NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

If your house were burning down, who would you want to respond? The local firefighters, armed with hoses and broad training in first aid, firefighting, and crowd management? Or would your panicked neighbors running back and forth with five-gallon buckets of water suffice?

Presumably, everyone would choose the trained firefighters. Why?

Well, because they know what they are doing! People who know what they are doing instill confidence and reduce panic—even in the worst situations. By being prepared for an emergency, firefighters and other responders can act quickly and efficiently, reducing injuries to people and damage to property.

People who have considered the range of risks for any given emergency—from a house fire to a hurricane—and have formed plans to deal with those risks are more likely to have access to the right equipment, tools, and information. When disaster strikes, they are ready and able to respond immediately, moving more quickly from response to recovery, each crucial parts of the resilience continuum. If they prepared well, then the impacts to the community may not be as severe, creating an opportunity to bounce back even faster.

Having the right training and plans for dealing with disasters helps individuals, communities, economies, and natural resources better absorb the shock of an emergency. That translates to shorter recovery times and increased resilience.

This shock absorption concept applies to everything from human health to international emergency response to coastal disasters.

For example, the Department of Defense recognizes that building a culture of resilience for soldiers depends on early intervention. For them, that means using early education and training [PDF] to ensure that troops are “mission ready.” Presumably, the more “mission ready” a soldier is before going off to war, the less recovery will be needed, or the smoother that process will be, when a soldier returns from combat.

Similarly, the international humanitarian response community has noted that “resilience itself is not achievable without the capacity to absorb shocks, and it is this capacity that emergency preparedness helps to provide” (Harris, 2013 [PDF]).

NOAA’s Office of Response and Restoration recognizes the importance of training and education for preparing local responders to respond effectively to coastal disasters, from oil spills caused by hurricanes to severe influxes of marine debris due to flooding.

Coastline of Tijuana River National Estuarine Research Reserve in southern California.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources, helping coasts bounce back to health even more quickly. (NOAA)

In fiscal year 2014 alone, we trained 2,388 emergency responders in oil spill response and planning. With more coastal responders becoming more knowledgeable in how oil and chemicals behave in the environment, more parts of the coast will become better protected against a disaster’s worst effects. In addition to trainings, we are involved in designing and carrying out exercises that simulate an emergency response to a coastal disaster, such as an oil spill, hurricane, or tsunami.

Furthermore, we are always working to collect environmental data in our online environmental response mapping tool, ERMA, and identify sensitive shorelines, habitats, and species before any disaster hits. This doesn’t just help create advance plans for how to respond—including guidance on which areas should receive priority for protection or response—but also helps quickly generate a common picture of the situation and response in the early stages of an environmental disaster response.

After the initial response, NOAA’s Office of Response and Restoration is well-positioned to conduct rapid assessments of impacts to natural resources. These assessments can direct efforts to clean up and restore, for example, an oiled wetland, reducing the long-term impact and expediting recovery for the plants and animals that live there.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. Our years of experience and scientific expertise enable us to complement their trainings on emergency response operations with time-critical environmental science considerations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources. Our popular Science of Oil Spills class, held several times a year around the nation, is just one such example.

Additionally, we are working with coastal states to develop response plans for marine debris following disasters, to educate the public on how we evaluate the environmental impacts of and determine restoration needs after oil and chemical spills, and to develop publicly available tools that aggregate and display essential information needed to make critical response decisions during environmental disasters.

You can learn more about our efforts to improve resilience through readiness at response.restoration.noaa.gov.

Kate Clark.Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

Five Key Questions NOAA Scientists Ask During Oil Spills

Responders in a small boat pressure-wash rocky shore at the site of an oil spill.

Responders pressure wash the Texas shoreline after the tank ship Eagle Otome oil spill in January of 2010. (NOAA)

During an emergency situation such as an oil spill or ship grounding, scientists in NOAA’s Office of Response and Restoration are guided by five central questions as they develop scientifically based recommendations for the U.S. Coast Guard.

These recommendations help the Coast Guard respond to the incident while minimizing environmental impacts resulting from the spill and response.

Identified in the late 1980s by NOAA, these questions provide a sequential framework for identifying key information at each step that will then inform answers to subsequent questions raised during an oil spill. For example, in order to predict “where could it go?” (question two), you first need to know “what spilled?” (question one), and so on.

Questions guiding NOAA's oil spill response science, with a ship leaking oil, surrounded by boom, with flying birds and a benzene molecule.

Naturally, during a spill response, it may become necessary to revisit earlier questions or assumptions as conditions change and more—or better—information becomes available.

The Scene of the Spill

Establishing what happened is the first step. What is the scenario for this incident and where is it occurring? Gathering this information means figuring out facts such as:

  • the type of incident (e.g., pipeline rupture versus oil tanker collision).
  • the volume and types of oil involved.
  • the incident environment (e.g., stormy, calm).
  • the incident location (e.g., open ocean, near shore, water temperature).

Forecast: Cloudy with a Chance of Oil

Dr. Amy MacFadyen is a NOAA physical oceanographer who frequently works on the next step, which is predicting where the oil is going to go. In most of the spills we respond to, the oil is spilled at or near the water surface and is less dense than water. Initially, the oil will float and form a slick. Dr. MacFadyen looks at what is going on in the environment with wind and waves, which can break up the slick, causing some of the oil to mix into the water column in the form of small droplets.

An important point is that responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.

In order to make predictions about oil movement, Dr. MacFadyen uses a computer model which includes ocean current and wind forecasts to generate an oil trajectory forecast map. Trajectory forecast models may be updated frequently, as conditions at the site of the spill change. Although the trajectory map shows the position of the oil, there is an element of uncertainty as the forecasts are based on other predictions, such as weather forecasts, which are not always perfect and are themselves subject to change.

To reduce uncertainty, trajectory forecasts incorporate information from trained observers flying over the slick who can confirm the actual location of the oil over the course of the spill response. MacFadyen can then incorporate that updated information as she runs the trajectory forecast model again.

A Sense of Sensitivity

In order to answer what the oil might affect, NOAA developed Environmental Sensitivity Index maps to identify what might be harmed by a spill in different habitat types. It is necessary for responders and decision makers to know what shoreline types exist in the path of the oil, as well as vulnerable species and habitats so that they can plan for the appropriate protection (such as booming) or cleanup method (such as skimming). Cleaning up oil off a sandy beach is very different than a salt marsh, mudflat, or rocky shore.

Animals, plants, and habitats at risk can include those on the water (e.g., seabirds), below the surface (e.g., fish), and on the bottom (e.g., mussels), as well as on the shoreline (e.g., marsh grasses).

Jill Petersen, manager of the Office of Response and Restoration Environmental Sensitivity Index map program, works to ensure that these maps of each U.S. coastal region are up-to-date so that this information is readily available should a spill occur.

Raise the Alarm for Harm

The next step is to look at what harm the oil could cause. When oil is released into the water, it can cause harm to marine animals and the environment. Oil contains thousands of chemical compounds. Polycyclic aromatic hydrocarbons [PDF], or PAHs as they are commonly known, are a class of oil compounds that have been associated with toxic effects in exposed organisms. Because of this, scientists frequently study PAHs in spilled oil to gauge the oil’s potential environmental impact.

However, the complexity of each oil’s chemistry and the changes that occur once it is in the environment make the assessment of risk a challenging task. In order to do so, response biologists consider the type of oil, the sensitivity of potentially exposed organisms, and how the oil is expected to behave in the environment.

Oil spills can involve releases of large volumes of oil that overwhelm whatever natural capacity there might be to absorb impacts, which leads to the photographs we see of heavy oil covering plants and animals. But recent research studies have shown that even minute amounts of petroleum can harm marine eggs and larvae—which means the decisions we make during a response are even more critical to the long-term health of the affected habitats.

NOAA marine biologist Dr. Alan Mearns is an expert on how pollution from oil harms the environment. Each year, he reviews and summarizes recent research in this field to ensure oil spill response recommendations and decisions are based on the most current science that exists.

Sending Help

A skimmer picks up oil off the surface of the Delaware River.

A skimmer picks up oil off the surface of the Delaware River after the tanker Athos spilled oil in 2004. (NOAA)

Answering the previous questions allows us to determining what can be done to help. Doug Helton, the Office of Response and Restoration’s Incident Operations Coordinator, describes possible solutions as usually falling under three categories: containing the source, cleaning up, and protecting the shore.

To contain the source means to limit the further release of pollution by plugging the leak in the pipeline or containing the spill, for example, by keeping the ship from sinking and losing its entire cargo of oil.

Cleanup on the water could be conducted by mechanical means, such as booming and skimming, or through alternative technologies, such as burning the oil in open water or using chemicals to disperse the oil.

Cleanup along the shoreline can be done manually or mechanically using methods such as pressure washing. When considering cleanup options, sometimes monitoring the situation is the best option when a response method could actually cause more harm to the environment. One example is in an oiled marsh because these habitats are especially vulnerable to oil but also to being damaged by people walking through them trying to remove oil.

In addition to providing scientific support to the U.S. Coast Guard, NOAA’s Office of Response and Restoration develops oil spill response software and mapping tools. For responders, NOAA has published a series of job aids and manuals that provide established techniques and guidelines for observing oil, assessing shoreline impact, and evaluating accepted cleanup technologies for a variety of oil spill situations.


Leave a comment

NOAA’s Online Mapping Tool ERMA Opens up Environmental Disaster Data to the Public

Six men looking at a map with a monitor in the background.

Members of the U.S. Coast Guard using ERMA during the response to Hurricane Isaac in 2012. (NOAA)

This is a post by the NOAA Office of Response and Restoration’s Jay Coady, Geographic Information Systems Specialist.

—-

March 15-21, 2015 is Sunshine Week, an “annual nationwide celebration of access to public information and what it means for you and your community.” Sunshine Week is focused on the idea that open government is good government. We’re highlighting NOAA’s Environmental Response Management Application (ERMA) as part of our efforts to provide public access to government data during oil spills and other environmental disasters.    

Providing access to data is a challenging task during natural disasters and oil spill responses—which are hectic enough situations on their own. Following one of these incidents, a vast amount of data is collected and can accumulate quickly. Without proper data management standards in place, it can take a lot of time and effort to ensure that data are correct, complete, and in a useful form that has some kind of meaning to people. Furthermore, as technology advances, responders, decision makers, and the public expect quick and easy access to data.

NOAA’s Environmental Response Management Application (ERMA®) is a web-based mapping application that pulls in and displays both static and real-time data, such as ship locations, weather, and ocean currents. Following incidents including the 2010 Deepwater Horizon oil spill and Hurricane Sandy in 2012, this online tool has aided in the quick display of and access to data not only for responders working to protect coastal communities but also the public.

From oil spill response to restoration activities, ERMA plays an integral part in environmental data dissemination. ERMA reaches a diverse group of users and maintains a wide range of data through a number of partnerships across federal agencies, states, universities, and nations.

Because it is accessible through a web browser, ERMA can quickly communicate data between people across the country working on the same incident. At the same time, ERMA maintains a public-facing side which allows anyone to access publically available data for that incident.

ERMA in the Spotlight

During the Deepwater Horizon oil spill in the Gulf of Mexico, ERMA was designated as the “common operational picture” for the federal spill response. That meant ERMA displayed response-related activities and provided a consistent visualization for everyone involved—which added up to thousands of people.

Screen grab of ERMA map.

ERMA map showing areas of dispersant application during the response to the Deepwater Horizon oil spill in 2010. (NOAA)

To date, the ERMA site dedicated solely to the Deepwater Horizon spill contains over 1,500 data layers that are available to the public. Data in ERMA are displayed in layers, each of which is a single set of data. An example of a data layer is the cumulative oil footprint of the spill. This single data layer shows, added together, the various parts of the ocean surface the oil spill affected at different times over the entire course of the spill, as measured by satellite data. Another example is the aerial dispersant application data sets that are grouped by day into a single data layer and show the locations of chemical dispersant that were applied to oil slicks in 2010.

Even today, ERMA remains an active resource during the Natural Resource Damage Assessment process, which evaluates environmental harm from the oil spill and response, and NOAA releases data related to these efforts to the public as they become available. ERMA continues to be one of the primary ways that NOAA shares data for this spill with the public.

ERMA Across America

While the Deepwater Horizon oil spill may be one ERMA’s biggest success stories, NOAA has created 10 other ERMA sites customized for various U.S. regions. They continue to provide data related to environmental response, cleanup, and restoration activities across the nation’s coasts and Great Lakes. These 10 regional ERMA sites together contain over 5,000 publicly available data layers, ranging from data on contaminants and environmentally sensitive resources to real-time weather conditions.

For example, in 2012, NOAA used Atlantic ERMA to assist the U.S. Coast Guard, Environmental Protection Agency, and state agencies in responding to pollution in the wake of Hurricane Sandy. Weather data were displayed in near real time as the storm approached the East Coast, and response activities were tracked in ERMA. The ERMA interface was able to provide publically available data, including satellite and aerial imagery, storm inundation patterns, and documented storm-related damages. You can also take a look at a gallery of before-and-after photos from the Sandy response, as viewed through Atlantic ERMA.

Screen grab of an ERMA map.

An ERMA map showing estimated storm surge heights in the Connecticut, New York and New Jersey areas during Hurricane Sandy. (NOAA)

In addition, the ERMA team partnered with NOAA’s Marine Debris Program to track Sandy-related debris, in coordination with state and local partners. All of those data are available in Atlantic ERMA.

Looking to the north, ERMA continues to be an active tool in Arctic oil spill response planning. For the past two years, members of the ERMA team have provided mapping support using Arctic ERMA during the U.S. Coast Guard’s Arctic Technology Evaluation exercises, which took place at the edge of the sea ice north of Barrow, Alaska. During these exercises, the crew and researchers aboard a Coast Guard icebreaker tested potential technologies for use in Arctic oil spill response, such as unmanned aircraft systems. You can find the distributions of sensitive Alaskan bird populations, sea ice conditions, shipping routes, and pictures related to these Arctic exercises, as well as many more data sets, in Arctic ERMA.

Screen grab of an Arctic ERMA map.

ERMA is an active tool in Arctic oil spill response planning. (NOAA)

To learn more about the online mapping tool ERMA, visit http://response.restoration.noaa.gov/erma.

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch and is based in Charleston, South Carolina. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy.


Leave a comment

NOAA Assists with Response to Bakken Oil Train Derailment and Fire in West Virginia

Smoldering train cars derailed from the railroad tracks in snowy West Virginia.

On Feb. 18, 2015, response crews for the West Virginia train derailment were continuing to monitor the burning of the derailed rail cars near Mount Carbon next to the Kanawha River. The West Virginia Train Derailment Unified Command continues to work with federal, state and local agencies on the response efforts for the train derailment that occurred near Mount Carbon on February 15, 2015. (U.S. Coast Guard)

On February 16, 2015, a CSX oil train derailed and caught fire in West Virginia near the confluence of Armstrong Creek and the Kanawha River. The train was hauling 3.1 million gallons of Bakken crude oil from North Dakota to a facility in Virginia. Oil coming from the Bakken Shale oil fields in North Dakota and Montana is highly volatile, and according to an industry report [PDF] prepared for the U.S. Department of Transportation, it contains “higher amounts of dissolved flammable gases compared to some heavy crude oils.”

Of the 109 train cars, 27 of them derailed on the banks of the Kanawha River, but none of them entered the river. Much of the oil they were carrying was consumed in the fire, which affected 19 train cars, and an unknown amount of oil has reached the icy creek and river. Initially, the derailed train cars caused a huge fire, which burned down a nearby house, and resulted in the evacuation of several nearby towns. The evacuation order, which affected at least 100 residents, has now been lifted for all but five homes immediately next to the accident site.

The fires have been contained, and now the focus is on cleaning up the accident site, removing any remaining oil from the damaged train cars, and protecting drinking water intakes downstream. So far, responders have collected approximately 6,800 gallons of oily water from containment trenches dug along the river embankment.

Heavy equipment and oily boom on the edge of a frozen river.

Some oil from the derailed train cars has been observed frozen into the river ice, but no signs of oil appear downstream. (NOAA)

The area, near Mount Carbon, West Virginia, has been experiencing heavy snow and extremely cold temperatures, and the river is largely frozen. Some oil has been observed frozen into the river ice, but testing downstream water intakes for the presence of oil has so far shown negative results. NOAA has been assisting the response by providing custom weather and river forecasting, which includes modeling the potential fate of any oil that has reached the river.

The rapid growth of oil shipments by rail in the past few years has led to a number of high-profile train accidents. A similar incident in Lynchburg, Virginia, last year involved a train also headed to Yorktown, Virginia. In July 2013, 47 people were killed in the Canadian town of Lac-Mégantic, Quebec, after a train carrying Bakken crude oil derailed and exploded. NOAA continues to prepare for the emerging risks associated with this shift in oil transport in the United States.

Look for more updates on this incident from the U.S. Coast Guard News Room and the West Virginia Department of Environmental Protection.


Leave a comment

NOAA Partners with University of Washington to Examine How Citizen Science Can Help Support Oil Spill Response

This is a guest post by University of Washington graduate students Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño.

Volunteers sample mussels at a Mussel Watch beach site near Edmonds, Wash.

Volunteers sample mussels at a Mussel Watch site in Washington, one of NOAA’s National Mussel Watch Program sites. This program relies on citizen scientists to gather data on water pollution levels and seafood safety by regularly sampling mussels at established locations across the nation. (Alan Mearns/NOAA)

Citizen science—characterized by public participation in the scientific process—is a growing trend in scientific research. As technology opens up new opportunities, more and more people are able to collaborate on scientific efforts where widespread geographic location or project scope previously may have been a barrier.

Citizen science can take a number of forms, ranging from small-scale environmental monitoring to massive crowdsourced classification efforts, and there is a great deal of benefit to be realized when managed properly. For example, the NOAA National Severe Storms Laboratory developed the mPING smartphone app to allow anyone in the United States to file hyper-local weather reports, which in turn helps the NOAA National Weather Service fine-tune their weather forecasts.

The Citizen Science Management Project

Our team of University of Washington graduate students is working with NOAA’s Office of Response and Restoration to research the potential for incorporating citizen science into its oil spill response efforts.

Thanks to improvements in technology, the public is more interested in and better able to contribute help during oil spills than ever before. During recent oil spills, notably the 2010 Deepwater Horizon incident, large numbers of citizens have expressed interest in supporting monitoring and recovery efforts. As the lead science agency for oil spills, NOAA is considering how to best engage the public in order to respond to oil spills even more effectively.

The goal of the project is to provide recommendations for NOAA on effective citizen science management. To do this, we began working to find the most current and relevant information on citizen science by conducting a broad review of the published scientific literature and speaking with experts in the fields of oil spill response, citizen science, and coastal volunteer management. Our next steps are to analyze the research and come up with possible options for NOAA’s Office of Response and Restoration on how to best adopt and incorporate citizen science into its work.

Initial Findings

NOAA’s Role. NOAA’s role in an oil spill response is primarily that of scientific support. During a response, NOAA begins by addressing a few core questions. Phrased simply, they are:

  • What got spilled?
  • Where will it go and what will it hit?
  • What harm will it cause and how can the effects of the spill be reduced?

We believe that using citizen scientists to help answer these fundamental questions may help NOAA better engage communities in the overall response effort and produce additional usable data to strengthen the response.

Aerial view of Deepwater Horizon oil spill and response vessels.

A view of the oil source and response vessels during the Deepwater Horizon incident as seen during an overflight on May 20, 2010. This spill piqued public interest in oil spills. (NOAA)

Changing Trends and New Opportunities. Technology is changing quickly. More than half of Americans own a smartphone, mapping programs are readily available and easy-to-use, and the Internet provides an unparalleled platform for crowdsourced data collection and analysis, as well as a venue for communication and outreach. These advances in technology are adding a new dimension to citizen science by creating the ability to convey information more quickly and by increasing visibility for citizen science projects. Increased exposure to citizen science efforts spurs interest in participation and the additional data collection capacity provided by smartphones and other technology allows more people to contribute. One such trend is the digital mapping of crowdsourced information, such as the NOAA Marine Debris Program’s Marine Debris Tracker app, which enables people to map and track different types of litter and marine debris they find around the world.

Oil Spills, NOAA, and Citizen Science. In 2012 the National Response Team prepared a document on the “Use of Volunteers: Guidelines for Oil Spills,” outlining ways in which oil spill responders can move toward improved citizen involvement before, during, and after an oil spill. We will use this as a framework to assess potential citizen science programs that could be adopted or incorporated by NOAA’s Office of Response and Restoration.

Challenges. All citizen science programs face certain challenges, such as ensuring data reliability with increased participation from non-experts, finding and maintaining the capacity required to manage a citizen science program and incorporate new data, and working with liability concerns around public participation. The challenges become even greater when incorporating citizen science into oil spill response. The unique challenges we have identified are the compressed timeline associated with a spill situation; the unpredictability in scope, geography, and nature of a spill; and the heightened risk and liability that come from having volunteers involved with hazardous material spill scenarios. We will keep all of these concerns in mind as we develop our recommendations.

Next Steps

From here, our team will be analyzing our findings and developing some recommendations for NOAA’s Office of Response and Restoration. We hope to identify, categorize, and assess different citizen science models that may work in a response situation, weighing the strengths and weaknesses of each model. These findings will be presented in a final report to NOAA in March 2015.

If you would like to learn more about the Citizen Science Management Project or check on our progress, please visit the project website: https://citizensciencemanagement.wordpress.com. If you have ideas about the project, feel free to reach out to us through the contact page. We would love to hear from you!

Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño are graduate students at the University of Washington in Seattle, Washington. The Citizen Science Management Project is being facilitated through the University of Washington’s Program on the Environment. It is the most recent project in an ongoing relationship between NOAA’s Office of Response and Restoration and the University of Washington’s Program on the Environment.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Winter 2015

Two people talking on a beach with a ferry in the background.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of February 23–27, 2015 at the NOAA Disaster Response Center in Mobile, Alabama.

We will accept applications for this class through Friday, January 9, 2015, and we will notify applicants regarding their participation status by Friday, January 16, 2015, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas, (April 27–May 1, 2015) and Seattle, Washington (date to be determined).

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

When the Dynamics of an Oil Spill Shut Down a Nuclear Power Plant

Yellow containment boom floats on a river next to a nuclear power plant.

Precautionary containment boom is visible around the water intake system at the Salem Nuclear Generating Station in New Jersey on December 6, 2004. The nuclear plant was shut down for 11 days to prevent the heavy, submerged oil from the Athos spill from clogging the water intakes. (NOAA)

“I’ve never reopened a nuclear power plant,” thought NOAA’s Ed Levine. Despite that, Levine knew it was his job to get the right information to the people who ultimately would make that decision. This was his role as a NOAA Scientific Support Coordinator during oil spills. However, most major oil spills do not affect nuclear power plants. This wintry day in 2004 was an exception.

Forty miles north of the Salem Nuclear Generating Station in New Jersey, an oil tanker called the Athos I had struck an object hidden beneath the Delaware River. As it was preparing to dock at the CITGO refinery near Philadelphia on November 26, the ship began tilting to one side, the engine shut down, and oil started gushing out.

“Not your typical oil spill,” later reflected Jonathan Sarubbi, who served as U.S. Coast Guard Captain of the Port and led the federal response during this incident. Not only did no one immediately know what the ship had hit—or where that object was located in the river channel—but the Athos, now sitting too low in the water to reach the dock, was stuck where it was. And it was still leaking its cargo of heavy Venezuelan crude oil.

Capt. Sarubbi ordered vessel traffic through this busy East Coast shipping channel to stop until the object the Athos hit could be found. Little did Capt. Sarubbi, Levine, and the other responders know that even more challenges would be in store beneath the water and down the river.

Getting Mixed up

Most oils, most of the time, float on the surface of water. This was precisely what responders expected the oil coming out of the Athos to do. But within a couple days of the spill, they realized that was not the case. This oil was a little on the heavier side. As it shot out of the ship’s punctured bottom, some of the oil mixed with sediment from the river bottom. It didn’t have far to go; thanks to an extremely low tide pulling the river out to sea, the Athos was passing a mere 18 inches above the bottom of the river when it sprung a leak.

Now mixed with sediment, some of the spilled oil became as dense as or denser than water. Instead of rising to the river surface, it sank to the bottom or drifted in the water column. Even some of the oil that floated became mixed with sediment along the shoreline, later sinking below the surface. For the oil suspended in the water, the turbulence of the Delaware River kept it moving with the currents increasingly toward the Salem nuclear plant, perched on the river’s edge.

NOAA’s oil spill trajectory model GNOME forecasts the spread of oil by assuming the oil is floating on the water’s surface. Normally, our oceanographers can verify how well the forecasts are doing by calibrating the model against twice-a-day aerial surveys of the oil’s movement. The trouble with oil that does not float is that it is harder to see, especially in the murky waters of the Delaware River.

Responders were forced to improvise. To track oil underwater, they created new sampling methods, one of which involved dropping weighted ropes into the water column at various points along the river. The ropes were lined with what looked like cheerleader pom-poms made of oil-attracting plastic strips that would pick up oil as it passed by.

Nuclear Ambitions

Nuclear plants like the Salem facility rely on a steady flow of freshwater to cool their reactors. A thin layer of floating oil was nearing the plant by December 1, 2004, with predictions that the heavier, submerged oil would not be far behind. By December 3, small, sticky bits of oil began showing up in the screens on the plant’s cooling water intakes. To keep them from becoming clogged, the plant decided to shut down its two nuclear reactors the next day. That was when NOAA’s Ed Levine was tasked with figuring out when the significant threats due to the oil had passed.

Eleven days later, the Salem nuclear plant operators, the State of New Jersey, and the Nuclear Regulatory Commission allowed the plant to restart. A combination of our modeling and new sampling methods for detecting underwater oil had shown a clear and significant drop in the amount of oil around the plant. Closing this major electric generating facility cost $33.1 million out of more than $162 million in claims paid to parties affected by the Athos spill. But through our innovative modeling and sampling, we were able to reduce the time the plant was offline, minimizing the disruption to the power grid and reducing the economic loss.

Levine recalled this as an “eye-opening” experience, one yielding a number of lessons for working with nuclear power plants should an oil spill threaten one in the future. To learn more about the Athos oil spill, from response to restoration, visit response.restoration.noaa.gov/athos.

A special thanks to NOAA’s Ed Levine and Chris Barker, former U.S. Coast Guard Captain Jonathan Sarubbi, and Henry Font, Donna Hellberg, and Thomas Morrison of the Coast Guard National Pollution Funds Center for sharing information and data which contributed to this post.

Follow

Get every new post delivered to your Inbox.

Join 597 other followers