NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

NOAA’s Online Mapping Tool ERMA Opens up Environmental Disaster Data to the Public

Six men looking at a map with a monitor in the background.

Members of the U.S. Coast Guard using ERMA during the response to Hurricane Isaac in 2012. (NOAA)

This is a post by the NOAA Office of Response and Restoration’s Jay Coady, Geographic Information Systems Specialist.

—-

March 15-21, 2015 is Sunshine Week, an “annual nationwide celebration of access to public information and what it means for you and your community.” Sunshine Week is focused on the idea that open government is good government. We’re highlighting NOAA’s Environmental Response Management Application (ERMA) as part of our efforts to provide public access to government data during oil spills and other environmental disasters.    

Providing access to data is a challenging task during natural disasters and oil spill responses—which are hectic enough situations on their own. Following one of these incidents, a vast amount of data is collected and can accumulate quickly. Without proper data management standards in place, it can take a lot of time and effort to ensure that data are correct, complete, and in a useful form that has some kind of meaning to people. Furthermore, as technology advances, responders, decision makers, and the public expect quick and easy access to data.

NOAA’s Environmental Response Management Application (ERMA®) is a web-based mapping application that pulls in and displays both static and real-time data, such as ship locations, weather, and ocean currents. Following incidents including the 2010 Deepwater Horizon oil spill and Hurricane Sandy in 2012, this online tool has aided in the quick display of and access to data not only for responders working to protect coastal communities but also the public.

From oil spill response to restoration activities, ERMA plays an integral part in environmental data dissemination. ERMA reaches a diverse group of users and maintains a wide range of data through a number of partnerships across federal agencies, states, universities, and nations.

Because it is accessible through a web browser, ERMA can quickly communicate data between people across the country working on the same incident. At the same time, ERMA maintains a public-facing side which allows anyone to access publically available data for that incident.

ERMA in the Spotlight

During the Deepwater Horizon oil spill in the Gulf of Mexico, ERMA was designated as the “common operational picture” for the federal spill response. That meant ERMA displayed response-related activities and provided a consistent visualization for everyone involved—which added up to thousands of people.

Screen grab of ERMA map.

ERMA map showing areas of dispersant application during the response to the Deepwater Horizon oil spill in 2010. (NOAA)

To date, the ERMA site dedicated solely to the Deepwater Horizon spill contains over 1,500 data layers that are available to the public. Data in ERMA are displayed in layers, each of which is a single set of data. An example of a data layer is the cumulative oil footprint of the spill. This single data layer shows, added together, the various parts of the ocean surface the oil spill affected at different times over the entire course of the spill, as measured by satellite data. Another example is the aerial dispersant application data sets that are grouped by day into a single data layer and show the locations of chemical dispersant that were applied to oil slicks in 2010.

Even today, ERMA remains an active resource during the Natural Resource Damage Assessment process, which evaluates environmental harm from the oil spill and response, and NOAA releases data related to these efforts to the public as they become available. ERMA continues to be one of the primary ways that NOAA shares data for this spill with the public.

ERMA Across America

While the Deepwater Horizon oil spill may be one ERMA’s biggest success stories, NOAA has created 10 other ERMA sites customized for various U.S. regions. They continue to provide data related to environmental response, cleanup, and restoration activities across the nation’s coasts and Great Lakes. These 10 regional ERMA sites together contain over 5,000 publicly available data layers, ranging from data on contaminants and environmentally sensitive resources to real-time weather conditions.

For example, in 2012, NOAA used Atlantic ERMA to assist the U.S. Coast Guard, Environmental Protection Agency, and state agencies in responding to pollution in the wake of Hurricane Sandy. Weather data were displayed in near real time as the storm approached the East Coast, and response activities were tracked in ERMA. The ERMA interface was able to provide publically available data, including satellite and aerial imagery, storm inundation patterns, and documented storm-related damages. You can also take a look at a gallery of before-and-after photos from the Sandy response, as viewed through Atlantic ERMA.

Screen grab of an ERMA map.

An ERMA map showing estimated storm surge heights in the Connecticut, New York and New Jersey areas during Hurricane Sandy. (NOAA)

In addition, the ERMA team partnered with NOAA’s Marine Debris Program to track Sandy-related debris, in coordination with state and local partners. All of those data are available in Atlantic ERMA.

Looking to the north, ERMA continues to be an active tool in Arctic oil spill response planning. For the past two years, members of the ERMA team have provided mapping support using Arctic ERMA during the U.S. Coast Guard’s Arctic Technology Evaluation exercises, which took place at the edge of the sea ice north of Barrow, Alaska. During these exercises, the crew and researchers aboard a Coast Guard icebreaker tested potential technologies for use in Arctic oil spill response, such as unmanned aircraft systems. You can find the distributions of sensitive Alaskan bird populations, sea ice conditions, shipping routes, and pictures related to these Arctic exercises, as well as many more data sets, in Arctic ERMA.

Screen grab of an Arctic ERMA map.

ERMA is an active tool in Arctic oil spill response planning. (NOAA)

To learn more about the online mapping tool ERMA, visit http://response.restoration.noaa.gov/erma.

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch and is based in Charleston, South Carolina. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy.


Leave a comment

Our Top 10 New Year’s Resolutions for 2015

2014 written in the sand.

Good bye, 2014. Credit: Marcia Conner/CC BY-NC-SA 2.0

While we have accomplished a lot in the last year, we know that we have plenty of work ahead of us in 2015.

As much as we wish it were so, we realize oil and chemical spills, vessel groundings, and marine debris will not disappear from the ocean and coasts in the next year. That means our experts have to be ready for anything, but specifically, for providing scientific solutions to marine pollution.

Here are our plans for doing that in 2015:

  1. Exercise more. We have big plans for participating in oil spill exercises and performing trainings that will better prepare us and others to deal with threats from marine pollution.
  2. Be safer. We work up and down the nation’s coastlines, from tropical to arctic environments. Many of these field locations are remote and potentially hazardous. We will continue to assess and improve our equipment and procedures to be able to work safely anywhere our services are needed.
  3. Keep others safe. We are improving our chemical response software CAMEO, which will help chemical disaster responders and planners get the critical data they need, when and where they need it.
  4. Get others involved. We are partnering with the University of Washington to explore ways average citizens can help contribute to oil spill science.
  5. Communicate more effectively. This spring, we will be hosting a workshop for Alaskan communicators and science journalists on research-based considerations for communicating about chemical dispersants and oil spills.
  6. Be quicker and more efficient. We will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive data in the Arctic to support Natural Resource Damage Assessment and other oil spill science.
  7. Sport a new look. An updated, more mobile-friendly look is in the works for NOAA’s Damage Assessment, Remediation, and Restoration Program website. Stay tuned for the coming changes at http://www.darrp.noaa.gov.
  8. Unlock access to data. We are getting ready to release public versions of an online tool that brings together data from multiple sources into a single place for easier data access, analysis, visualization, and reporting. This online application, known as DIVER Explorer, pulls together natural resource and environmental chemistry data from the Deepwater Horizon oil spill damage assessment, and also for the Great Lakes and U.S. coastal regions.
  9. Clean up our act. Or rather, keep encouraging others to clean up their act and clean up our coasts. We’re helping educate people about marine debris and fund others’ efforts to keep everyone’s trash, including plastics, out of our oceans.
  10. Say farewell. To oil tankers with single hulls, that is. January 1, 2015 marks the final phase-out of single hull tankers, a direct outcome of the 1989 Exxon Valdez oil spill.


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during Arctic Shield’s Technology Evaluations and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013’s Technology Evaluation, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the evaluation. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


2 Comments

Join NOAA for a Tweetchat on Preparing for Arctic Oil Spills

 

Coast Guard icebreaker in sea ice.

The U.S. Coast Guard Cutter Healy, a state-of-the-art icebreaker and the August 2014 home of a team of researchers evaluating oil spill technologies in the Arctic. (U.S. Coast Guard)

As Arctic waters continue to lose sea ice each summer, shipping, oil and gas exploration, tourism, and fishing will increase in the region. With more oil-powered activity in the Arctic comes an increased risk of oil spills.

In August of 2014, NOAA’s Office of Response and Restoration sent two GIS specialists aboard the U.S. Coast Guard Cutter Healy for an exercise in the Arctic Ocean demonstrating oil spill tools and technologies. This scientific expedition provided multiple agencies and institutions with the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment. It is one piece of the Coast Guard’s broader effort known as Arctic Shield 2014.

Part of NOAA’s focus in the exercise was to test the Arctic Environmental Response Management Application (ERMA®), our interactive mapping tool for environmental response data, during a simulated oil spill.

Join us as we learn about NOAA’s role in the mission and what life was like aboard an icebreaker. Use Twitter to ask questions directly to NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

Get answers to questions such as:

  • What type of technologies did the Coast Guard Research and Development Center (RDC) and NOAA test while aboard the Healy and what did we learn?
  • What was a typical day like on a ship that can break through ice eight feet thick?
  • Why can’t we just simulate an Arctic oil spill at home? What are the benefits of first-hand experience?

Tweetchat Details: What You Need to Know

What: Use Twitter to chat directly with NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

When: Thursday, September 18, 2014 from 11:00 a.m. Pacific to 12:00 p.m. Pacific (2:00 p.m. Eastern to 3:00 p.m. Eastern).

How: Tweet questions to @NOAAcleancoasts using hashtag #ArcticShield14. You can also submit questions in advance via orr.rsvp.requests@noaa.gov, at www.facebook.com/noaaresponserestoration, or in the comments here.

About NOAA’s Spatial Data Branch

Jill Bodnar is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She is an experienced oil spill responder and has been mapping data during oil spills for more than a decade. This is her first trip to the Arctic.

Zachary Winters-Staszak is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. While not aboard the Healy, he co-leads an effort to manage data and foster partnerships for Arctic ERMA. This is his second time participating in the annual Arctic Technology Evaluation in support of Arctic Shield. You can listen to him discuss this exercise and NOAA’s participation in a NOAA’s Ocean Service audio podcast from August 2014.

About Oil Spills and NOAA

Every year NOAA’s Office of Response and Restoration (OR&R) responds to more than a hundred oil and chemical spills in U.S. waters. OR&R is a center of expertise in preparing for, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases from hazardous waste sites, and marine debris. This work also includes determining damage to coastal lands and waters after oil spills and other releases and rotecting and restoring marine and coastal areas, including coral reefs.

Learn more about how NOAA responds to oil spills and the full range of OR&R’s activities in the Arctic.


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

Alaska ShoreZone: Mapping over 46,000 Miles of Coastal Habitat

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island's dramatic coastal cliffs.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island’s dramatic coastal cliffs. (ShoreZone.org)

I learned a few things while I was at a meeting in Anchorage, Alaska, last month. Most importantly (and perhaps a surprise to those from Texas), I learned everything is bigger in Alaska, namely its shoreline. Alaska’s shoreline measures over 46,600 miles (75,000 km), longer than the shorelines of all the lower 48 states combined.

Now imagine for a minute the work involved in flying helicopters low along that entire shoreline, collecting high-resolution imagery and detailed classifications of the coast’s geologic features and intertidal biological communities. No small endeavor, but that’s exactly what the Alaska ShoreZone Coastal Inventory and Mapping Project, a unique partnership between government agencies, NGOs, and private industry, has been doing each summer since 2001.

Since then, ShoreZone has surveyed Alaskan coasts at extreme low tide, collecting aerial imagery and environmental data for roughly 80% of Alaska’s coastal habitats and continues to move towards full coverage each year. Collecting the vast amounts of imagery and data is a great accomplishment in and of itself, but ShoreZone, with help from NOAA’s National Marine Fisheries Service, has done an equally incredible job at making their entire inventory accessible to the public.

Just think how this valuable and descriptive information could be used. Planning for an Alaskan kayak trip next summer? ShoreZone can help you prioritize which beaches will save your hull from unwanted scratches. Trying to identify areas of critical habitat for endangered fishes? ShoreZone can help you in your research. Indeed, ShoreZone has many applications. For the Office of Response and Restoration, ShoreZone is an invaluable tool that serves alongside NOAA’s Environmental Sensitivity Index (ESI) maps and data as a baseline for the coastal habitats of Alaska and is currently being used for environmental planning, preparedness, and Natural Resource Damage Assessment planning in Alaska.

One of the many ways to access ShoreZone imagery and data is through Arctic ERMA, NOAA’s online mapping tool for environmental response. There are several advantages to this. For example, the National Marine Fisheries Service used ShoreZone imagery and data to designate critical habitat areas for endangered rockfish in Washington’s Puget Sound, a process that could also be applied to Alaska if necessary. That information could quickly be integrated into ERMA and displayed on a map allowing you to view the data used to determine those locations as well.

Screenshot of Alaska through Arctic ERMA and showing ShoreZone data layers.

To find ShoreZone photos in ERMA, type “Alaska ShoreZone” in the find bar at the top, then click on the result to turn on the layer in the map. Next, to view ShoreZone photos in ERMA, first click on the Identify tool icon (i) and then click on a desired point in the map. A table will appear in a pop-up with the hyperlink to the desired photo. Or, click on this image to view ShoreZone data in Arctic ERMA. (NOAA)

As updates and additions to the imagery database become available they will also be available in Arctic ERMA. The Bureau of Safety and Environmental Enforcement (BSEE) has provided funding to complete the imagery processing and habitat mapping for the North Slope of Alaska. BSEE also provided funding to finish Arctic ERMA and to develop the internet-independent Stand-alone ERMA. The efforts are complementary and strategic given the increased activity in the Arctic.

To prepare for this increase in activity, the ShoreZone and ERMA teams are working to incorporate ShoreZone data into Stand-alone ERMA for use when Internet connectivity is unreliable. The beauty of the photos included here is deceptive. A majority of Alaska’s shoreline is rugged, unforgiving, and remote. Having access to high-resolution imagery along with environmental and response-focused data in the kind of Internet-independent package that ShoreZone and ERMA provide would be an indispensable tool during a hazardous incident like a ship collision, oil spill, or search and rescue mission. This is just one way NOAA and ShoreZone are working together to strengthen our commitment to the coastal environments and communities of Alaska.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

At the Coast Guard Academy, Students Get a Dose of Real-World Response Tools

This is a post by the Office of Response and Restoration’s GIS Specialists Kari Sheets and Jay Coady.

The Office of Response and Restoration's Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA's online mapping tool for environmental response.

The Office of Response and Restoration’s Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA’s online mapping tool for environmental response. (U.S. Coast Guard Academy)

Students wearing crisp, blue uniforms lean in to get a better look at the map of the Gulf of Mexico being projected at the front of the small classroom.

Their normal Friday GIS class at the United States Coast Guard Academy in New London, Conn., has been taken over by two mapping specialists from NOAA’s Office of Response and Restoration. Kari Sheets and Jay Coady are standing in front of the classroom of cadets to introduce these future U.S. Coast Guard responders to an important tool they may use one day in the midst of a hurricane or oil spill response.

The tool is NOAA’s Environmental Response Management Application (ERMA®). ERMA is an online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a centralized, interactive map for environmental disaster response. Having all the latest information in an easy-to-use format provides environmental resource managers with the data they need to make informed decisions about where and how to deal with a pollution threat when it happens.  NOAA and the University of New Hampshire developed ERMA with the U.S. Coast Guard, U.S. Environmental Protection Agency, and the Department of Interior.

To the Classroom and Beyond

By offering training and collaboration opportunities like this early in cadets’ careers, NOAA and the Academy are providing future Coast Guard responders with the real-world knowledge and tools that they might encounter when addressing future pollution events.

One day this fall, Sheets and Coady taught three GIS classes that focused on ERMA, its capabilities, and how to use it once the cadets graduate from the Academy. The classes covered a general overview of the ERMA platform, how it fits in the Incident Command System structure, how it enables users to see and access data. They also included a live demonstration of the tool that highlighted recent data used in the response to Post Tropical Cyclone Sandy in 2012.

From Training to Explaining

The lesson also integrated data from a training exercise held from September 17-19, which simulated a tug-and-barge grounding and potential oil spill in Long Island Sound as part of the National Preparedness for Response Exercise Program (PREP).

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA's Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill.

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA’s Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill. (NOAA)

NOAA’s Sheets and Coady began working with the Academy over the summer in preparation for this exercise in Long Island Sound. Coast Guard Academy GIS instructor LT Sabrina Bateman and Cadet Jaimie Chicoine helped provide and add data and information into ERMA for the PREP exercise, where ERMA was designated the common operational picture (COP). As the COP during an incident, ERMA brings together various types of information, providing a single place to display up-to-date information that is also accessible to all individuals involved in incident response operations. This consistency and accessibility helps improve communication and coordination among responders and stakeholders.

The Academy was able to use ERMA to load selected data from their internal databases.  As a result of these early collaborations preparing for the drill, Sheets and Coady were invited to the Academy to guest lecture on ERMA for the GIS classes. The classes they taught went well, solidifying the Office of Response and Restoration’s connections with the Academy and resulting in an invitation back to teach again in the future.

In the meantime, LT Bateman plans on using ERMA in several of her GIS lectures and labs at the Academy to get cadets more accustomed to using it once they receive their assignments and enter Coast Guard stations around the country after graduation. This relationship has continued growing as the two organizations explore further opportunities for collaboration.

Kari Sheets.

Kari Sheets

Kari Sheets is a GIS specialist with the Office of Response and Restoration’s Spatial Data Branch in Silver Spring, Md., where she works on GIS strategic planning and leads ERMA projects. Previously, she worked at NOAA’s National Weather Service, where she coordinated GIS activities throughout the office.

Jay Coady

Jay Coady

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch in Charleston, S.C. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy. Jay is a co-lead for the Gulf of Mexico regional ERMA.

Follow

Get every new post delivered to your Inbox.

Join 508 other followers