NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

Births Down and Deaths Up in Gulf Dolphins Affected by Deepwater Horizon Oil Spill

A mother bottlenose dolphin pushes her dead newborn calf at the water's surface.

Dolphin Y01 pushes a dead calf through the waters of Barataria Bay, Louisiana, in March 2013. This behavior is sometimes observed in female dolphins when their newborn calf does not survive. Barataria Bay dolphins have seen a disturbingly low rate of reproductive success in the wake of the Deepwater Horizon oil spill. (Louisiana Department of Wildlife and Fisheries)

In August of 2011, a team of independent and government scientists evaluating the health of bottlenose dolphins in Louisiana’s Barataria Bay gave dolphin Y35 a good health outlook.

Based on the ultrasound, she was in the early stages of pregnancy, but unlike many of the other dolphins examined that summer day, Y35 was in pretty good shape. She wasn’t extremely underweight or suffering from moderate-to-severe lung disease, conditions connected to exposure to Deepwater Horizon oil in the heavily impacted Barataria Bay.

Veterinarians did note, however, that she had alarmingly low levels of important stress hormones responsible for behaviors such as the fight-or-flight response. Normal levels of these hormones help animals cope with stressful situations. This rare condition—known as hypoadrenocorticism—had never been reported before in dolphins, which is why it was not used for Y35 and the other dolphins’ health prognoses.

Less than six months later, researchers spotted Y35 for the last time. It was only 16 days before her expected due date. She and her calf are now both presumed dead, a disturbingly common trend among the bottlenose dolphins that call Barataria Bay their year-round home.

This trend of reproductive failure and death in Gulf dolphins over five years of monitoring after the 2010 Deepwater Horizon oil spill is outlined in a November 2015 study led by NOAA and published in the peer-reviewed journal Proceedings of the Royal Society.

Of the 10 Barataria Bay dolphins confirmed to be pregnant during the 2011 health assessment, only two successfully gave birth to calves that have survived. This unusually low rate of reproductive success—only 20%—stands in contrast to the 83% success rate in the generally healthier dolphins being studied in Florida’s Sarasota Bay, an area not affected by Deepwater Horizon oil.

Baby Bump in Failed Pregnancies

While hypoadrenocorticism had not been documented previously in dolphins, it has been found in humans. In human mothers with this condition, pregnancy and birth—stressful and risky enough conditions on their own—can be life-threatening for both mother and child when the condition is left untreated. Wild dolphins with this condition would be in a similar situation.

Mink exposed to oil in an experiment ended up exhibiting very low levels of stress hormones, while sea otters exposed to the Exxon Valdez oil spill experienced high rates of failed pregnancies and pup death. These cases are akin to what scientists have observed in the dolphins of Barataria Bay after the Deepwater Horizon oil spill.

Among the pregnant dolphins being monitored in this study, at least two lost their calves before giving birth. Veterinarians confirmed with ultrasound that one of these dolphins, Y31, was carrying a dead calf in utero during her 2011 exam. Another pregnant dolphin, Y01, did not successfully give birth in 2012, and was then seen pushing a dead newborn calf in 2013. Given that dolphins have a gestation of over 12 months, this means Y01 had two failed pregnancies in a row.

The other five dolphins to lose their calves after the Deepwater Horizon oil spill, excluding Y35, survived pregnancy themselves but were seen again and again in the months after their due dates without any young. Dolphin calves stick close to their mothers’ sides in the first two or three months after birth, indicating that these pregnant dolphins also had calves that did not survive.

At least half of the dolphins with failed pregnancies also suffered from moderate-to-severe lung disease, a symptom associated with exposure to petroleum products. The only two dolphins to give birth to healthy calves had relatively minor lung conditions.

Survival of the Least Oiled

Dolphin Y35 wasn’t the only one of the 32 dolphins being monitored in Barataria Bay to disappear in the months following her 2011 examination. Three others were never sighted again in the 15 straight surveys tracking these dolphins. Or rather, they were never seen again alive. One of them, Y12, was a 16-year-old adult male whose emaciated carcass washed up in Louisiana only a few weeks before the pregnant Y35 was last seen. In fact, the number of dolphins washing up dead in Barataria Bay from August 2010 through 2011 was the highest ever recorded for that area.

Survival rate in this group of dolphins was estimated at only 86%, down from the 95-96% survival seen in dolphin populations not in contact with Deepwater Horizon oil. The marshy maze of Barataria Bay falls squarely inside the footprint of the Deepwater Horizon oil spill, and its dolphins and others along the northern Gulf Coast have repeatedly been found to be sick and dying in historically high numbers. Considering how deadly this oil spill has been for Gulf bottlenose dolphins and their young, researchers expect recovery for these marine mammals to be a long time coming.

Watch an updated video of the researchers as they temporarily catch and give health exams to some of the dolphins in Barataria Bay, Louisiana, in August of 2011 and read a 2013 Q&A with two of the NOAA researchers involved in these studies:

This study was conducted under the Natural Resource Damage Assessment for the Deepwater Horizon oil spill. These results are included in the injury assessment documented in the Draft Programmatic Assessment and Restoration Plan that is currently out for public comment. We will accept comments on the plan through December 4, 2015.

This research was conducted under the authority of Scientific Research Permit nos. 779-1633 and 932-1905/MA-009526 issued by NOAA’s National Marine Fisheries Service pursuant to the U.S. Marine Mammal Protection Act.

Leave a comment

What Happens When Oil Spills Meet Massive Islands of Seaweed?

Floating bits of brown seaweed at ocean surface

Floating rafts of sargassum, a large brown seaweed, can stretch for miles across the ocean. (Credit: Sean Nash/Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic license)

The young loggerhead sea turtle, its ridged shell only a few inches across, is perched calmly among the floating islands of large brown seaweed, known as sargassum. Casually, it nibbles on the leaf-like blades of the seaweed, startling a nearby crab. Open ocean stretches for miles around these large free-floating seaweed mats where myriad creatures make their home.

Suddenly, a shadow passes overhead. A hungry seabird?

Taking no chances, the small sea turtle dips beneath the ocean surface. It dives through the yellow-brown sargassum with its tangle of branches and bladders filled with air, keeping everything afloat.

Home Sweet Sargassum

This little turtle isn’t alone in seeking safety and food in these buoyant mazes of seaweed. Perhaps nowhere is this more obvious than a dynamic stretch of the Atlantic Ocean off the East Coast of North America named for this seaweed: the Sargasso Sea. Sargassum is also an important part of the Gulf of Mexico, which contains the second most productive sargassum ecosystem in the world.

Some shrimp, crabs, and fish are specially suited to life in sargassum. Certain species of eel, fish, and shark spawn there. Each year, humpback whales, tuna, and seabirds migrate across these fruitful waters, taking advantage of the gathering of life that occurs where ocean currents converge.

Cutaway graphic of ocean with healthy sargassum seaweed habitat supporting marine life.

Illustration of sargassum and associated marine life, including fish, sea turtles, birds, and marine mammals. Sargassum is a brown algae that forms a unique and highly productive floating ecosystem on the surface of the open ocean. (NOAA) Click to enlarge.

The Wide and Oily Sargasso Sea

However, an abundance of marine life isn’t the only other thing that can accumulate with these large patches of sargassum. Spilled oil, carried by currents, can also end up swirling among the seaweed.

If an oil spill made its way somewhere like the Sargasso Sea, a young sea turtle would encounter a much different scene. As the ocean currents brought the spill into contact with sargassum, oil would coat those same snarled branches and bladders of the seaweed. The turtles and other marine life living within and near the oiled sargassum would come into contact with the oil too, as they dove, swam, and rested among the floating mats.

That oil can be inhaled as vapors, be swallowed or consumed with food, and foul feathers, skin, scales, shell, and fur, which in turn smothers, suffocates, or strips the animal of its ability to stay insulated. The effects can be toxic and deadly.

Cutaway graphic of ocean with potential impacts of oil on sargassum seaweed habitat and marine life.

Illustration of the potential impacts of an oil spill on sargassum and associated marine life in the water column. (NOAA) Click to enlarge.

While sea turtles, for example, as cold-blooded reptiles, may enjoy the relatively warmer waters of sargassum islands, a hot sun beating down on an oiled ocean surface can raise water temperatures to extreme levels. What starts as soothing can soon become stressful.

Depending on how much oil arrived, the sargassum would grow less, or not at all, or even die. These floating seaweed oases begin shrinking. Where will young sea turtles take cover as they cross the unforgiving open ocean?

As life in the sargassum starts to perish, it may drop to the ocean bottom, potentially bringing oil and the toxic effects with it. Microbes in the water may munch on the oil and decompose the dead marine life, but this can lead to ocean oxygen dropping to critical levels and causing further harm in the area.

From Pollution to Protection

Young sea turtles swims through floating seaweed mats.

The floating habitat that sargassum creates provides food, refuge, and breeding grounds for an array of marine species, including sea turtles. (NOAA)

NOAA and the U.S. Fish and Wildlife Service have designated sargassum as a critical habitat for threatened loggerhead sea turtles.

Sargassum has also been designated as Essential Fish Habitat by Gulf of Mexico Fishery Management Council and National Marine Fisheries Service since it also provides nursery habitat for many important fishery species (e.g., dolphinfish, triggerfishes, tripletail, billfishes, tunas, and amberjacks) and for ecologically important forage fish species (e.g., butterfishes and flyingfishes).

Sargassum and its inhabitants are particularly vulnerable to threats such as oil spills and marine debris due to the fact that ocean currents naturally tend to concentrate all of these things together in the same places. In turn, this concentrating effect can lead to marine life being exposed to oil and other pollutants for more extended periods of time and perhaps greater impacts.

However, protecting sargassum habitat isn’t impossible and it isn’t out of reach for most people. Some of the same things you might do to lower your impact on the planet—using less plastic, reducing your demand for oil, properly disposing of trash, discussing these issues with elected officials—can lead to fewer oil spills and less trash turning these magnificent islands of sargassum into floating islands of pollution.

And maybe protect a baby sea turtle or two along the way.

Leave a comment

NOAA, Deepwater Horizon Trustees announce draft restoration plans for Gulf of Mexico following 2010 disaster

Bulldozers doing construction in a Gulf of Mexico marsh.

These efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident. (NOAA)

NOAA and the other Deepwater Horizon Natural Resource Trustees today released 15-year comprehensive, integrated environmental ecosystem restoration plans for the Gulf of Mexico in response to the April 20, 2010 Deepwater Horizon oil rig explosion and spill.

Implementing the plan will cost up to $8.8 billion. The explosion killed 11 rig workers and the subsequent spill lasted 87 days and impacted both human and natural resources across the Gulf.

The Draft Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement allocates Natural Resource Damage Assessment  monies that are part of a comprehensive settlement agreement in principle  among BP, the U.S. Department of Justice on behalf of federal agencies, and the five affected Gulf States announced on July 2, 2015. The Department of Justice lodged today in U.S. District Court a consent decree as part of the more than $20 billion dollar settlement.

In the draft plan, the Trustees provide documentation detailing impacts from the Deepwater Horizon oil spill to:

  • wildlife, including fish, oysters, plankton, birds, sea turtles, and marine mammals across the Gulf
  • habitat, including marshes, beaches, floating seaweed habitats, water column, submerged aquatic vegetation, and ocean-bottom habitats
  • recreational activities including boating, fishing, and going to the beach

The Trustees determined that “overall, the ecological scope of impacts from the Deepwater Horizon spill was unprecedented, with injuries affecting a wide array of linked resources across the northern Gulf ecosystem.” As a result of the wide scope of impacts identified, the Trustees “have determined that the best method for addressing the injuries is a comprehensive, integrated, ecosystem restoration plan.”

Both the consent decree and the draft plan are available for 60 days of public comment. The Trustees will address public comment in adopting a final plan. For the consent decree, once public comment is taken into account the court will be asked to make it final.

Public comments on the draft plan will be accepted at eight public meetings to be held between October 19 and November 18 in each of the impacted states and in Washington, DC. Comments will also be accepted online and by mail sent to: U.S. Fish and Wildlife Service, P.O. Box 49567, Atlanta, GA 30345. The public comment period will end on December 4, 2015.

The Trustees are proposing to accept this settlement, which includes, among other components, an amount to address natural resource damages of $8.1 billion for restoration and up to $700 million for addressing unknown impacts or for adaptive management. These amounts include the $1 billion in early restoration funds which BP has already committed.

“NOAA scientists were on the scene from day one as the Deepwater spill and its impacts unfolded. NOAA and the Trustees have gathered thousands of samples and conducted millions of analyses to understand the impacts of this spill,” said Kathryn D. Sullivan, Ph.D., undersecretary of commerce for oceans and atmosphere and NOAA administrator. “The scientific assessment concluded that there was grave injury to a wide range of natural resources and loss of the benefits they provide. Restoring the environment and compensating for the lost use of those resources is best achieved by a broad-based ecosystem approach to restore this vitally important part of our nation’s environmental, cultural and economic heritage.”

People in boat and in marsh assessing oiling impacts.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals. (NOAA)

NOAA led the development of the 1,400 page draft damage assessment and restoration plan, with accompanying environmental impact statement, in coordination with all of the natural resource Trustees. The draft plan is designed to provide a programmatic analysis of the type and magnitude of the natural resources injuries that have been identified through a Natural Resource Damage Assessment conducted as required by the Oil Pollution Act of 1990 and a programmatic restoration plan to address those injuries. Alternative approaches to restoration are evaluated in the plan under the Oil Pollution Act and the National Environmental Policy Act.

Specific projects are not identified in this plan, but will be proposed in future project-specific restoration proposals. The Trustees will ensure that the public is involved in their development through public notice of proposed restoration plans, opportunities for public meetings, and consideration of all comments received.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals.

The five overarching goals of the proposed plan are to:

  • restore and conserve habitat
  • restore water quality
  • replenish and protect living coastal and marine resources
  • provide and enhance human use recreational activities
  • provide for long term monitoring, adaptive management, and administrative oversight of restoration efforts.

The 13 proposed restoration activities are:

  1. Restoration of wetlands, coastal, and nearshore habitats
  2. Habitat projects on federally managed lands
  3. Nutrient reduction
  4. Water quality
  5. Fish and water column invertebrates
  6. Sturgeon
  7. Submerged aquatic vegetation
  8. Oysters
  9. Sea turtles
  10. Marine mammals
  11. Birds
  12. Low-light and deep seafloor communities
  13. Provide and enhance recreational opportunities

Together, these efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident.

Once the plan is finally approved and the settlement is finalized, NOAA will continue to work with all of the Trustees to plan, approve, and implement restoration projects. NOAA will bring scientific  expertise and focus on addressing remedies for living marine resources — including fish, sturgeon, marine mammals, and sea turtles — as well as coastal habitats and water quality. NOAA scientists developed numerous scientific papers for the NRDA case including documentation of impacts to bottlenose dolphins, pelagic fish, sea turtles, benthic habitat and deep water corals.

The Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement is available for public review and comment through December 4. It is posted at and will be available at public repositories throughout the Gulf and at the meetings listed at

Leave a comment

Restoration along Oregon’s Willamette River Opens up New Opportunities for Business and Wildlife

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

Salmon, mink, bald eagles, and other wildlife should be lining up to claim a spot among the lush new habitat freshly built along Oregon’s Willamette River. There, a few miles downstream from the heart of Portland, construction at the Alder Creek Restoration Project is coming to a close. Which means the reshaped riverbanks and restored wetlands are open for their new inhabitants to move in.

This 52 acre project is the first habitat restoration effort for the Portland Harbor Superfund Site and has been implemented specifically to benefit fish and wildlife affected by years of industrial contamination in the harbor.

Salmon, lamprey, osprey, bald eagle, mink, and others will now enjoy sandy beaches, native vegetation, and large pieces of wood to perch on or hide underneath. These features replace the saw mill, parking lots, and other structures present on the property before it was purchased by Wildlands, Inc. Chinook salmon and osprey have already been seen seeking refuge and searching for food in the newly constructed habitat.

Wildlands is a business that intends to sell ecological “credits” from this restoration project. The credits that the Alder Creek project generates are available for purchase to resolve the liability of those who discharged oil or hazardous substances into Portland Harbor.

Newly planted wetland vegetation on the bank of a river.

Habitat restored at Alder Creek in Oregon in 2014 was planted with native vegetation in 2015. (Photo courtesy Wildlands)

Construction on the restoration site began in the summer of 2014. First, hundreds of thousands of yards of wood chips were removed from the site of a former saw mill and several buildings were demolished. A channel was excavated on the western portion of the site, which was continued through the eastern half of the site when construction resumed in 2015.

View a time lapse video of channel construction on the Alder Creek site:

Also this year, efforts involved removing invasive vegetation, planting native vegetation, and installing large wood structures along the channel to create ideal places for young fish to rest, feed, and hide from predators.

Rowed dirt field next to river channels.

View of newly created channels on the Alder Creek site connecting to Oregon’s Willamette River. Salmon and osprey have already been seen making themselves at home in the newly constructed habitat. (Photo courtesy of Wildlands)

After a final breach of the earthen dam dividing the restoration site this September, water now flows across the newly restored area. Once additional planting is completed this winter, the project will officially be “open for business,” although some entrepreneurial wildlife are already getting a head start.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Oregon, she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.

1 Comment

Melting Permafrost and Camping with Muskoxen: Planning for Oil Spills on Arctic Coasts

 Muskoxen near the scientists' field camp on Alaska's Espenberg River.

Muskoxen near the scientists’ field camp on Alaska’s Espenberg River. (NOAA)

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

Alaska’s high Arctic coastline is anything but a monotonous stretch of beach. Over the course of more than 6,500 miles, this shoreline at the top of the world shows dramatic transformations, featuring everything from peat and permafrost to rocky shores, sandy beaches, and wetlands. It starts at the Canadian border in the east, wraps around the northernmost point in the United States, and follows the numerous inlets, bays, and peninsulas of northwest Alaska before coming to the Bering Strait.

Planning for potential oil spills along such a lengthy and varied coastline leaves a lot for NOAA’s Office of Response and Restoration to consider. We have to take into account a wide variety of shorelines, habitats, and other dynamics specific to the Arctic region.

This is why fellow NOAA Office of Response and Restoration scientist Catherine Berg and I, normally based in Anchorage, jumped at the opportunity to join a National Park Service–led effort supporting oil spill response planning in the state’s Northwest Arctic region.

Our goal was to gain on-the-ground familiarity with its diverse shorelines, nearshore habitats, and the basics of working out there. That way, we would be better prepared to support an emergency pollution response and carry out the ensuing environmental impact assessments.

Arctic Endeavors

Man inflating boat next to ATV and woman kneeling on beach.

At right, NOAA Regional Resource Coordinator Dr. Sarah Allan collects sediment samples while National Park Service scientist Paul Burger inflates the boat near the mouth of the Kitluk River in northwest Alaska. (National Park Service)

Many oil spill planning efforts have focused on oil drilling sites on Alaska’s North Slope, especially in Prudhoe Bay and the offshore drilling areas in the Chukchi Sea. However, with increased oil exploration and a longer ice-free season in the Arctic, more ship traffic—and a heightened risk of oil spills—extends to the transit routes throughout Arctic waters.

This risk is especially apparent in the Northwest Arctic around the Bering Strait, where vessel traffic is squeezed between Alaska’s mainland and two small islands. On top of the growing risk, the Northwest Arctic coast, like much of Alaska, presents daunting logistical challenges for spill response due to its remoteness and limited infrastructure and support services.

To help get a handle on the challenges along this region’s coast, Catherine Berg and I traveled to northwest Alaska in July 2015 and, in tag-team fashion, visited the shorelines of the Chukchi Sea in coordination with the National Park Service. Berg is the NOAA Scientific Support Coordinator for emergency response and I’m the Regional Resource Coordinator for environmental assessment and restoration.

The National Park Service is collecting data to improve Geographic Response Strategies in the Bering Land Bridge National Preserve and the Cape Krusenstern National Monument, both flanking Kotzebue Sound in northwest Alaska. These strategies, a series of which have been developed for the Northwest Arctic, are plans meant to protect specific sensitive coastal environments from an oil spill, outlining recommendations for containment boom and other response tools.

Because our office is interested in understanding the potential effects of oil on Arctic shorelines, we worked with the Park Service on this trip to collect information related to oil spill response and environmental assessment planning in northwest Alaska’s Bering Land Bridge National Preserve.

The Wild Life

From the village of Kotzebue, two National Park Service scientists and I—along with our all-terrain vehicle (ATV), trailer, and all of our personal, camping, and scientific gear—were taken by boat to a field camp on the Espenberg River. After arriving, we could see signs of bear, wolf, and wolverine activity near where this meandering river empties into the Bering Sea. Herds of muskoxen passed near camp.

Considering most of the Northwest Arctic’s shorelines are just as wild and hard-to-reach, we should expect to be set up in a similar field camp, with similarly complex planning and logistics, in order to collect environmental impact data after an oil spill. As I saw firsthand, things only got more complicated as weather, mechanics, shallow water, and low visibility forced us to constantly adapt our plans.

Heading west, we used ATVs to get to the mouth of the Kitluk River, where the Park Service collected data for the Geographic Response Strategies, while I collected sediment samples from the intertidal area for chemical analysis. These samples would serve as set of baseline comparisons should there be an oil spill in a similar area.

Traveling there, we saw dramatic signs of coastal erosion, a reminder of the many changes the Arctic is experiencing.

The next day, the boat took us around Espendberg Point into Kotzebue Sound to the Goodhope River estuary. There, we used a small inflatable boat with a motor to check out the different sites identified for special protection in the Geographic Response Strategy. I also took the opportunity to field test the “Vegetated Habitats” sampling guideline I helped develop for collecting time-sensitive data in the Arctic. Unfortunately, the very shallow coastal water presented a challenge for both our vessels; the water was only a few feet deep even three miles offshore.

After an unplanned overnight in Kotzebue (more improvising!), I returned to the field camp via float plane and got an amazing aerial view of the coastline. The Arctic’s permafrost and tundra shorelines are unique among U.S. coastlines and will require special oil spill response, cleanup, and impact assessment considerations.

Sound Lessons

After I returned to the metropolitan comforts of Anchorage, my colleague Catherine Berg swapped places, joining the Northwest Arctic field team.

As the lead NOAA scientific adviser to the U.S. Coast Guard during oil spill response in Alaska, her objective was to evaluate Arctic shoreline types not previously encountered during oil spills. Using our Shoreline Cleanup and Assessment Technique method, she targeted shorelines within Kupik Lagoon on the Chukchi Sea coast and in the Nugnugaluktuk River in Kotzebue Sound. She surveyed the profile of these shorelines and recorded other information that will inform and improve Arctic-specific protocols and considerations for surveying oiled shorelines.

Though we only saw a small part of the Northwest Arctic coastline, it was an excellent opportunity to gauge how its coastal characteristics would influence the transport and fate of spilled oil, to improve how we would survey oiled Arctic shorelines, to gather critical baseline data for this environment, and to field test our guidelines for collecting time-sensitive data after an oil spill.

One of the greatest challenges for responding to and evaluating the impacts of an Arctic oil spill is dealing with the logistics of safety, access, transportation, and personnel support. Collaborating with the Park Service and local community in Kotzebue and gaining experience in the field camp gave us invaluable insight into what we would need to do to work effectively in the event of a spill in this remote area.

First, be prepared. Then, be flexible.

Thank you to the National Park Service, especially Tahzay Jones and Paul Burger, for the opportunity to join their field team in the Bering Land Bridge National Preserve.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


From Board Games to Cookbooks, How the Exxon Valdez Oil Spill Infiltrated Pop Culture

Big oil spills, those of the magnitude which happen only once every few decades, often leave a legacy of sorts.

In the case of the 1989 Exxon Valdez oil spill, which dumped roughly 11 million gallons of crude oil into Alaska’s Prince William Sound, that legacy took many forms. Legislative, ecological, and even cultural—yes, that extends to pop culture too.

In short order, the Exxon Valdez oil spill prompted monumental changes in the laws governing maritime shipping and oil spill response. In 1990, Congress passed the Oil Pollution Act, empowering NOAA and the U.S. Environmental Protection Agency to better respond to and plan for spills and setting up a trust fund (paid for by an oil tax) to help with cleanup operations.

Furthermore, this important legislation mandated that oil tankers with single hulls (like the easily punctured Exxon Valdez) would no longer be permitted to operate in U.S. waters, instead requiring double-hull vessels to carry oil. (However, the full phaseout of single-hull tankers would take decades.)

More than 25 years later, researchers are still uncovering this spill’s ecological legacy, its stamp on the natural world, and learning what happens when oil interacts with that world. The spill affected some two dozen species and habitats, some of which have not yet recovered.

Of course, the Exxon Valdez oil spill also left a complicated cultural legacy, imparting health, social, psychological, and economic impacts on the people living and working in the area, particularly those whose livelihoods are closely tied to the ocean. Commercial fishers, the recreation and tourism industry, and more than a dozen predominantly Alaskan Native communities relying on fish, waterfowl, and other natural resources for subsistence were dramatically affected by the oil spill.

Yet the cultural echoes of this environmental disaster spread beyond Alaska. It inspired a second grader to write an impassioned letter about the plight of otters threatened by the spill to the Alaska director of the Fish and Wildlife Service. After working at this spill, it inspired one NOAA marine biologist to begin collecting some of the strange pieces of memorabilia related to the incident, from a piece of the ill-fated tanker to an Exxon safety calendar featuring the ship in the very month it would run aground.

These echoes even managed to permeate the ranks of pop culture. Take a look at these five ways that the Exxon Valdez oil spill has shown up in places most oil spills just don’t go:

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

  1. A board game. Local bartender Richard Lynn of Valdez, Alaska, created the game “On the Rocks: The Great Alaska Oil Spill” after working part-time to clean up the spill. Each player navigates through the game using an authentic bit of rock from Prince William Sound. The goal was to be the first player to scrub all 200 miles of oily shore. The catch was that you only had about 6 months and $250 million in play money to accomplish this. You could pick up your own copy of the game for $16.69, which was the hourly rate Exxon’s contracted workers earned while cleaning up the spill.
  2. A movie. Dead Ahead: the Exxon Valdez Disaster was the 1992 made-for-TV movie that dramatized the events of the oil spill and ensuing cleanup. This film even featured some well-known actors, including John Heard as Alaska inspector Dan Lawn and Christopher Lloyd as Exxon Shipping Company President Frank Iarossi.
  3. A cookbook. Fortunately, the recipes in The Two Billion Dollar Cookbook don’t feature dishes like “oiled herring” or “otter on the rocks.” Instead, this 300 page cookbook compiled by Exxon Valdez cleanup workers and their friends and families highlights meals more along the lines of barbeque sandwich mix and steak tartare, in addition to being peppered with personal stories from its contributors. Proceeds from the sale of this cookbook benefit a homeless shelter and food bank based in Anchorage, Alaska. Why two billion dollars? That was how much Exxon had shelled out for responding to the spill when the cookbook hit the presses.
  4. A play. Two plays, in fact. Dick Reichman, resident of Valdez, Alaska, during the momentous spill, has twice written and directed plays that examined this disaster—and the high emotions that came with it—through the theatrical lens. His first play, written in 1992 and dubbed “The official Valdez oil spill melodrama,” was Tanker on the Rocks: or the Great Alaskan Bad Friday Fish-Spill of ’89. His second, The Big One: a Chronicle of the Exxon Valdez Oil Spill, was received with some acclaim during its 2009 run in Anchorage. You can watch a short video of the actors and director preparing for the 2009 performance (warning: some explicit language).
  5. Children’s books, novels, and poetry. From a children’s book about a young girl rescuing an oiled baby seal to a novel written by the tugboat captain who towed the Exxon Valdez out of Prince William Sound, there exists a bounty of literature exploring the many human and environmental themes of this oil spill. As you peruse them, keep in mind this NOAA scientist’s recommendations for evaluating what you’re reading about oil spills, especially when doing so with kids.

Have you seen other examples of the Exxon Valdez or perhaps, more recently, the Deepwater Horizon oil spill showing up in pop culture?

A special thanks to the Alaska Resources Library and Information Services (ARLIS) for compiling an excellent list of Exxon Valdez related information [PDF] and for helping procure an image of the rare “On the Rocks” board game.

Leave a comment

Transforming Dusty Fields into Vibrant Salt Marshes in San Francisco Bay

Vibrant marsh with lots of ducks and trucks on the highway in the background.

Just after the Cullinan Ranch restoration site was re-flooded, huge flocks of waterfowl began using the marsh, including Canvasback, Scaup, Northern Pintail, Mallards, and American Wigeon. (Ducks Unlimited)

What happens when you fill a dry, dusty 1,200 acre field at the northern edge of San Francisco Bay with tide waters unseen in that place for more than a century?

You get a marsh with a brand new lease on life.

In January 2015, this is exactly what took place at the salt marsh restoration site called Cullinan Ranch (known as that due to its history as a hay farm).

Check out the photos taken of the restoration site in November 2013, after the new boat ramp and wildlife viewing platform were built but before the levees holding back the bay were breached, and compare them with those taken in the same spot in January 2015, after the waters returned.

Brackish waters once again cover the low-lying area, long pushed down below sea level due to farming dating back to the 1880s. The presence of salt water has transformed this arid field into tidal wetland habitat, where birds, fish, and wildlife, such as the endangered Ridgway’s rail, the salt marsh harvest mouse, steelhead, Chinook salmon, and other fish can thrive.

According to Ducks Unlimited biologist Craig Garner, whose organization has been a key player in this site’s restoration, “When the ranch was newly flooded, we saw a tremendous response by waterfowl. Large numbers of birds were recorded using the area, particularly Canvasback,” a species of diving duck.

Could it be that Cullinan Ranch provides California wildlife with a new refuge from the current scarcity of freshwater habitats further inland? Garner suggests, “Though it is tough to gauge without waterfowl survey data, I would say that Cullinan Ranch could be offsetting the effects of drought conditions on diving duck habitat at all” levels of the tidal cycle.

Of course, people will also be able to enjoy this transformation occurring at Cullinan Ranch via the new recreational facilities. (Launching your boat into a dry field probably wouldn’t be much fun, after all.)

But it’s not just fun and games. People will benefit from this renewed salt marsh acting as a natural filter, increasing the quality of the water passing through it on the way to the bay and its fisheries, and as a sponge for moderating flooding during storms. The plant life growing in the marsh also serves to capture and hold excess carbon dioxide from the nearby urban areas. In addition, taking out the 19th-century levees holding out the bay’s tides reduces the chances of a catastrophic failure and cuts out the expense of maintaining poorly built levees.

Watch as the last satisfying scoops of the muddy barrier disappear and salty waters rush in:

Excavator removing a dirt levee and allowing tide waters to rush into a dry marsh.

Taking out the first levee at the Cullinan Ranch marsh restoration project in central California in January 2015. (NOAA)

Learn more about the efforts to restore this tidal wetland and another long-dry area known as Breuner Marsh. Both of these restoration projects were made possible with funding from a natural resource damage assessment settlement paid by Chevron to make up for years of dumping mercury and oil pollution from its Richmond, California, refinery into the shallow waters of nearby Castro Cove. NOAA partnered with the U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife to achieve the 2010 Chevron settlement and contribute to these two important restoration projects.

In the fall of 2014, Breuner Marsh also saw the return of its daily infusion of saltwater and is looking more and more like a natural salt marsh and less like the next site of urban development.

Aerial view of marsh with tide waters channeling across the shore.

An aerial view of the tide waters retaking their normal course at the restoration site Breuner Marsh on San Francisco Bay in the fall of 2014. (Castro Cove Natural Resource Damage Trustees)


Get every new post delivered to your Inbox.

Join 631 other followers