NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


10 Comments

Where Are the Pacific Garbage Patches Located?

Microplastics in sand.

Microplastics, small plastics less than 5 millimeters long, are an increasingly common type of marine debris found in the water column (including the “garbage patches”) and on shorelines around the world. Based on research to date, most commonly used plastics do not fully degrade in the ocean and instead break down into smaller and smaller pieces. (NOAA Marine Debris Program)

The Pacific Ocean is massive. It’s the world’s largest and deepest ocean, and if you gathered up all of the Earth’s continents, these land masses would fit into the Pacific basin with a space the size of Africa to spare.

While the Pacific Ocean holds more than half of the planet’s free water, it also unfortunately holds a lot of the planet’s garbage (much of it plastic). But that trash isn’t spread evenly across the Pacific Ocean; a great deal of it ends up suspended in what are commonly referred to as “garbage patches.”

A combination of oceanic and atmospheric forces causes trash, free-floating sea life (for example, algae, plankton, and seaweed), and a variety of other things to collect in concentrations in certain parts of the ocean. In the Pacific Ocean, there are actually a few “Pacific garbage patches” of varying sizes as well as other locations where marine debris is known to accumulate.

The Eastern Pacific Garbage Patch (aka “Great Pacific Garbage Patch”)

In most cases when people talk about the “Great Pacific Garbage Patch,” they are referring to the Eastern Pacific garbage patch. This is located in a constantly moving and changing swirl of water roughly midway between Hawaii and California, in an atmospheric area known as the North Pacific Subtropical High.

NOAA National Weather Service meteorologist Ted Buehner describes the North Pacific High as involving “a broad area of sinking air resulting in higher atmospheric pressure, drier warmer temperatures and generally fair weather (as a result of the sinking air).”

This high pressure area remains in a semi-permanent state, affecting the movement of the ocean below. “Winds with high pressure tend to be light(er) and blow clockwise in the northern hemisphere out over the open ocean,” according to Buehner.

As a result, plastic and other debris floating at sea tend to get swept into the calm inner area of the North Pacific High, where the debris becomes trapped by oceanic and atmospheric forces and builds up at higher concentrations than surrounding waters. Over time, this has earned the area the nickname “garbage patch”—although the exact content, size, and location of the associated marine debris accumulations are still difficult to pin down.

Map of ocean currents, features, and areas of marine debris accumulation (including

This map is an oversimplification of ocean currents, features, and areas of marine debris accumulation (including “garbage patches”) in the Pacific Ocean. There are numerous factors that affect the location, size, and strength of all of these features throughout the year, including seasonality and El Nino/La Nina. (NOAA Marine Debris Program)

The Western Pacific Garbage Patch

On the opposite side of the Pacific Ocean, there is another so-called “garbage patch,” or area of marine debris buildup, off the southeast coast of Japan. This is the lesser known and studied, Western Pacific garbage patch. Southeast of the Kuroshio Extension (ocean current), researchers believe that this garbage patch is a small “recirculation gyre,” an area of clockwise-rotating water, much like an ocean eddy (Howell et al., 2012).

North Pacific Subtropical Convergence Zone

While not called a “garbage patch,” the North Pacific Subtropical Convergence Zone is another place in the Pacific Ocean where researchers have documented concentrations of marine debris. A combination of oceanic and atmospheric forces create this convergence zone, which is positioned north of the Hawaiian Islands but moves seasonally and dips even farther south toward Hawaii during El Niño years (Morishige et al., 2007, Pichel et al., 2007). The North Pacific Convergence Zone is an area where many open-water marine species live, feed, or migrate and where debris has been known to accumulate (Young et al. 2009). Hawaii’s islands and atolls end up catching a notable amount of marine debris as a result of this zone dipping southward closer to the archipelago (Donohue et al. 2001, Pichel et al., 2007).

But the Pacific Ocean isn’t the only ocean with marine debris troubles. Trash from humans is found in every ocean, from the Arctic (Bergmann and Klages, 2012) to the Antarctic (Eriksson et al., 2013), and similar oceanic processes form high-concentration areas where debris gathers in the Atlantic Ocean and elsewhere.

You can help keep trash from becoming marine debris by:

Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, also contributed to this post.

Literature Cited

Bergmann, M. and M. Klages. 2012. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64: 2734-2741.

Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin, 42 (12): 1301-1312.

Eriksson, C., H. Burton, S. Fitch, M. Schulz, and J. van den Hoff. 2013. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Marine Pollution Bulletin, 66: 199-208.

Howell, E., S. Bograd, C. Morishige, M. Seki, and J. Polovina. 2012. On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65: 16-22.

Morishige, C., M. Donohue, E. Flint, C. Swenson, and C. Woolaway. 2007. Factors affecting marine debris deposition at French Frigate Shoals, Northwestern Hawaiian Islands Marine National Monument, 1990-2002. Marine Pollution Bulletin, 54: 1162-1169.

Pichel, W.G., J.H. Churnside, T.S. Veenstra, D.G. Foley, K.S. Friedman, R.E. Brainard, J.B. Nicoll, Q. Zheng and P. Clement-Colon. 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone [PDF]. Marine Pollution Bulletin, 54: 1207-1211.

Young L. C., C. Vanderlip, D. C. Duffy, V. Afanasyev, and S. A. Shaffer. 2009. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE 4 (10).


Leave a comment

Post Hurricane Sandy, NOAA Aids Hazardous Spill Cleanup in New Jersey and New York

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy.

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy. (NOAA)

[UPDATED NOVEMBER 6, 2012] Hurricane Sandy’s extreme weather conditions—80 to 90 mph winds and sea levels more than 14 feet above normal—spread oil, hazardous materials, and debris across waterways and industrial port areas along the Mid Atlantic. NOAA’s Office of Response and Restoration is working with the U.S. Coast Guard and affected facilities to reduce the impacts of this pollution in coastal New York and New Jersey.

We have several Scientific Support Coordinators and information management specialists on scene at the incident command post on Staten Island, N.Y.

Since the pollution response began, we have been dispatching observers in helicopters with the Coast Guard to survey the resulting oil sheens on the water surface in Arthur Kill, N.J./N.Y. This is in support of the response to a significant spill at the Motiva Refinery in Sewaren, N.J., as well as for the cleanup and assessment of several small spills of diesel fuel, biodiesel, and various other petroleum products scattered throughout northern New Jersey’s refinery areas.

One of the challenges facing communities after a devastating weather event is information management. One tool we have developed for this purpose is ERMA, an online mapping tool which integrates and synthesizes various types of environmental, geographic, and operational data. This provides a central information hub for all individuals involved in an incident, improves communication and coordination among responders, and supplies resource managers with the information necessary to make faster and better informed decisions.

ERMA has now been adopted as the official common operational platform for the Hurricane Sandy pollution response, and we have sent additional GIS specialists to the command post.

Species and Habitats at Risk

The most sensitive habitats in the area are salt marshes, which are often highly productive and are important wildlife habitat and nursery areas for fish and shellfish. Though thin sheens contain little oil, wind and high water levels after the storm could push the diesel deep into the marsh, where it could persist and contaminate sediments. Because marshes are damaged easily during cleanup operations, spill response actions will have to take into account all of these considerations.

In addition, diesel spills can kill the many small invertebrates at the base of the food chain which live in tidal flats and salt marshes if they are exposed to a high enough concentration. Resident marsh fishes, which include bay anchovy, killifish, and silversides, are the fish most at risk because they are the least mobile and occupy shallow habitats. Many species of heron nest in the nearby inland marshes, some of the last remaining marshlands in Staten Island. Swimming and diving birds, such as Canada geese and cormorants, are also vulnerable to having their feathers coated by the floating oil, and all waterfowl have the potential to consume oil while feeding.

Based on the risks to species and habitats from both oil and cleanup, we weigh the science carefully before making spill response recommendations to the Coast Guard.

Tracking the Spilled Oil

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012.

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012. (U.S. Coast Guard)

Because no two oils are alike, we train aerial observers to evaluate the character and extent of oil spilled on the water. NOAA performs these aerial surveys, or overflights, of spilled oil like in Arthur Kill to determine the status of the oil’s source and to track where wind and waves are moving spilled oil while also weathering it. The movement of wind and waves, along with sunlight, works to break down oil into its chemical components. This changes the appearance, size, and location of oil, and in return, can change how animals and plants interact with the oil.

When spilled on water, diesel oil spreads very quickly to a thin film. However, diesel has high levels of toxic components which dissolve fairly readily into the water column, posing threats to the organisms living there. Biodiesel can coat animals that come into contact with it, but it breaks down up to four times more quickly than conventional diesel. At the same time, this biodegradation could cause potential fish kills by using up large amounts of oxygen in the water, especially in shallow areas.

Look for photos, maps, and updates on pollution-related response efforts at IncidentNews.

Check the Superstorm Sandy CrisisMap for aggregated information from NOAA, FEMA, and other sources on weather alerts and observations; storm surge and flood water data; aerial damage assessment imagery; and the locations of power outages, food and gas in New Jersey, and emergency shelters.


1 Comment

Photos and Reactions from a NOAA Responder Living through Hurricane Sandy

Hurricane Sandy caused flooding in the streets of this neighborhood along coastal New Jersey.

Hurricane Sandy caused flooding in the streets of this neighborhood along coastal New Jersey. (Frank Csulak)

Here in Seattle, like people all over the country, I was concerned to hear about Hurricane Sandy heading straight towards the East Coast, especially the New Jersey shore where I have enjoyed going to the beach for my entire life. My thoughts were with all the people I know in the area, including my colleague, NOAA Scientific Support Coordinator (SSC) Frank Csulak. He has worked for the NOAA Office of Response and Restoration in New Jersey for much of his career.

Raised on the New Jersey shore, he is the primary scientific adviser to the U.S. Coast Guard for oil and chemical spill planning and response in the area. Scientific Support Coordinators are technical advisers to the U.S. Coast Guard and Federal On-Scene Coordinators. He and fellow SSC Ed Levine work in U.S. Coast Guard District 5, which includes New Jersey and New York’s Atlantic coast. While Frank’s office is in Highlands, N.J., he has a house at the shore in Beach Haven, on Long Beach Island, the second barrier island to the north of Atlantic City. Before and after Hurricane Sandy hit, Csulak and Levine were hard at work, but we received the following message from Frank the morning after the storm passed over New Jersey, on Tuesday October 30. It captures the sense of emergency and the extraordinary nature of this particular storm.

October 30, 2012

“Well, made it through the storm, power went out around 6:00 p.m. last night, remains out. The winds had to be in the 80-90 mph range. Trees down all over.  Power outages all over.  Large tree fell on neighbor’s house going right through roof, injuring owner who was then hospitalized due to possible heart attack. At the height of the storm there was an unbelievable thunder and lightning storm like I had never experienced before, something out of a sci-fi movie.

Just starting to get light out, so will go survey my property. Plan to head back to beach house as soon as evacuations lifted. That ride should be interesting. Reports were that there were several areas where ocean and bay were connected and southern portion of island, Holgate, washed away, which is mostly U.S. Fish and Wildlife Service refuge area.

My bikes, cars, and trucks are all okay. Max, my dog is okay. Daughter and parents okay.  So, all is good. Now I just need a hot cup of coffee. Want to thank everyone for their thoughts and well wishes throughout this ordeal. Will let you know how the beach house made out probably tomorrow.”

Later, Frank made it down to Beach Haven and sent us these photos of the storm’s aftermath in the area surrounding his house.

Today, on November 1, he took time out again to bring us the following update.

November 1, 2012

“All the neighbors where my parents live are all helping each other out with removing trees and debris from yards, pumping out basements. Power still out. Mile-long lines of cars at gas stations. Most stores remain closed due to power outage. Although somehow Dunkin Donuts is open. What is their slogan, “America runs on Dunkin”?  Well, certainly appropriate here at the Jersey shore!”

For more photos of the storm’s impacts along the New Jersey coast, check out the first round of Hurricane Sandy damage assessment imagery now available from NOAA’s National Geodetic Survey.


Leave a comment

Follow the Race to Refuel Nome, Alaska

The city of Nome, Alaska, is running short of fuel and an unusual winter delivery is underway to resupply the remote, icebound community. Nome is located on the northern edge of the Bering Sea, along the far western corner of the state. This fall, a severe storm prevented the last scheduled fuel delivery, and now the port is icebound, preventing regular fuel barges from reaching the area. Now, a U.S. icebreaker and a Russian tanker are battling the pack ice to deliver 1.3 million gallons of heating oil and gasoline.

Healy escorts the tanker Renda through the icy Bering Sea.

BERING SEA – The Coast Guard Cutter Healy approaches the Russian-flagged tanker Renda while breaking ice around the vessel 97 miles south of Nome, Alaska, Jan. 10, 2012. The two vessels departed Dutch Harbor for Nome on Jan. 3, 2012, to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

As of Thursday, the tanker Renda and the icebreaker Healy were less than 100 miles from Nome and breaking through ice two to three feet thick, making their journey slow but steady. Weather in Nome includes temperatures 20–30 degrees below 0°F and wind chill dropping to 45–50 below 0°F. Without the delivery, Nome could run short of fuel before a barge delivery becomes possible in late spring when the ice starts breaking up.

NOAA is providing weather and ice data to the ships and helping identify routes with lighter icepack. NOAA is also working on contingency plans and safety measures to ensure a safe fuel transfer.

nome-fuel-transfer-preparation_coast-guard-charly-hengen

BERING SEA – The Coast Guard Cutter Healy approaches the Russian-flagged tanker Renda while breaking ice around the vessel 97 miles south of Nome, Alaska, Jan. 10, 2012. The two vessels departed Dutch Harbor for Nome on Jan. 3, 2012, to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Crews are working in Nome to be ready for the tanker’s arrival later this week, but even then, the delivery will be challenging. The ice next to shore is much thicker, which will prevent the tanker from getting close to shore. The ship Renda is equipped with more than a mile of hose that will be strung across the ice to reach the port. The exact transfer date remains unknown at this time, because there are still operational issues pending. Weather will play a big factor in the timing and ability to make this happen.

The fuel delivery to Nome brings to mind another famous wintertime resupply effort—the 1925 race to bring diphtheria medicine to Nome. An epidemic was raging and blizzards prevented aircraft from delivering the medicine to the snowbound city. A dogsled relay carried the medicine across the state. The annual Iditarod Trail Sled Dog Race commemorates this historic event.

Check out the links below to track the ships’ progress and images of the icebreaking:

Track the U.S. Coast Guard Cutter Healy
http://www.sailwx.info/shiptrack/shipposition.phtml?call=NEPP

Hourly photos from Healy
http://icefloe.net/Aloftcon_Photos/index.php?album=2012


Leave a comment

19 Years after Hurricane Andrew, Hurricane Irene Provides a New Reminder

Satellite image of 2011 Hurricane Irene.

An enhanced satellite image of Hurricane Irene passing over Puerto Rico, Haiti, and the Dominican Republic. Credit: NOAA.

Today, August 24, is the 19th anniversary of Hurricane Andrew, one of the most destructive U.S. hurricanes on record and only the third Category 5 hurricane on the Saffir-Simpson Scale [leaves this blog] to ever make landfall in the U.S. On the anniversary of Hurricane Andrew, which produced peak winds of 164 miles per hour, another hurricane threatens our coast: Hurricane Irene.

Even if you didn’t know about the storm named Irene [leaves this blog] that recently passed over the U.S. Virgin Islands and Puerto Rico, the name Hurricane Irene might sound familiar because there was another storm of the same name that made landfall in Florida in 1999. For more information on the status of the current Hurricane Irene, go to NOAA’s National Hurricane Center website  [leaves this blog].

The previous Hurricane Irene formed in the Caribbean Sea on October 12,1999 and made landfall as a hurricane in Key West and Cape Sable, Fla., before moving offshore near Jupiter, Fla. Its winds peaked at 110 mph before encountering cooler North Atlantic waters and slowly dissipating but not before causing an estimated $900 million in damage in Florida alone and 8 indirect deaths in the U.S. It could have been much worse, and if it had been, the World Meteorological Organization would have retired the name Irene permanently from its list of future storm names, as it did with Andrew and Katrina.

While it is interesting to reflect on the coincidence of two storms with the same name threatening the same region of our coast, I have a serious point here: Tropical storms are a very real threat to life and property.

We All Rely on NOAA during Disasters

While I work as a scientist for NOAA, I don’t forecast storms or severe weather. That duty and responsibility belongs to my NOAA colleagues in the National Weather Service. I’m an environmental and marine scientist by education and a NOAA emergency responder by vocation. I’ve lived along the Gulf of Mexico most of my adult life, and like you, I rely on the dedicated women and men of the NOAA National Hurricane Center and my local NOAA Weather Forecast Office to provide me the best early warnings so that I can both prepare to protect my home and family and prepare to respond as emergency manager.

As an emergency responder for more than two decades, I truly hate oil and chemical spills, and probably most of all, I hate severe tropical weather. However, I believe so strongly in our mission to protect the public, the responders, and the environment, that I have made emergency response my career. I might marvel at the complexity and immense size of such natural events as hurricanes, but I do fear hurricanes. I’m not paralyzed by this fear but instead intensely motivated to prepare and respond.

Storms of Motivation

On August 29, 2005, Hurricane Katrina passed over the Louisiana Mississippi Delta before again making landfall on the northern Gulf of Mexico coast near Gulfport, Miss. The near-complete devastation left in the wake of this powerful storm destroyed communities, paralyzing critical ports, waterways, offshore oil and gas production, and industry. The financial impact of the storm has been estimated at over $80 billion, but such losses pale against the human tragedy of Hurricane Katrina that left 1,836 known dead, hundreds of thousands of people homeless, and countless lives changed forever.

I remember being at the Emergency Operations Center and consoling a young woman crying in a hallway. She had been working the phone bank receiving emergency calls, some from people trapped in their attic as the waters continued to rise from New Orleans’ failed levees. I had never felt so helpless nor so motivated listening to her. After just a few minutes, her break was over, and she returned to the phones. Across NOAA, women and men like her were stepping up during the emergency: evaluating damage, assisting in rescue operations, and assessing imminent threats to the public.

Even after this immediate emergency phase slowed, the response and recovery effort continued to deal with the hundreds of oil spills, thousands of hazardous material containers in waterways, and sunken vessels and marine debris that littered the coastal zone of three states.

This Is Hurricane Season

What path will the second Hurricane Irene take? What will the threat be to our coast and our coastal communities? I don’t have a crystal ball, so I’ll keep watching NOAA’s updated trajectory forecast [leaves this blog] to plan and prepare. I’ll also be coordinating with Brad Benggio, NOAA’s Regional Scientific Support Coordinator for the southeastern United States and the Caribbean. His job is to provide scientific and technical counsel on the best course of action during emergencies such as hurricanes and oil spills. I would venture a guess that Benggio has similar feelings about storms as I do after surviving and responding to many hurricanes, including Hurricane Andrew in 1992.

Damage from Hurricane Andrew in 1992.

Hurricane Andrew left a concrete tie beam on a car, among other damage, in Naranja Lakes, Fla. Credit: NOAA National Weather Service.

Hurricane Andrew caused $26.5 billion of damage in the U.S. and claimed 23 lives [leaves this blog]. This is hurricane season—never take it lightly. As part of our preparedness for emergency response, we plan for the worst and hope for the best. If you live in an area potentially threatened by coastal storms, know the evacuation route. It could save your life.

For additional information on hurricanes and planning, visit the NOAAWatch website  [leaves this blog] and click on the Hurricane/Tropical Weather and Storm Surge and Coastal Flooding themes on the right side of the page.