NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Creative Solutions Save Money and Marsh Along Galveston Bay, Texas

Hazardous waste sites create a cascade of impacts that affect the health of communities, water quality, and the local environment. That’s why the long-term cleanup and restoration of these sites often requires a coordinated—and creative—regional approach.

This was certainly the case for the Malone Services Company hazardous waste site in Texas City, Texas. By combining efforts and funding in unexpected ways, federal, state and local partners came up with the most effective restoration solutions for the area, saving time and money along the way.

A Hazardous History

Located on the shores of Swan Lake and Galveston Bay, the 150-acre Malone facility produced decades of pollution affecting both groundwater within the site and runoff into nearby surface waters, creating long-term contamination problems for the region. Hundreds of businesses sent more than 480 million gallons of waste to the Malone facility for reclamation, storage, and disposal. During its operation from 1964 to 1997, waste products from those industries included acids, contaminated residues, solvents, and waste oils.

Designated a Superfund site in 2001, state and federal agencies collaborated early on during the cleanup, investigating the extent of the contamination, assessing which natural resources were affected, and planning restoration solutions to make up for these impacts. By sharing information they all needed, the agencies avoided additional costs from performing independent studies.

Aerial view of Malone Services Company waste site next to wetlands and Galveston Bay.

An aerial view of the Malone Services Company hazardous waste site shows the proximity of wetlands and Galveston Bay. (Department of the Interior)

Officially called “trustees,” the state and federal agencies involved included the Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, the Texas General Land Office, NOAA, and the U.S. Fish and Wildlife Service. Working together, the trustees carried out the Natural Resources Damage Assessment process for the Malone waste site. In 2012, they reached a settlement with the responsible parties for approximately $3.1 million. In the settlement, the trustees determined that Malone’s pollution had significant negative impacts on natural resources, affecting upland-woodland, freshwater marsh, and saltwater marsh habitat around the Malone site.

To restore those natural resources, the trustees finalized the damage assessment and restoration plan [PDF] in 2015.  Key elements of the plan center on restoring nearby natural areas, including freshwater wetlands in Campbell Bayou, terrestrial woodlands in the Virginia Peninsula Preserve, and intertidal saltwater wetlands in Pierce Marsh.

Creative Restoration at Pierce Marsh

Situated on the north shore of West Galveston Bay, not far from the Malone site, Pierce Marsh covers more than 2,300 acres, supports vibrant seasonal and year-round bird and fish populations, and is home to commercial and recreational fisheries. It is also located near vital, colonial water bird nesting islands and serves as an important feeding area during the nesting season.

However, the marsh became completely flooded by the 1990s, compromising its habitat quality as the ground beneath it sank due to subsidence. “Pierce Marsh has experienced one of the greatest rates of wetland loss in Galveston Bay and the restoration of its fish and wildlife habitat is recognized as a regional restoration priority,” noted Jamie Schubert, NOAA Restoration Center Marine Habitat Specialist. The Galveston Bay Foundation, a co-owner of the land, has spent the last 15 years methodically restoring the marsh.

Money from the Malone settlement is funding the restoration of 70 acres of wetland at Pierce Marsh. Having each federal and state agency contribute to a portion of the success—through the funding, planning, engineering, design, permitting, implementation, or monitoring—this restoration project has saved time and money.

Birds swoop over a pipeline releasing mud into a marsh.

Sediments pouring from the end of a long pipeline are raising the ground elevation of Pierce Marsh, improving habitat for birds and fish and helping make up for the loss of similar habitat due to pollution at the Malone waste site. (Credit: John Morris/Mike Hooks, Inc.)

One cost-saving example came out of NOAA habitat conservation experts and U.S. Army Corps of Engineers project manager, Seth Jones, both serving on an Interagency Coordination Team for the Texas Gulf Intracoastal Waterway. The Corps maintains the waterway, dredging it deep and wide enough to meet current shipping demands. Out of those meetings emerged the idea to “beneficially” use the sediments from the waterway dredging to raise the ground level of Pierce Marsh.

“Our project delivery team included NOAA, the Galveston Bay Foundation, Texas Parks and Wildlife, U.S. Fish and Wildlife Service, the Texas General Land Office, and the Texas Department of Transportation,” said Jones. “It was because of their instrumental input throughout the design phase that we are going to get a good start on the Galveston Bay Foundation’s long-term marsh restoration plan at Pierce Marsh complex.”

To pay for transportation of the dredged sediments to restore the marsh, the Texas trustees recommended that combined settlement funds from the Malone Services Company site, the Tex Tin hazardous waste site (also in the area), and another Texas state pollution case could help fund the needed restoration, yielding more restoration for their dollars.

“This beneficial use project has multiple benefits—it keeps the dredged material away from existing seagrass areas in West Bay and helps restore lost wetland habitat that has disappeared over the last fifty years in this area,” said Bob Stokes, President of Galveston Bay Foundation.

A Restoration Recipe for Success

Small levee of sediment and grass in a marsh.

A small levee constructed in Pierce Marsh, near Galveston Bay, Texas, contains dredged sediments that will restore marsh elevation and improve habitat quality. (NOAA)

Members of the trustee council have expressed enthusiasm for the project as well. “The U.S. Fish and Wildlife Service is excited to be part of the Pierce Marsh restoration project, which will restore estuary marsh habitat and benefit migratory birds and waterfowl,” said Benjamin Tuggle, Southwest Regional Director, U.S. Fish and Wildlife Service. “Multiple state, federal, and NGO partners have come together to restore contaminated areas at the Malone site.”

The Texas trustees anticipate building upon these efforts and using this approach to continue restoring coastal marshes, making ongoing monitoring of the project very important. They have partnered with Galveston Bay Foundation and Ducks Unlimited to monitor sediment settlement rates, which are used to assess project success and inform future projects.

“The Pierce Marsh reclamation project will make a significant contribution to restoring the coastal wetlands and natural resources that have been lost over time in this part of West Galveston Bay,” according to Richard Seiler, Program Manager of the Texas Commission on Environmental Quality Natural Resource Trustee Program. “The project represents a true team effort between the Texas Commission on Environmental Quality and the other state and federal natural resource trustees, the U.S. Army Corps of Engineers, and our NGO partners, the Galveston Bay Foundation and Ducks Unlimited.”

The restoration of Pierce Marsh is a success story of interagency cooperation and partner coordination. Federal and state agencies and non-profit organizations with differing missions came together on a project that would benefit everyone involved. Working together to share financial and technical resources, ultimately enabled them to use sediment historically viewed as waste material to restore vital coastal habitat, enhancing the area for wildlife and fisheries for generations to come.


Leave a comment

Preventing Chemical Disasters by Improving our Software Tools

On April 17, 2013, in the farming community of West, Texas, the storage and distribution facility of West Fertilizer Company caught fire. As firefighters attempted to douse the flames, tons of ammonium nitrate stored at the facility detonated, resulting in an explosion [warning*] packed with the force of a small earthquake. The blast killed fifteen people, injured more than 300, and damaged or destroyed more than 150 buildings.

Just two months later, on June 13, disaster struck again—this time at one of 12 chemical plants along a 10-mile stretch of the Mississippi River. In the industrial town of Geismar, Louisiana, the Williams Olefins chemical facility exploded and caught fire, killing two workers and injuring at least 75 others. The blast sent a huge fireball and column of smoke into the air. Fueled by the petrochemical propylene, the fire burned for more than three hours. Authorities ordered residents to remain indoors for hours to avoid the billowing smoke.

Getting Information into the Right Hands Before an Emergency

One of the challenges in preventing disasters such as these is to ensure that critical information gets into the planning cycle, and into the hands of the local emergency planning and responder community. To reduce the likelihood of chemical disasters in the United States, Congress has imposed requirements for governments, tribes, and industry.

For example, the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 was created to help communities plan for emergencies involving hazardous substances. EPCRA requires federal, state, and local governments; Indian tribes; and the chemical industry to plan for hazardous chemical emergencies. It also requires industry to report on the storage, use, and releases of hazardous chemicals to federal, state, and local governments.

NOAA’s CAMEO software suite, jointly developed since 1987 with the U.S. Environmental Protection Agency’s Office of Emergency Management, is a key tool in the implementation of EPCRA. CAMEO is a suite of software tools used to plan for and respond to chemical emergencies. Developed to assist front-line chemical emergency planners and responders, CAMEO can access, store, and evaluate information critical for developing emergency plans, such as locations of hazardous chemical storage and nearby hospitals, schools, and other at-risk population centers.

From the Desk of the President

Chemical plant lit up at night.

Federal agencies are focused on changing the national landscape of chemical facility safety and security in the wake of the 2013 tragedies. (U.S. Occupational Safety and Health Administration)

After the two major chemical disasters of 2013, President Obama signed Executive Order 13650 (EO 13650) to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

In addition to several other provisions, this executive order established a senior work group from six different departments and agencies, including the EPA, all of whom are responsible for chemical facility safety and security. In a report released June 6, 2014 [PDF], this work group identified specific actions for the agencies to take, and directly called out enhancements to the CAMEO suite to help address chemical facility safety and security.

A Safer Future Is a More Mobile-Friendly One

Because the executive order specifies that the changes in CAMEO be completed by the end of fiscal year 2016, our office and our EPA partner are crafting a two-year plan for CAMEO. Here are a couple of examples of the work we have ahead.

To ensure broad access to critical chemical information for emergency planners and responders, we will be adding new standards—the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards—to the regulatory section on our chemical datasheets, which already includes information from EPCRA, the Clean Air Act, and other regulations. This addition will help provide a linkage between regulatory programs.

Another recommendation is that chemical facility data reported under EPCRA be easier for emergency responders and planners to access. As a result, we and our partners will review plans for providing online access to this data via mobile applications. Currently, our CAMEO software programs are mostly stand-alone, computer desktop applications.

To expand offline access to emergency response information for people working in the field, we plan to add a mobile app version of our chemical database tool CAMEO Chemicals, which will have all of the program’s data loaded onto an individual’s smartphone. This will be in addition to the desktop, website, and mobile website versions of CAMEO Chemicals already available.

To maximize access to our chemical plume modeling program, ALOHA, we will make an Internet browser-based ALOHA program that is available as both a website and a desktop application. In addition, we will completely redesign the CAMEO data management program, CAMEOfm, which includes creating a supplemental CAMEO mobile application for viewing the EPCRA data from the linked desktop program.

Chemical accidents are infrequent, and through work like this, we hope to keep them—and their impacts—that way.

*The video and audio recording of the explosion linked to here may be disturbing to some audiences.


Leave a comment

Marine Life in Gulf of Mexico Faces Multiple Challenges

Editor’s Note: This is a revised posting by Maggie Broadwater of NOAA’s National Centers for Coastal Ocean Science that has corrected some factual misstatements in the original post.

photo of a bottlenose dolphin calf.

A bottlenose dolphin calf in the Gulf of Mexico. (NOAA)

Animals living in coastal waters can face a number of environmental stressors—both from nature and from humans—which, in turn, may have compounding effects. This may be the case for marine life in the Gulf of Mexico which experiences both oil spills and the presence of toxic algae blooms.

On the Lookout

Marine sentinels, like bottlenose dolphins in the Gulf of Mexico, share this coastal environment with humans and consume food from many of the same sources. As marine sentinels, these marine mammals are similar to the proverbial “canary in the coal mine.” Studying bottlenose dolphins may alert us humans to the presence of chemical pollutants, pathogens, and toxins from algae (simple ocean plants) that may be in Gulf waters.

Texas Gulf waters, for an example, are a haven for a diverse array of harmful algae. Additional environmental threats for this area include oil spills, stormwater and agricultural runoff, and industrial pollution.

Recently, we have been learning about the potential effects of oil on bottlenose dolphin populations in the Gulf of Mexico as a result of the Deepwater Horizon oil spill in April 2010. Dolphins with exposure to oil may develop lung disease and adrenal impacts, and be less able to deal with stress.

Certain types of algae produce toxins that can harm fish, mammals, and birds and cause illness in humans. During harmful algal blooms, which occur when colonies of algae “bloom” or grow out of control, the high toxin levels observed often result in illness or death for some marine life, and low-level exposure may compromise their health and increase their susceptibility to other stressors.

However, we know very little about the combined effects from both oil and harmful algal blooms.

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

Familiar Waters

Prior to the Galveston Bay oil spill, Texas officials closed Galveston Bay to the harvesting of oysters, clams, and mussels on March 14, 2014 after detecting elevated levels of Dinophysis. These harmful algae can produce toxins that result in diarrhetic shellfish poisoning when people eat contaminated shellfish. Four days later, on March 18, trained volunteers from NOAA’s Phytoplankton Monitoring Network detected Pseudo-nitzschia in Galveston Bay. NOAA Harmful Algal Bloom scientist Steve Morton, Ph.D., confirmed the presence of Pseudo-nitzchia multiseries, a type of algae known as a diatom that produces a potent neurotoxin affecting humans, birds, and marine mammals. NOAA’s Harmful Algal Bloom Analytical Response Team confirmed the toxin was present and notified Texas officials.

When Oil and Algae Mix

Studying marine mammal strandings and deaths helps NOAA scientists and coastal managers understand the effects of harmful algal blooms across seasons, years, and geographical regions. We know that acute exposure to algal toxins through diet can cause death in marine mammals, and that even exposures to these toxins that don’t kill the animal may result in serious long-term effects, including chronic epilepsy, heart disease, and reproductive failure.

But in many cases, we are still working to figure out which level of exposure to these toxins makes an animal ill and which leads to death. We also don’t yet know the effects of long-term low-level toxin exposure, exposure to multiple toxins at the same time, or repeated exposure to the same or multiple toxins. Current NOAA research is addressing many of these questions.

A dolphin mortality event may have many contributing factors; harmful algae may only be one piece in the puzzle. Thus, we do not yet know what effects recent Dinophysis and Pseudo-nitzchia blooms may have on the current marine mammal populations living in Texas coastal waters. Coastal managers and researchers are on alert for marine mammal strandings that may be associated with exposure to harmful algae, but the story is unfolding, and is very complex.

Photo of volunteer with a microscope.

Galveston volunteer with NOAA’s Phytoplankton Monitoring Network helps identify toxic algae. (NOAA)

On March 22, 2014, four days after harmful algae were found in Galveston Bay, the M/V Summer Wind collided with oil tank-barge Kirby 27706 in Galveston Bay near Texas City, releasing approximately 168,000 gallons of thick, sticky fuel oil. The Port of Houston was closed until March 27. State and federal agencies are responding via the Unified Command. NOAA is providing scientific support and Natural Resource Damage Assessment personnel are working to identify injured natural resources and restoration needs. Much of the oil has come ashore and survey teams are evaluating the shorelines to make cleanup recommendations.

Time will tell if the harmful algal toxins and oil in Galveston Bay have a major negative effect on the marine mammals, fish, and sea turtles that live in surrounding waters. Fortunately, NOAA scientists with a range of expertise—from dolphins to harmful algae to oil spills—are on the job.

Maggie BroadwaterMaggie Broadwater is a Research Chemist and serves as coordinator for NOAA’s Harmful Algal Bloom Analytical Response Team at the National Centers for Coastal Ocean Science in Charleston, S.C.  Dr. Broadwater earned a Ph.D. in Biochemistry from the Medical University of South Carolina in 2012 and has a M.S. in Biomedical Sciences and a B.S. in Biochemistry.


Leave a comment

Texas City “Y” Incident: Aftermath of the Oil Spill in Galveston Bay, Texas

photo of people cleaning up contaminated sand.

Task force members remove oil-contaminated sand from the beach on Matagorda Island, Texas, March 30, 2014. Cleanup operations are being directed by a unified command comprised of personnel from the Texas General Land Office, U.S. Coast Guard and Kirby Inland marine. (U.S. Coast Guard)

The March 22, 2014 vessel collision in Galveston Bay (see Kirby Barge Oil Spill, Houston/Texas City Ship Channel) resulted in an oil spill of approximately 168,000 gallons.

Although scattered and trace amounts of oil were found as far west as Mustang and Padre Islands, almost all of the oil is still thought to be stranded on shorelines between Galveston and Matagorda.  Some widely scattered floating tarballs and sheens may be possible, but no floating oil was observed on overflights today.

As of Monday, March 31, NOAA National Marine Fisheries Service teams report 21 dolphins and 4 turtles stranded. Most of these are in the Galveston area but reports from Matagorda Island are increasing.  All of the dolphins were dead, two turtles were captured alive and are being rehabilitated.  Most of the animals were not visibly oiled but necropsies are still underway.  Approximately 150 dead birds have been reported in the Galveston area and 30 in the Matagorda area.

Cleanup activities in the Galveston area are proceeding and the U.S. Coast Guard is beginning the process to downsize staffing and phase out response efforts.

Photo of two people locating oil on beach.

Two members of the Shoreline Assessment Team locate oiled impact points on Matagorda Island, March 29, 2014. The Unified Command in Port O’Connor is overcoming logistical challenges posed by the remote island in order to clean up the migrating oil from the Texas City collision. (U.S. Coast Guard)

Surveying Oiled Shorelines

After an oil spill like this one happens along the coast, spill responders need to figure out and document where oil has come ashore, what habitats have been affected, and how to clean up the shoreline.

NOAA helped develop a systematic method for surveying an affected shoreline after an oil spill. This method, known as Shoreline Cleanup and Assessment Technique (SCAT), is designed to support decision-making for shoreline cleanup. We have SCAT experts helping coordinate these shoreline surveying efforts for the oiled beaches in Texas.

In general, SCAT surveys begin early in the response to assess initial shoreline conditions (including even before oil comes ashore, as a reference) and ideally continue to work in advance of cleanup.

Surveys continue during the response to verify shoreline oiling, cleanup effectiveness, and eventually, to conduct final evaluations of shorelines to ensure they meet standards for ending cleanup.

SCAT teams include people trained in the techniques, procedures, and terminology of shoreline assessment. Members of a SCAT team may come from federal agencies (usually from the NOAA Scientific Support Team or U.S. Coast Guard), state agencies, a representative of the organization responsible for the spill, and possibly the landowner or other local stakeholders.

While out walking the shoreline, SCAT team members prepare field maps and forms detailing the area surveyed and make specific cleanup recommendations. Later, they go back to the areas surveyed to verify cleanup effectiveness, modifying guidelines as needed if conditions change.

The data they collect informs a shoreline cleanup plan that maximizes the recovery of oiled habitats and resources, while minimizing the risk of injury from cleanup efforts. This means, for example, determining whether active cleanup is necessary or whether certain limitations on cleanup are needed to protect ecological, economic, or cultural concerns.


Leave a comment

Progress at the Texas City “Y” Oil Spill in Galveston Bay

Photo of workers assessing shoreline.

Federal and local agency workers help clean up the beaches affected by oil spill on March 27, 2014. Cleanup efforts continue for the Texas City “Y” response, which resulted from a collision between a bulk carrier and a barge Saturday in the Houston Ship Channel. (U.S. Coast Guard)

POSTED: March 28, 2014 | UPDATED: March 30, 2014 –The March 22 vessel collision in Galveston Bay (see Kirby Barge Oil Spill, Houston/Texas City Ship Channel, Port Bolivar, Texas) that resulted in an oil spill of approximately 168,000 gallons caused the closure of the heavily trafficked Port of Houston for 3 days. Some oil came ashore near the collision site in the Galveston area, but northeasterly winds carried the remainder out of the Bay. Longshore currents then carried the oil to the west, some as far as 150 miles, were it stranded on Matagorda Island. A small fraction of the oil is still afloat off Mustang and Padre Islands.

Photo of a woman and a moan looking at paperwork on the beach.

Volunteers assess a three-mile stretch of shoreline at Stewart Beach in Galveston, Texas, on March 28, 2014. Workers and volunteers have been working Galveston shoreline in response to the Texas City oil spill. (U.S. Coast Guard)

Although most all of the oil is still thought to be stranded on shorelines between Galveston and Matagorda, overflights this morning noted sheens and tarballs further west than anticipated, near Aransas Pass. This oil could impact Mustang and Padre Islands and the need for additional trajectory forecasts is being reconsidered. Overflight observers also noted that shoreline oil on Matagorda Island is rapidly being buried under clean sand. Burial of oil is common on active shorelines, but increases the complexity of the response, especially in areas where mechanical cleanup methods are not feasible or inappropriate because of their environmental sensitivity.

NOAA is providing scientific support to the U.S. Coast Guard, including science coordination, trajectories, shoreline assessment, information management and common operational picture, overflight, weather, resources at risk, seafood safety, and marine mammal and turtle stranding personnel. The NOAA Weather Service Incident Meteorologist is on-scene.

See March 27 U.S. Coast Guard news release.


Leave a comment

Update on the Texas City “Y” Response in Galveston Bay

Photo of workers deploying boom.

Workers deploy boom around the site of the oil spill in the Houston Ship Channel near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

 

POSTED MARCH 25, 2014 | UPDATED MARCH 27, 2014 –The Saturday vessel collision in Galveston Bay (see “Vessel Collision and Spill in Galveston Bay”) that resulted in an oil spill of approximately 168,000 gallons, caused the closure of the heavily trafficked Port of Houston for 3 days. The Houston Ship Channel is now open, with some restrictions. There is a safety zone in effect in cleanup areas.

Photo of absorbent material in spilled oil.

Absorbent material is deployed near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

As predicted, strong southerly winds stranded much of the offshore oil overnight in the Matagorda region and these onshore winds are expected to bring ashore the remaining floating oil off Matagorda Island by Friday morning. Closer to the collision site, there have been very few new reports of remaining floating oil in Galveston Bay or offshore Galveston Island. However, new shoreline impacts may still be occurring in those areas due to re-mobilization of stranded oil or remaining scattered sheens and tarballs.

NOAA is providing scientific support to the U.S. Coast Guard, including trajectory forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are responding. The NOAA Weather Service Incident Meteorologist is on-scene, as are additional NOAA personnel. Natural resource damage assessment personnel are at Galveston Bay and are initiating preassessment activities. The preassessment period is an on-scene evaluation of what the type of oil is, where it has gone, where it may be going and what resources are or may be at risk.

See the latest OR&R trajectory forecast map, showing the likely areas of oiling tomorrow.


2 Comments

Vessel Collision and Spill in Galveston Bay

photo of tugs and barge in water.

A Coast Guard response boat patrols the Kirby Barge 27706 during cleanup efforts near Texas City Dike, March 23, 2014. The oil spill occurred, Saturday, after a collision between a bulk carrier and the barge. (U.S. Coast Guard)

On March 22, 2014, at approximately 12:30 pm, the 585 foot bulk carrier M/V Summer Wind collided with the oil tank-barge Kirby 27706. The incident occurred in Galveston Bay near Texas City, Texas. The barge contained approximately 1,000,000 gallons of intermediate fuel oil in multiple tanks.

The #2 starboard tank was punctured, spilling approximately 168,000 gallons of oil. The barge is aground and the remaining oil was lightered (removed) late Sunday. The M/V Summer Wind is stable and not leaking oil. As of March 23, the Houston Ship Channel and Intracoastal Waterway was closed to traffic, including ferries and cruise ships. U.S. Coast Guard, NOAA, U.S. Fish and Wildlife Service, the Texas General Land Office and other agencies are responding.

NOAA is providing scientific support to the U.S. Coast Guard, including forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are also standing by. The NOAA Weather Service Incident Meteorologist is on-scene, as are NOAA’s Office of Response and Restoration personnel. Natural resource damage assessment personnel will be at Galveston Bay to initiate studies that could be used to identify injured resource and restoration needs.

Workers load boom into the water.

Responders work together to load hundreds of feet of boom onto vessels at the Texas City Dike, March 23, 2014. More than 35,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S Coast Guard)

Expected Behavior of the Spilled Oil

Intermediate fuel oils are produced by blending heavy residual oils with a light oil to meet specifications for viscosity and pour point. Their behavior can be summarized as follows:

  • IFO-380 will usually spread into thick slicks which can contain large amounts of oil. Oil recovery by skimmers and vacuum pumps can be very effective, particularly early in the spill.
  • Very little of this is likely to mix into the water column. It can form thick streamers or, under strong wind conditions, break into patches and tarballs.
  • IFO-380 is a persistent oil; only a relatively small amount is expected to evaporate within the first hours of a spill. Thus, spilled oil can be carried long distances by winds and currents.
  • IFO-380 can be very viscous and sticky, meaning that stranded oil tends to remain on the surface rather than penetrate sediments. Light accumulations usually form a “bath-tub ring” at the high-water line; heavy accumulations can pool on the surface.
  • Floating oil could potentially sink once it strands on the shoreline, picks up sediment, and then is eroded by wave action.

The incident occurred just inside the entrance of Galveston Bay. Northeasterly winds are expected to carry the oil out of the Bay, but onshore winds expected midweek could bring the oil back along the ocean beaches. The oil, likely in the form of tarballs, could be spread over a large section of ocean beaches.

Find more updates on the oil spill response from the Unified Command.