NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

For Oil and Chemical Spills, a New NOAA Tool to Help Predict Pollution’s Fate and Effects

Dead crab on a beach with oily water and debris.

NOAA has released the software program CAFE to help responders dealing with pollution answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it? (Beckye Stanton, California Department of Fish and Wildlife)

Accidents happen. Sometimes, they happen at places with big consequences, such as at a fertilizer factory that uses the chemical ammonia as an active ingredient.

An accident in a place like that can lead to situations in which thousands of gallons of this chemical could, for example, be released into a drainage ditch leading to a nearby salt marsh.

When oil or chemicals are released into the environment like this, responders dealing with the pollution are often trying to answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it?

To help responders answer these questions, NOAA has just released to the public a new software program known as CAFE.

The Chemical Aquatic Fate and Effects Database

NOAA’s Chemical Aquatic Fate and Effects (CAFE) database allows anyone to determine the fate and toxicological effects of thousands of chemicals, oils, and dispersants when released into fresh or saltwater environments. CAFE has two major components: the Fate module, which predicts how a contaminant will behave in the environment, and the Effects module, which determines the chemical’s potential toxicity to different species.

In the Fate module, CAFE contains data, such as chemical properties, useful in understanding and predicting chemical behavior in aquatic environments.

For example, in our ammonia-in-water scenario, CAFE’s chemical property data would tell us that ammonia has a low volatilization rate (it doesn’t readily change in form from liquid or solid to gas) and is very soluble in water. That means if spilled into a body of water, ammonia would dissolve in the water and stay there.

In the Effects module, CAFE contains data about the acute toxicity—negative, short-term impacts from short-term exposure—of different chemicals. This module plots that data on graphs known as “Species Sensitivity Distributions.” These graphs show a curved line ranking the relative sensitivity of individual species of concern, from the most sensitive to the least sensitive, to a particular chemical over a given period of exposure (ranging from 24 to 96 hours).

Graph showing the range in sensitivity of aquatic species to 48 hour exposure to ammonia.

The reactions of different species to chemicals can vary widely. The CAFE database produces these species sensitivity graphs showing the range in sensitivity of select aquatic species to certain chemicals after a given length of exposure. (NOAA)

Again turning to our scenario of an ammonia spill in a salt marsh, the graph here shows how a range of aquatic species, which the user selects from the program, would be affected by a 48 hour exposure to ammonia. The Taiwan abalone (a type of aquatic snail) is the most sensitive species because many of these snails would be affected at lower concentrations of ammonia, falling into the orange, highly toxic zone.

On the other hand, the brine shrimp is the least sensitive of this group because these shrimp would have to be exposed to much higher concentrations of ammonia to be affected. Thus the brine shrimp falls into the green, practically nontoxic zone. However, most of the data in this graph seem to fall into the moderately or slightly toxic zones, meaning that ammonia is a toxic chemical of concern.

Using these data from CAFE, you then assess the potential impact of the ammonia spill to the aquatic environment.

Download the Software

You can download version 1.1 of the Chemical Aquatic Fate and Effects (CAFE) database from NOAA’s Office of Response and Restoration website at

Adding to our collection of spill response resources, CAFE will serve as a one-stop, rapid response tool to aid spill responders in their assessment of environmental impacts from chemical and oil spills.

Leave a comment

One Step Toward Reducing Chemical Disasters: Sharing with Communities Where Those Chemicals Are Located

This is a guest post by emergency planner Tom Bergman.

Dirty label on leaking chemical drum

Attempting to access, collect, and share information on where chemicals are produced, stored, and transported is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. (killbox/Creative Commons Attribution 2.0 Generic License)

The year 2013 saw two major chemical disasters in the United States, which tragically killed 17 people and injured hundreds more. As a result, President Obama signed Executive Order 13650 (EO 13650) August 1, 2013, followed by a report the next year to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

As part of this directive, six federal agencies and departments, including the U.S. Environmental Protection Agency (EPA), formed a work group to investigate how to better help local communities plan for and respond to emergencies involving hazardous substances.

Out of these work group discussions came one area needing improvement which might sound surprising to the average person: data sharing. Specifically, the work group highlighted the need to improve data sharing among the various federal programs that regulate hazardous substances and the state and local communities where those chemicals are produced, stored, and transported.

EPA works with NOAA on the chemical spill planning and response software suite known as CAMEO. These software programs offer communities critical tools for organizing and sharing precisely this type of chemical data.

Lots of Chemicals, Lots of Data

Many parts of the federal government, including several of the agencies involved in the work group, regulate hazardous chemicals in a number of ways to keep our communities safe. That means collecting information from industry on the presence or usage of hazardous substances in communities across the nation. It also results in a lot of data reported on the hazardous materials manufactured, used, stored, and transported in the United States. Making sure these data are shared with the right people is a key goal for chemical safety.

However, federal agencies do not require industry to report all of this information in consistent formats across agencies. Furthermore, this reported information on hazardous chemicals is generally not available to local emergency planners and responders—the very people who would need quick access to that information during a disaster in their community.

Trying to access, collect, and share all of this information is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. Fortunately, however, NOAA and EPA have a suite of software tools—known as CAMEO—that helps make this task a little easier.

One State’s Approach to Better Data Sharing

As required by the Emergency Planning and Community Right-to-Know Act (EPCRA), which was passed to help communities plan for emergencies involving hazardous substances, each state, Local Emergency Planning Committee, and local fire department receives hazardous material information via hazardous chemical inventories, or “Tier 2” reports. This information represents one part of the picture for local communities, but as the federal work group pointed out, it is not enough.

Already familiar with the CAMEO software suite, Oklahoma’s state emergency planners decided to use this complementary set of programs to tackle the goal of better sharing chemical safety data, as outlined in Executive Order 13650.

Under EPCRA, each state is required to have a State Emergency Response Commission to oversee the law’s hazardous chemical emergency planning programs. In Oklahoma, the group is known as the Oklahoma Hazardous Materials Emergency Response Commission (OHMERC).

As their first step toward improving chemical data sharing with local planners, OHMERC set out to obtain hazardous material information from the EPA, Department of Homeland Security, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Then, they sought to make that information available to all Oklahoma Local Emergency Planning Committees (LEPC). Subsequently, these federal agencies began to contact other state representatives to explore avenues to share these data.

Each of the three federal agencies OHMERC contacted provided non-sensitive hazardous material program data—plus the state already had access to some of the information—but these data were in different file formats. Some were contained in spreadsheets, others as PDF files, and still others delivered in text documents. As a result, there was no consistent format for delivering the information to local emergency planners.

Going Local

Oklahoma Local Emergency Planning Committees already use the CAMEO suite of software to manage their Tier 2 (EPA hazardous chemical inventory) reports. As a result, OHMERC decided to use the database program CAMEOfm to deliver additional information from other federal hazardous material programs to these local committees.

For each Tier 2 report, CAMEOfm has an “ID and Regs” section, which typically contains standard identifying codes for each local facility dealing with chemicals. For the appropriate facilities, OHMERC added new designations to the ID fields for the additional regulatory data from the Department of Homeland Security, EPA, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Now, local planners can search CAMEOfm to see which facilities in their jurisdiction are subject to several other hazardous material regulatory programs. If interested, local planners then can contact a facility, inquire why it is regulated by a particular program, gather more information, and plan directly with that facility.

Since all the CAMEOfm records are linked to the MARPLOT mapping program (also part of the CAMEO software suite), Local Emergency Planning Committees now have the information mapped as well. For example, a planner from Tulsa County can search CAMEOfm for locations with chemicals regulated under the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards program (CFATS) and the EPA’s Risk Management Plan and Toxics Release Inventory programs. Next, the planner can display the results on a map using MARPLOT.

In addition, Oklahoma facilities regulated under EPA’s Risk Management Plan program have been encouraged to include the non-sensitive parts of their plans in the “Site Plans” section of CAMEOfm. Many, though not all, of these sites did so, realizing this was an effective method to ensure the local first responders had access to that important information.

Getting Data in Ship Shape

Oklahoma’s Local Emergency Planning Committees now have all of this chemical safety information in a consistent format, located in a familiar program where they easily can access it for planning and response efforts.

Screen shot of CAMEOfm record with chemical information of shipment of Bakken crude oil.

Rail lines provide data that Oklahoma’s state emergency planners want to share with the local planning committees. The data include the appropriate Material Safety Data Sheets (MSDS) for Bakken crude oil, along with emergency response personnel and information for that railroad, and a report of the numbers of trains shipping more than 1 million pounds of Bakken crude. This information is added as a CAMEOfm record quickly and easily, in a way that is completely accessible to the responders and planners along with their other CAMEOfm records.

Another timely example of how Oklahoma is using this CAMEOfm and MARPLOT combination is for managing information on rail shipments of Bakken crude oil through the state. Bakken oil is a highly flammable type of oil typically shipped by train from the Bakken region of North Dakota and Montana and has been involved in a number of high-profile explosions and fires after train cars carrying it have derailed. OHMERC entered this shipment information, provided by the railroads, into CAMEOfm, where it becomes linked to the appropriate railroad map objects in MARPLOT. OHMERC then sends this material in the CAMEOfm and MARPLOT format to the relevant Local Emergency Planning Committees.

Using these programs to better share data is a step that any emergency planner or responder can take. You can find more information about the CAMEO software suite at

This is a guest post by Oklahoma emergency planner Tom Bergman. He is the author of the CAMEO Companion and host of the website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years. He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.

1 Comment

How NOAA Oil Spill Experts Got Involved With Chemical Spill Software

Fire and smoke on a container ship carrying hazardous materials at sea.

The aftermath of a March 2006 explosion of hazardous cargo on the container ship M/V Hyundai Fortune. The risks of transporting hazardous chemicals on ships at sea sparked the inspiration for NOAA oil spill responders to start designing chemical spill software. (Credit: Royal Netherlands Navy)

It was late February of 1979, and the Italian container ship Maria Costa [PDF] had sprung a leak. Rough seas had damaged its hull and the ship now was heading to Chesapeake Bay for repairs. Water was flooding the Maria Costa’s cargo holds.

This was a particular problem not because of its loads of carpets and tobacco, but because the vessel was also carrying 65 tons of pesticide. Stored in thick brown paper bags, this unregulated insecticide was being released from the clay it was transported with into the waters now flooding the cargo holds.

Ethoprop, the major ingredient of this organophosphate insecticide, was not only poisonous to humans but also to marine life at very low concentrations (50 parts per billion in water). Waters around Norfolk, Virginia, had recently suffered another pesticide spill affecting crabs and shrimp, and the leaking Maria Costa was denied entry to Chesapeake Bay because of the risk of polluting its waters again.

During the Maria Costa incident, two NOAA spill responders boarded the ship to take samples of the contaminated water and assess the environmental threat. Even though this event predated the current organization of NOAA’s Office of Response and Restoration, NOAA had been providing direct support to oil spills and marine accidents since showing up as hazardous materials (hazmat) researchers during the Argo Merchant oil spill in 1976.

Blood and Water

The NOAA scientists had blood samples taken before and after spending an hour and a half aboard the damaged vessel taking samples of their own. The results indicated that water in the ship’s tanks had 130 parts per million of ethoprop and the two men’s blood showed tell-tale signs of organophosphate poisoning.

After the resolution of that incident and an ensuing hospital visit by the two NOAA scientists, the head of the NOAA Hazardous Materials Response Program, John Robinson, realized that responding to releases of chemicals other than oil would take a very different kind of response. And that would take a different set of tools than currently existed.

From Book Stacks to Computer Code

John Robinson leaning on the edge of a boat.

John Robinson led the NOAA Hazardous Materials Response Program in its early years and helped guide the team’s pioneering development of chemical spill software tools for emergency responders. (NOAA)

Following the Maria Costa, Robinson got to work with the Seattle Fire Department’s newly formed hazmat team, allowing NOAA to observe how local chemical incidents were managed. Then, he initiated four large-scale exercises around the nation to test how the scientific coordination of a federal response would integrate with local first responder activities during larger-scale chemical incidents.

It didn’t take long to understand how important it was for first responders to have the right tools for applying science in a chemical response. During the first exercise, responders laid out several reference books on the hoods of cars in an attempt to assess the threat from the chemicals involved.

Researching and synthesizing complex information from multiple sources during a stressful situation proved to be the main challenge. Because the threat from chemical spills can evolve so much more rapidly than oil spills—a toxic cloud of chemical vapor can move and disappear within minutes—it was very clear that local efforts would always be front and center during these responses.

Meanwhile, NOAA scientists created a computer program employing a simple set of equations to predict how a toxic chemical gas would move and disperse and started examining how to synthesize chemical information from multiple sources into a resource first responders could trust and use quickly.

Learning from Tragedy

Then, in December of 1984, tragedy struck Bhopal, India, when a deadly chemical cloud released from a Union Carbide plant killed more than 2,000 people. This accidental release of methyl isocyanate, a toxic chemical used to produce pesticides, and its impact on the unprepared surrounding community led the U.S. government to examine how communities in the United States would have been prepared for such an accident.

By 1986, Congress, motivated by the Bhopal accident, passed the Emergency Planning and Community Right-to-Know Act (EPCRA). As a result, certain facilities dealing with hazardous chemicals must report these chemicals and any spills each year to the U.S. Environmental Protection Agency (EPA).

Apple II+ computer hooked up to Apple graphics tablet, color TV, and printer.

In the late 1970s and early 1980s, NOAA’s hazmat team wrote the first version of the ALOHA chemical plume modeling program, now part of the CAMEO software suite for hazardous material response, for this Apple II+ computer. (NOAA)

Because NOAA had already started working with first responders to address the science of chemical spill response, EPA turned to NOAA as a partner in developing tools for first responders and community awareness. From those efforts, CAMEO was born. CAMEO, which stands for Computer-Aided Management of Emergency Operations, is a suite of software products for hazardous materials response and planning.

Getting the Right Information, Right Now

The goal was to consolidate chemical information customized for each community and be able to model potential scenarios. In addition, that information needed to be readily available to the public and to first responders.

In 1986, attempting to do this on a computer was a big deal. At that time, the Internet was in its infancy and not readily accessible. Computers were large desktop affairs, but Apple had just come out with a “portable” computer. NOAA’s Robinson was convinced that with a computer on board first response vehicles, science-based decisions would become the norm for chemical preparedness and response. Today, responders can access that information from their smartphone.

NOAA and EPA still partner on the CAMEO program, which is used by tens of thousands of planners and responders around the world. Almost 30 years later, the program and technology have evolved—and continue to do so—but the vision and goal are the same: providing timely and critical science-based information and tools to people dealing with chemical accidents. Learn more about the CAMEO suite of chemical planning and response products.

Leave a comment

Latest NOAA Mapping Software Opens up New Possibilities for Emergency Responders

This is a guest post by emergency planner Tom Bergman.

Aerial view of destroyed houses in Vilonia, Arkansas, after EF4 tornado in April 2014.

NOAA and EPA’s MARPLOT mapping software was designed for emergency responders and planners dealing with chemical spills. However, its features lend it to a host of other uses, from search and rescue after a tornado to dealing with wildfires. (NOAA National Weather Service)

For 20 years, thousands of emergency planners and responders have used the MARPLOT mapping software to respond to hazardous chemical spills. But creative MARPLOT users have also employed the program for a wide range of other uses, including dispatching air ambulances and helping identify a serial arsonist.

MARPLOT is the mapping component of a suite of software programs called CAMEO, jointly developed by NOAA’s Office of Response and Restoration and the U.S. Environmental Protection Agency to help emergency planners and responders deal with chemical spills.

These agencies have just released a new version of MARPLOT (version 5.0). MARPLOT 5 offers a host of new and improved capabilities, which translate to more mapping options, greater flexibility, and even more powerful data searching capabilities.

On the Grid

To illustrate a few of the new capabilities of MARPLOT 5, let’s imagine that a category EF2/EF3 tornado is blowing through McClain County, Oklahoma. McClain County is a mostly rural area, with only three small towns. For this scenario, we will assume the tornado passes through the small town of Blanchard, Oklahoma.

Immediately following the tornado, first responders will conduct initial damage surveys of the affected area. Generally, the Incident Command, which is the multi-agency team responsible for managing the emergency response, will want to divide the area the tornado impacted into a “grid” and assign teams to survey specific areas of it. MARPLOT 5 has a new “gridding” tool, which allows those in an Incident Command to determine and display the various survey zones.

In the Ready Files

Fortunately, McClain County is well-prepared to deal with this emergency. The county already has a complete list of addresses for the affected area in the proper file format for working in maps (E911 address point shape files) and has imported them into MARPLOT 5 before the tornado hit. In addition, McClain Emergency Management has compiled information such as locations with chemicals stored on site, homes or businesses with fortified safe rooms, and any special populations such as those with impaired mobility and made that data available in MARPLOT 5. Having this information at their fingertips helps the Incident Command prioritize resources and search areas in the affected zones, as well as keep survey and search-and-rescue teams safe.

The latest version of the software allows users to upload any .png image file to serve as a map symbol. This feature provides critical information to responders in a customizable and easily interpreted way. Notice in the screen shot of the MARPLOT map below that the locations of safe rooms, E911 address points, and residences of oxygen-dependent and mobility-impaired persons are clearly identified by specific symbols. The user can select any map symbol and see an associated information box displayed for that symbol.

Screenshot showing close-up of grid zones for a hypothetical tornado. The map shows safe rooms, 911 address points, and special populations displayed in MARPLOT 5.

Close-up of grid zones for a hypothetical tornado. The map shows safe rooms, 911 address points, and special populations displayed in MARPLOT 5. (NOAA)

In MARPLOT, any square of the grid can be selected and “searched” for information associated with that area of the map, which is then displayed in the latest version of MARPLOT as a “spreadsheet.” This spreadsheet can be printed and given to the teams surveying impacted areas. Below is an example of an information spreadsheet for E911 address points in a selected one-square-mile grid zone (Grid Box 2, 4).

Screenshot of MARPLOT 5 showing addresses in a spreadsheet.

Address points in the selected Grid Box 2, 4, displayed as a spreadsheet in MARPLOT 5 which responders can print out and take on surveys of damaged areas. (NOAA)

With this feature, emergency responders have the information they need contained in both a map and a spreadsheet as they conduct their initial damage survey. In this example, responders assigned to survey Grid Box 2, 4 already know they must clear 142 address points in the area, six of which have safe rooms, two of which have mobility-impaired residents, and one with an oxygen-dependent person.

Furthermore, the emergency responders in this scenario were able to accomplish all of these operations in MARPLOT without any access to Internet or cloud servers. And the software is 100 percent free.

This is a very simple example of new ways MARPLOT 5 may be implemented by emergency planners and responders across the country. There are a host of other new operations in version 5—including real-time weather via web mapping service (WMS) access—that could be used for dealing with wildfires, search and rescue operations, floods, hazardous material releases, resource management, manhunts … In fact, MARPLOT could be used in just about any type of situation where customizable and user-operated mapping might be helpful.

Learn more about and download the latest version of MARPLOT.

Tom Bergman is the author of the CAMEO Companion and host of the website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years.  He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.


Our Top 10 New Year’s Resolutions for 2014

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii's Midway Atoll. We're looking forward to keeping our coasts clean in 2014 too! (NOAA)

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii’s Midway Atoll. We’re looking forward to keeping our coasts clean in 2014 too! (NOAA)

With the end of 2013, many are reflecting on how the past year went. For NOAA’s Office of Response and Restoration, we think we handled things pretty well, despite seeing some unusual challenges come our way (e.g., grounded drilling rig, molasses spill, 70 foot stranded dock). After all, being prepared—and preparing others—for the worst is a major focus in our work.

Despite our many accomplishments of the last year, however, we know that we should always be striving to improve how we respond to oil and chemical spills, assess and restore damaged ecosystems, and reduce the threat of marine debris.

So, without further ado, here are our top 10 resolutions for 2014:

  1. Lose “wait.” That is, we’re increasing our capacity to process damage assessment cases and get dollars for restoration out the door more quickly.
  2. Get more mobile. We’re making several of our websites friendlier for mobile devices. In particular, stay tuned to and
  3. Make more friends. We’re now on Facebook and Twitter, so don’t be shy about following us for the latest news and updates.
  4. Stay trendy. As trends change in what petroleum products America is importing and exporting, we’re working with the University of Washington to explore how this will affect our readiness to respond to the oil spills of tomorrow.
  5. Quit littering. Or rather, get others to quit littering. We’re always dreaming up better ways to change people’s behavior so that everyone’s trash, including plastics, stays out of our oceans.
  6. Get our ducks in a row. When Hurricane Sandy came racing toward the East Coast, it was bringing wind and waves that would literally reshape the shoreline. As a result, we’re updating our northeast Environmental Sensitivity Maps to reflect changes caused by the storm and to add information that would enhance the value of these geographic summaries of vulnerable coastal resources when another disaster strikes.
  7. Help others. We’re partnering with states impacted by Sandy to assess and remove marine debris from the storm, so that means getting funding out fast to those who need it.
  8. Update our look. This spring, we’ll be releasing a major update to our mapping program MARPLOT, which allows emergency responders such as firefighters to create, customize, and download maps for offline use. Users will see very high-quality base (background) maps, including the familiar sight of Google maps.
  9. Listen more. We’ll be looking forward to hearing your thoughts on restoration plans and projects around the country, starting with Deepwater Horizon public meetings across the Gulf of Mexico in January.
  10. Release a new GNOME. In 2014, we’ll be releasing GNOME 2, our next generation oil spill modeling system. GNOME 2 will offer a Web-based system for forecasting the path of spilled oil in pre-designated locations in the U.S., include better 3-D modeling support, and integrate our oil weathering model, ADIOS.

Thanks for helping us make 2013 a great year. We look forward to even more in 2014!

Leave a comment

For Accidents of Chemistry, a NOAA Tool to Help Predict and Prevent Disaster

This is a post by Vicki Loe with OR&R chemist Jim Farr.

On April 10, 1995, at Powell Duffryn Terminals, Inc. in Savannah, Ga., a chemical tank storing turpentine exploded, triggering a scenario similar to our hypothetical example. The facility stored hundreds of thousands of chemicals in tanks. The explosion resulted in widespread public evacuations and extensive damage. Here, black smoke rises from the fire.

On April 10, 1995, at Powell Duffryn Terminals, Inc. in Savannah, Ga., a chemical tank storing turpentine exploded, triggering a scenario similar to our hypothetical example. The facility stored hundreds of thousands of chemicals in tanks. The explosion resulted in widespread public evacuations and extensive damage. Here, black smoke rises from the fire. (NOAA)

Imagine you’re a chemical engineer in charge of safety at a chemical storage facility supporting the pulp and paper industry. You’re having a normal day when—suddenly—there has been an explosion. It has affected three of the large tanks on the property.

One tank, containing sodium hydrosulfide (NaHS), is damaged and leaking. Sodium hydrosulfide is a chemical used to break down cellulose, the fibrous ingredient in plant cell walls, into pulp, making it a key chemical in the paper industry.

The tank next to it, also damaged by the explosion and now leaking, holds a tank-cleaning solution that contained the corrosive chemical hydrochloric acid (HCl). The third tank, the one that caught on fire and caused the explosion, contained a petroleum distillate material. It damaged the first two tanks, causing their contents to drain into a common area and resulting in a combination of sodium hydrosulfide and hydrochloric acid.

The Chemical Reactivity Worksheet

How would you communicate this scenario—and its potential dangers—to the emergency responders who are on their way to the scene? During chemical accidents, there are frequently many unknowns: What was released? Did it mix with anything? What might happen?

Responders at the 1995 incident caused by a turpentine tank explosion at Powell Duffryn Terminals, Inc. storage facility in Savannah, Georgia.

Responders at the 1995 incident caused by a turpentine tank explosion at Powell Duffryn Terminals, Inc. storage facility in Savannah, Ga. (NOAA)

NOAA’s Chemical Reactivity Worksheet is a free software program you can use to find out about the chemical reactivity of thousands of common hazardous chemicals and predict the hazards associated with mixing two materials together. (Reactivity is the tendency of substances to undergo chemical change, which can result in hazards—such as heat generation or toxic gas byproducts.)

By consulting the Chemical Reactivity Worksheet, you, the safety officer, would quickly learn that when sodium hydrosulfide and hydrochloric acid combine, hydrogen sulfide (H2S) gas could result. That gas is both toxic and highly flammable—possibly creating a very dangerous situation. To protect public safety, the affected area would require immediate evacuation.

Updating Software for Chemical Safety

A new version of the Chemical Reactivity Worksheet (version 3.0) has just been released and is available for download from NOAA’s Office of Response and Restoration website: The latest version is a combination of the latest reactivity information and expert knowledge from NOAA and Dow Chemical.

The free software predicts potential hazards from mixing chemicals and is designed for use by safety planners and the chemical industry.  It is a tool that is intended to help to prevent accidents at chemical facilities and, once an accident occurs, to give valuable information about the possible hazards associated.

The work was done as part of NOAA and the U.S. Environmental Protection Agency’s joint development of the CAMEO software suite, which provides valuable emergency response and planning tools for releases of hazardous materials. The Center for Chemical Process Safety also contributed to the project.

Leave a comment

NOAA, Dow Chemical Collaborate on Update to Federal Chemical Safety Software Tool

A train derailment in Paulsboro, N.J. in November 2012 released 23,000 gallons of toxic vinyl chloride gas. (NOAA)

A train derailment in Paulsboro, N.J. in November 2012 released 23,000 gallons of toxic vinyl chloride gas. (NOAA)

NOAA has partnered with chemical industry experts from the Dow Chemical Company to release a significant update to a free software program used to prevent dangerous chemical incidents and help protect emergency workers responding to hazardous chemical spills.

The software, known as the Chemical Reactivity Worksheet, predicts potential hazards from mixing chemicals. This newest version of the program is the result of a two-year-long collaboration between NOAA chemical response specialists, technical experts at Dow, and partners at the Center for Chemical Process Safety.

“This is an innovative collaboration between industry and government scientists to produce a valuable tool that addresses reactive chemical hazards,” said Jim Farr, NOAA chemist and project coordinator. “We hope this effort paves the way for other projects that enhance our understanding of chemical hazards and leads to a safer work environment for those people in the chemical industry and those that respond to chemical incidents.”

“We’ve greatly appreciated the opportunity to partner with NOAA on this and see this as a win-win for everyone,” said Dave Gorman, Dow chemist and project leader. “This collaboration has allowed us to merge a number of best practices and tools used within Dow with the very powerful Chemical Reactivity Worksheet tool. The result is a much more powerful and versatile tool that we hope will become the gold standard within industry for determining chemical compatibility.”

The Chemical Reactivity Worksheet provides information about 5,200 chemicals, each assigned to one or more “reactive groups” of chemicals which may react in a characteristic and potentially hazardous way if they come in contact with certain substances. The user creates a virtual mixture of chemicals—which could include the chemicals involved in a hazardous incident or stored in a laboratory, warehouse, or transport vehicle. Then the program predicts the possible hazards, including fire or explosion, from mixing all possible pairs of those chemicals.

Screen shot from Chemical Reactivity Worksheet showing the color-coded reactivity predictions and hazard statements for the predicted reactions.

The Chemical Reactivity Worksheet shows the predicted hazards of mixing the chemicals in a mixture in an easy-to-use graphical interface. In this view, the reactivity predictions are color coded, and the cells on the chart can be clicked to find more information about specific predicted reactions. General hazard statements, predicted gas products, and literature documentation for the selected pair of chemicals are shown at the bottom of the chart.

This latest release of the software increases the number of reactive groups, allowing for more refined predictions of potential chemical reactions, and expands the description of reactive chemicals. The program now includes an alert for possible gases released from a chemical mixture, as well as information on the compatibility of common absorbents used in response to spills of hazardous chemicals.

In addition, managers of chemical facilities and university chemistry departments now can add chemicals unique to their facilities, enabling them to further customize their evaluations of potential hazards. Other improvements include enhanced ease of use and functionality for the user, refined reactivity predictions, and updated chemical data.

The Chemical Reactivity Worksheet is available for download online at

The work was done as part of NOAA and the U.S. Environmental Protection Agency’s joint development of the CAMEO software suite, which provides valuable emergency response and planning tools for releases of hazardous materials. The Center for Chemical Process Safety also contributed to the project.  The team’s work was reviewed by other chemists in industry and at Argonne National Laboratory.


Get every new post delivered to your Inbox.

Join 617 other followers