken of the restoration site in November 2013, after the new boat ramp and wildlife viewing platform were built but before the levees holding back the bay were breached, and compare them with those taken in the same spot in January 2015, after the waters returned.

Brackish waters once again cover the low-lying area, long pushed down below sea level due to farming dating back to the 1880s. The presence of salt water has transformed this arid field into tidal wetland habitat, where birds, fish, and wildlife, such as the endangered Ridgway’s rail, the salt marsh harvest mouse, steelhead, Chinook salmon, and other fish can thrive.

According to Ducks Unlimited biologist Craig Garner, whose organization has been a key player in this site’s restoration, “When the ranch was newly flooded, we saw a tremendous response by waterfowl. Large numbers of birds were recorded using the area, particularly Canvasback,” a species of diving duck.

Could it be that Cullinan Ranch provides California wildlife with a new refuge from the current scarcity of freshwater habitats further inland? Garner suggests, “Though it is tough to gauge without waterfowl survey data, I would say that Cullinan Ranch could be offsetting the effects of drought conditions on diving duck habitat at all” levels of the tidal cycle.

Of course, people will also be able to enjoy this transformation occurring at Cullinan Ranch via the new recreational facilities. (Launching your boat into a dry field probably wouldn’t be much fun, after all.)

But it’s not just fun and games. People will benefit from this renewed salt marsh acting as a natural filter, increasing the quality of the water passing through it on the way to the bay and its fisheries, and as a sponge for moderating flooding during storms. The plant life growing in the marsh also serves to capture and hold excess carbon dioxide from the nearby urban areas. In addition, taking out the 19th-century levees holding out the bay’s tides reduces the chances of a catastrophic failure and cuts out the expense of maintaining poorly built levees.

Watch as the last satisfying scoops of the muddy barrier disappear and salty waters rush in:

Excavator removing a dirt levee and allowing tide waters to rush into a dry marsh.

Taking out the first levee at the Cullinan Ranch marsh restoration project in central California in January 2015. (NOAA)

Learn more about the efforts to restore this tidal wetland and another long-dry area known as Breuner Marsh. Both of these restoration projects were made possible with funding from a natural resource damage assessment settlement paid by Chevron to make up for years of dumping mercury and oil pollution from its Richmond, California, refinery into the shallow waters of nearby Castro Cove. NOAA partnered with the U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife to achieve the 2010 Chevron settlement and contribute to these two important restoration projects.

In the fall of 2014, Breuner Marsh also saw the return of its daily infusion of saltwater and is looking more and more like a natural salt marsh and less like the next site of urban development.

Aerial view of marsh with tide waters channeling across the shore.

An aerial view of the tide waters retaking their normal course at the restoration site Breuner Marsh on San Francisco Bay in the fall of 2014. (Castro Cove Natural Resource Damage Trustees)


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


Leave a comment

NOAA Experts Help Students Study up on Oil Spills and Ocean Science

Person on boat looking oiled sargassum in the ocean.

Mark Dodd, wildlife biologist from Georgia’s Department of Natural Resources, surveying oiled sargassum in the Gulf of Mexico. (Credit: Georgia Department of Natural Resources)

Every year high school students across the country compete in the National Ocean Sciences Bowl to test their knowledge of the marine sciences, ranging from biology and oceanography to policy and technology. This year’s competition will quiz students on “The Science of Oil in the Ocean.” As NOAA’s center for expertise on oil spills, the Office of Response and Restoration has been a natural study buddy for these aspiring ocean scientists.

In addition to providing some of our reports as study resources, three of our experts recently answered students’ questions about the science of oil spills in a live video Q&A. In an online event hosted by the National Ocean Sciences Bowl, NOAA environmental scientist Ken Finkelstein, oceanographer Amy MacFadyen, and policy analyst Meg Imholt fielded questions on oil-eating microbes, oil’s movement in the ocean, and much more.

Here is a sampling of the more than a dozen questions asked and answered, plus a bit of extra research to help you learn more. (You also can view the full hour-long video of the Q&A.)

What are the most important policies that relate to the oil industry?

There are lots of policies related to the oil industry. Here are a few that impact our work:

  • The Clean Water Act establishes rules about water pollution.
  • The Oil Pollution Act of 1990 establishes the Oil Spill Liability Trust Fund to support oil spill response and holds companies responsible for damages to natural resources caused by a spill.
  • The National Contingency Plan guides preparedness and response for oil and hazardous material spills. It also regulates the use of some response tools such as dispersants.
  • The Outer Continental Shelf Lands Act gives the Department of Interior authority to lease areas in federal waters for oil and gas development and to regulate offshore drilling.
  • The Endangered Species Act and the Marine Mammal Protection Act establish rules for protected species that companies must consider in their operations.

How do waves help transport oil?

Waves move oil in a few ways. First is surface transport. Waves move suspended particles in circles. If oil is floating on the surface, waves can move it toward the shore. However, ocean currents and winds blowing over the surface of the ocean are generally much more important in transporting surface oil. For example, tidal currents associated with rising and falling water levels can be very fast — these currents can move oil in the coastal zone at speeds of several miles per hour. Over time, all these processes act to spread oil out.

Waves are also important for a mixing process called dispersion. Most oils float on the surface because they are less dense than water. However, breaking waves can drive oil into the water column as droplets. Larger, buoyant droplets rise to the surface. Smaller droplets stay in the water column and move around in the subsurface until they are dissolved and degraded.

How widespread is the use of bacteria to remediate oil spills?

Some bacteria have evolved over millions of years to eat oil around natural oil seeps. In places without much of this bacteria, responders may boost existing populations by adding nutrients, rather than adding new bacteria.

This works best as a polishing tool. After an initial response, particles of oil are left behind.  Combined with wave movement, nutrient-boosted bacteria help clean up those particles.

Are oil dispersants such as Corexit proven to be poisonous, and if so, what are potential adverse effects as a result of its use?

Both oil and dispersants can have toxicological effects, and responders must weigh the trade-offs. Dispersants can help mitigate oil’s impacts to the shoreline. When oil reaches shore, it is difficult to remove and can create a domino effect in the ecosystem. Still, dispersants break oil into tiny droplets that enter the water column. This protects the shoreline, but has potential consequences for organisms that swim and live at the bottom of the sea.

To help answer questions like these, we partnered with the Coastal Response Research Center at the University of New Hampshire to fund research on dispersants and dispersed oil. Already, this research is being used to improve scientific support during spills.

What are the sources of oil in the ocean? How much comes from natural sources and how much comes from man-made sources?

Oil can come from natural seeps, oil spills, and also runoff from land, but total volumes are difficult to estimate. Natural seeps of oil account for approximately 60 percent of the estimated total load in North American waters and 40 percent worldwide, according to the National Academy of Sciences in a 2003 report. In 2014, NOAA provided scientific support to over 100 incidents involving oil, totaling more than 8 million gallons of oil potentially spilled. Scientists can identify the source of oil through a chemical technique known as oil fingerprinting. This provides evidence of where oil found in the ocean is from.

An important factor is not only how much oil is in the environment, but also the type of oil and how quickly it is released. Natural oil seeps release oil slowly over time, allowing ecosystems to adapt. In a spill, the amount of oil released in a short time can overwhelm the ecosystem.

What is the most effective order of oil spill procedure? What is currently the best method?

It depends on what happened, where it’s going, what’s at risk, and the chemistry of the oil.  Sometimes responders might skim oil off the surface, burn it, or use pads to absorb oil. The best response is determined by the experts at the incident.

Bag of oiled waste on a beach.

Oiled waste on the beach in Port Fourchon, Louisiana. On average, oil spill cleanups generate waste 10 times the amount of oil spilled. (NOAA)

What do you do with the oil once it is collected? Is there any way to use recovered oil for a later use?

Oil weathers in the environment, mixing with water and making it unusable in that state. Typically, collected oil has to be either processed before being recycled or sent to the landfill, along with some oiled equipment. Oil spill cleanups create a large amount of waste that is a separate issue from the oil spill itself.

Are the effects of oil spills as bad on plants as they are on animals?

Oil can have significant effects on plants, especially in coastal habitat. For example, mangroves and marshes are particularly sensitive to oil. Oil can be challenging to remove in these areas, and deploying responders and equipment can sometimes trample sensitive habitat, so responders need to consider how to minimize the potential unintended adverse impact of cleanup actions.

Does some of the crude oil settle on the seafloor? What effect does it have?

Oil usually floats, but can sometimes reach the seafloor. Oil can mix with sediment, separate into lighter and heavier components, or be ingested and excreted by plankton, all causing it to sink, with potential impacts for benthic (bottom-dwelling) creatures and other organisms.

When oil does reach the seafloor, removing it has trade-offs. In some cases, removing oil could require removing sediment, which is home to many important benthic (bottom-dwelling) organisms. Responders work with scientists to decide this on a case-by-case basis.

To what extent is the oil from the Deepwater Horizon oil spill still affecting the Gulf of Mexico ecosystem?

NOAA and our co-trustees have released a number of studies as part of the ongoing Natural Resource Damage Assessment for this spill and continue to release new research. Some public research has shown impacts on dolphins, deep sea ecosystems, and tuna. Other groups, like the Gulf of Mexico Research Initiative, are conducting research outside of the Natural Resource Damage Assessment.

How effective are materials such as saw dust and hair when soaking up oil from the ocean surface?

Oil spill responders use specialized products, such as sorbent materials, which are much more effective.


Leave a comment

After a Century Apart, NOAA and Partners Reunite a Former Wetland with San Francisco Bay’s Tides

Excavator removing earth from a breached barrier between tide waters in a slough and the new wetland.

The first of four breaches of tidal levees separating Cullinan Ranch from the tide waters of San Francisco Bay. (NOAA)

Scooping away the last narrow band of mud, a bright yellow excavator released a rush of brackish water into an area cut off from the tides for more than a hundred years.

The 1,200 acre field now filling with water, known as Cullinan Ranch due to its history as a hay farm, is once again becoming a tidal wetland.

On January 6, 2015, more than 100 people celebrated the reintroduction of tide waters to Cullinan Ranch in Solano County, California. For decades before, earthen levees had separated it from the nearby Napa River and San Pablo Bay, a northern corner of the San Francisco Bay Estuary.

With three more levee breaches planned by the end of January, restoration of this 1,500 acre site is nearly complete, with efforts to monitor the project’s progress to follow. Surrounded by state and federal wildlife lands, Cullinan Ranch will fill in a gap in coastal habitat as it becomes integrated with San Pablo Bay National Wildlife Refuge.

How Low Can It Flow

For the most part, Cullinan Ranch will be covered in open water because years of farming, beginning in the 1880s, caused the land to sink below sea level. The open water will provide places for animals such as fish and birds—as well as the invertebrates they like to eat—to find food and rest after big storms.

However, some areas of the property will remain above the low tide level, creating conditions for the plant pickleweed to thrive. While a succulent like cacti, pickleweed can survive wet and salty growing conditions. (Fun fact: Some people enjoy cooking and eating pickleweed. When blanched, it apparently tastes salty and somewhat crispy.) The salt marsh harvest mouse, native to California and one of the few mammals able to drink saltwater, also will take advantage of the habitat created by the pickleweed in the recovering wetland.

Wildlife will not be the only ones enjoying the restoration of Cullinan Ranch. A major highway passes by the site, and Cullinan Ranch has experienced numerous upgrades to improve recreational access for people brought there by Highway 37. Soon anyone will be able to hike on the newly constructed trails, fish off the pier, and launch kayaks from the dock.

Turning Money into Marshes

The restoration of Cullinan Ranch from hay field to tidal wetland has been in the works for a long time, brought about by a range of partners and funding agencies, including NOAA, the U.S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, California Department of Fish and Wildlife, California Wildlife Conservation Board, and Ducks Unlimited. NOAA provided several sources of funding to help finish this restoration project.

In addition to $900,000 from the American Recovery and Reinvestment Act, NOAA contributed $650,000 through a community-based restoration partnership with Ducks Unlimited and $1.65 million awarded for natural resource damages through the Castro Cove trustee council. The latter funding was part of a $2.65 million settlement with Chevron as a result of the nearby Chevron Richmond Refinery discharging mercury and oil pollution into Castro Cove for years. Cullinan Ranch and Breuner Marsh are the two restoration projects Chevron funded to make up for this pollution.

Map of San Francisco Bay showing locations of NOAA restoration projects.

NOAA is working on a number of tidal wetland restoration projects in the north San Francisco Bay. (NOAA)

Cullinan Ranch is one of the largest restoration projects in the north San Francisco Bay, but it is far from the only one NOAA is involved with in the region. Helping reverse a century-long trend which saw many of the bay’s tidal wetlands disappear, NOAA has been working on a suite of projects restoring these historic and important coastal features in northern California.

Watch footage of the earthen levee being breached to reconnect the bay’s tide waters to Cullinan Ranch.


Leave a comment

Carrying on a Nearly Fifty Year Tradition, Scientists Examine the Intersection of Pollution and Marine Life

As reliably as the tides, each month biologist Donald J. Reish would wash over the library at California State University, Long Beach, armed with stacks of 3×5 index cards. On these cards, Reish meticulously recorded every scientific study published that month on pollution’s effects on marine life. When he began this ritual in 1967, this did not amount to very many studies.

“There was essentially none at the time,” says Reish, who helped pioneer the study of pollution’s impacts on marine environments in the 1950s.

Nevertheless, after a year of collecting as much as he could find in scientific journals, he would mail the index cards with their handwritten notes to a volunteer crew that often included his former graduate students, including Alan Mearns, now an ecologist with NOAA’s Office of Response and Restoration. Like a wave, they would return to the library to read, review, and send summaries of these studies back to Reish. At his typewriter, he would compile the individual summaries into one comprehensive list, an “in case you missed it” for scientists interested in this emerging field of study. This compilation would then be published in a scientific journal itself.

By the early 2000s, Reish handed off leadership of this annual effort to Mearns, an early recruit to the project. Today, Mearns continues the nearly 50 year tradition of reviewing the state of marine pollution science and publishing it in the journal Water Environment Research. Their 2014 review, “Effects of Pollution on Marine Organisms,” comes together a little differently than in the 1960s and 70s—and covers issues that have changed with the years as well.

Signs of the Times

Man and woman at a desk covered with scientific papers.

NOAA Office of Response and Restoration biologists Alan Mearns and Nicolle Rutherford tackle another year’s worth of scientific studies, part of an effort begun in 1967. (NOAA)

For starters, vastly more studies are being published on marine pollution and its environmental effects. For this year’s publication, Mearns and his six co-authors, who include Reish and NOAA scientists Nicolle Rutherford and Courtney Arthur, reviewed 341 scientific papers which they pulled from a larger pool of nearly 1,000 studies.

The days of having to physically visit a library each month to read the scientific journals are also over. Instead, Mearns can wait until the end of the year to scour online scientific search engines. Emails replace the handwritten 3×5 index cards. And fortunately, typewriters are no longer involved.

The technology the reviewers are using isn’t the only thing to change with the years. In the early days, the major contaminants of concern were heavy metals, such as copper, which were turning up in the bodies of fish and invertebrates. Around the 1970s, the negative effects of the insecticide DDT found national attention, thanks to the efforts of biologist Rachel Carson in her seminal book Silent Spring.

Today, Mearns and Reish see the focus of research shifting to other, often more complicated pollutants, such as nanomaterials, which can be any of a number of materials roughly 100,000 times smaller than the width of a human hair. On one hand, nanotechnology is helping scientists decipher the effects of some pollutants, while, on the other, nanomaterials, such as those found in cosmetics, show potentially serious effects on some marine life including mussels.

Another major trend has been the evolution of the ways scientists evaluate the effects of pollutants on marine life. Researchers in the United States and Western Europe used to study the toxicity of a pollutant by increasing the amount animals are exposed to until half the study animals died. In the 1990s, researchers began exploring pollutants’ finer physiological effects. How does exposure to X pollutant affect, for example, a fish’s ability to feed or reproduce?

Nowadays, the focus is even more refined, zeroing in on the molecular scale to discern how pollutants affect an animal’s genetic material, its DNA. How does the presence of oil change whether certain genes in a fish’s liver are turned on or off? What does that mean for the fish?

A Year of Pollution in Review

With three Office of Response and Restoration scientists working on this effort, it unsurprisingly features a lot on oil spills and marine debris, two areas of our expertise.

Of particular interest to Mearns and Rutherford, as oil spill biologists, are the studies of biodegradation of oil in the ocean, specifically, how microbes break down and eat components of oil, especially the toxic polycyclic aromatic hydrocarbons (PAHs). Scientists are examining collections of genes in such microbes and determining which ones produce enzymes that degrade PAHs.

“That field has really exploded,” says Mearns. “It’s just amazing what they’re finding once they use genomics and other tools to go into [undersea oil spill] plumes and see what these critters are doing and eating.”

Marine debris research in 2013 focused on the effects of eating, hitchhiking on, or becoming entangled in debris. Studies examined the resulting impacts on marine life, including sea birds, fish, crabs, turtles, marine mammals, shellfish, and even microbes. The types of debris that came up again and again were abandoned fishing gear and plastic fragments. In addition, quite a bit of research attempted to fill in gaps in understanding of how plastic debris might take up and then leach out potentially dangerous chemicals.

Attitude Adjustment

A group of men and women stand around Don Reish.

Reish often relied on his former graduate students, including NOAA’s Alan Mearns, to help review the many studies on marine pollution’s effects each year. Shown here in 2004, Reish (seventh from left) is surrounded by a few of his former students who gathered to honor him at the Southern California Academy of Sciences Annual Meeting. Mearns is fifth from left and another contributer, Phil Oshida of the U.S. Environmental Protection Agency, stands between and behind Mearns and Reish. (Alan Mearns)

Perhaps the most significant change over the decades has been a change in attitudes. Reish recalled a presentation he gave at a scientific meeting in 1955. He was discussing his study of how marine worms known as polychaetes changed where they lived based on the effects of pollution in southern California. Afterward, he sat down next to a professor from another college, whose response to his presentation was, “Don, why don’t you go do something important?”

In 2014 attitudes generally skew to the other end of the spectrum when it comes to understanding human impacts on our world and how intertwined these impacts often are with human well-being.

And while there is a lot of bad news about these impacts, Mearns and Reish have seen some bright spots as well. Scientists are starting to observe slow declines in the presence of toxic chemicals, such as DDT from insecticides and PCBs from industrial manufacturing, which last a long time in the environment and build up in the bodies of living things, such as the fish humans like to catch and eat.

The end of the year is approaching and, reliably, Mearns and his colleagues are again preparing to scan hundreds of studies for their annual review of the scientific literature. Reflecting on this effort, Mearns points out another benefit of bringing together such a wide array of research disciplines. It encourages him to cross traditional boundaries of scientific study, enriching his work in the process.

“For me, it inspires out-of-the-box thinking,” says Mearns. “I’ll be looking at wastewater discharge impacts and I’ll spot something that I think is relevant to oil spill studies…We can find out things from these other fields and apply them to our own.”

Follow

Get every new post delivered to your Inbox.

Join 605 other followers