NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

How Much Oil Is on That Ship?

The massive container ship Benjamin Franklin pulls into the Port of Seattle.

The container ship Benjamin Franklin, the largest cargo ship to visit the United States, arrives in Elliott Bay at the Port of Seattle on February 29, 2016. Credit: Don Wilson/Port of Seattle

Like many people with an interest in the maritime industry, I’ve been following the story of the huge container ship Benjamin Franklin that recently visited Seattle’s port.

The news stories about it were full of superlatives. It was the largest cargo vessel to visit the United States, measuring 1,310 feet in length, or longer than the height of two Space Needles.

This massive ship can carry 18,000 shipping containers, known in the business as 20-foot equivalent units or TEUs. That is more than double the cargo of most container ships calling on the Port of Seattle. Loaded on a train (and most of them will be) those containers would stretch more than 68 miles, or the distance from Tacoma, Washington, to Everett.

Considering this ship’s massive size made me wonder how much fuel is on board. After some research, I found out: about 4.5 million gallons. That makes it just a bit bigger than my sailboat which holds only 20 gallons of fuel.

Understanding the potential volumes of oil (either as fuel or cargo) carried on ships is a major consideration in spill response planning.

All tank vessels (tankers and barges) and all non-tank vessels (freighters, cruise ships, etc.) larger than 400 gross tons have to have vessel response plans. Key metrics in those plans include listing the maximum amount of oil that could be spilled (known as the worst case discharge) and the maximum most probable discharge, which, for non-tank vessels, is generally defined as 10% of the vessel’s total fuel capacity.

What about other types of vessels? How much oil in the form of fuel or cargo do they typically carry?

Here are some approximate numbers, many of which are pulled from this Washington State Department of Ecology report [PDF]:

  • Small speedboat (12–20 feet): 6–20 gallons
  • Sailing yacht (33–45 feet) : 30–120 gallons
  • Motor yacht (40–60 feet) : 200–1,200 gallons
  • Large tanker truck: 5,000–10,000 gallons
  • Small tugboat (30–60 feet): 1,500–25,000 gallons
  • Petroleum rail car: 30,000 gallons
  • Boeing 747 airplane: 50,000–60,000 gallons
  • Ocean-going tugboat (90–150 feet): 90,000–190,000 gallons
  • Puget Sound jumbo ferry (440 feet): 130,000 gallons
  • Microsoft co-founder Paul Allen’s yacht M/V Octopus (416 feet): 224,000 gallons
  • Bulk carrier of commodities such as grain or coal (500–700 feet): 400,000–800,000 gallons
  • Large cruise ship (900–1,100 feet): 1–2 million gallons
  • Inland tank barge (200–300 feet): 400,000–1.2 million gallons
  • Panamax container ship that passes through the Panama Canal (960 feet): 1.5–2 million gallons
  • Container ship Benjamin Franklin (1,310 feet): 4.5 million gallons
  • Ocean-going tank barge (550–750 feet): 7 million–14 million gallons
  • T/V Exxon Valdez and similar large oil tankers (987 feet): 55 million gallons

Thanks to developing technologies, such “mega-vessels” as the Benjamin Franklin appear to be on the rise, a trend we’re watching along with the International Tanker Owners Pollution Federation and University of Washington.

How will these larger ships carrying more oil affect the risk of oil spills and how should NOAA prepare for these changes? Stay tuned.


Leave a comment

Accidents on a Flooded Lower Mississippi River Keep NOAA Busy with a Rash of Spills

Damaged barge on the Mississippi River.

A barge carrying slurry oil being pushed by the towing vessel Amy Francis hit the Natchez-Vidalia Bridge, Jan. 21, 2016. The barge reportedly has a maximum potential of more than 1 million gallons of slurry oil on board. (U.S. Coast Guard)

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that oil spills occur every day in U.S. waters? Rivers bustling with ship traffic, such as the Mississippi, are no exception to this rule.

In the past few weeks, we’ve been involved with quite a few accidents involving vessels carrying oil and chemicals on the Lower Mississippi River.

These river accidents coincided with high water and swift currents. Despite safeguards for vessel traffic put in place by the U.S. Coast Guard, the river conditions resulted in ships colliding, hitting bridges and ground, and breaking away from their towing vessels. One unlucky railroad bridge in Vicksburg, Mississippi, has been hit by vessels five times already this year.

Even now, the NOAA River Forecast Center reports that the Lower Mississippi is experiencing moderate flood conditions. It’s difficult to navigate a river with a tow of barges at any flow—and extremely challenging when the flow is high and fast. In spite of everyone’s best efforts, under conditions like these, accidents can and do still happen, and investigations are ongoing into the precise causes.

Luckily, most of the incidents that have occurred were relatively minor, resulted in no injuries to vessel crews, and all spills received immediate responses from state and federal agencies. Still, when oil or chemicals spill into rivers, we know that they differ from spills in the ocean or along coasts, and therefore present different challenges for spill responders.

Here are just a few of the dozen or so spills and near-spills we know of and which have been keeping our spill modelers, chemists, and Scientific Support Coordinators busy over the past few weeks.

January 21, 2016: A barge being towed by the UTV Amy Frances struck the Natchez Bridge, where Highway 84 crosses over the Lower Mississippi River between Mississippi and Louisiana, in the vicinity of Mile Marker 363. As a result, two of the barge’s tanks were damaged, spilling slurry oil, which our chemical lab confirmed was denser than water. That means this oil sinks.

In the wake of this oil spill, one of our Scientific Support Coordinators helped survey the river to detect sunken oil. Given the river’s very fast and turbulent water at the time, we think any oil released from the damaged tanks was immediately broken into small droplets and carried downstream while also sinking below the river surface. Any oil that reached the bottom was probably mixed with or buried by the sand moving downstream near the river bottom. This is because rivers that move a lot of water also move a lot of sediment.

In addition, we provided information on the expected fate and effects of the barge’s spilled slurry oil and on the animals and habitats that could be at risk.

Workers on a river edge pump oil from a damaged barge.

Response crews remove oil from the damaged MM-46 barge, Jan. 23, 2016, on the Mississippi River. Crews estimate that approximately 76,000 gallons of clarified oil mixture is still unaccounted for. Crews continue to take soundings of the damaged barge tank to determine the amount spilled while assessment teams work to locate missing product. (U.S. Coast Guard)

January 25, 2016: Just a few days later, the Coast Guard called on us for advice related to a barge containing liquid urea ammonium nitrate (liquid fertilizer), which sank south of Valewood, Mississippi, at Mile Marker 501 on the Mississippi River. Side-scan sonar indicates the barge is upside-down on the river bottom, approximately 80 feet down.

Given the position and water pressure, we believe the chemical cargo stored on the barge was likely released into the river. The chemical is heavier than water and will mix quickly into the water column. Because elevated levels of ammonia can affect aquatic life, our focus was on predicting and tracking where the chemical would go downriver and what would happen to it. Salvage efforts for the barge itself continue.

January 26, 2016: The next day, two vessel tows collided upriver of New Orleans, Louisiana, near Mile Marker 130 on the Lower Mississippi River. The collision capsized one of two barges carrying caustic soda, or sodium hydroxide. We provided the Coast Guard with an initial chemical hazard assessment for this chemical, which is a strong base. The release of a large enough quantity of sodium hydroxide could raise the pH of the water around it, posing a risk to local fish and other aquatic life nearby. The barge is secure, but righting it is difficult in the swift currents. No pollution release has been reported to date.

Science for Spills of All Kinds

During these kinds of spills, we have to be ready to provide the same round-the-clock, science-based support to the Coast Guard and other agencies as big spills like the Deepwater Horizon in the Gulf of Mexico.

For example, if a chemical has spilled into a river, we need to know where it’s going to go, what’s going to happen to it, and what, if any, species will be harmed by it. To help answer the “where’s it going?” question, our response specialists use the spill trajectory tool, GNOME, to predict the possible route the pollutant might follow.

To better understand the pollutant and its possible effects, we use software tools such as CAMEO Chemicals to provide information about the chemical’s properties, toxicity, and behavior as it is diluted by the river water. Our Chemical Aquatic Fate and Effects (CAFE) database contains information on the effects of thousands of chemicals, oils, and dispersants on aquatic life.

The Mississippi River and its floodplain are home to a diverse population of living things. On the Lower Mississippi, there may be as many as 60 separate species of mussel. To protect vulnerable species, we use our Environmental Sensitivity Index maps and data to report what animals or habitats could be at risk, particularly those that are threatened or endangered. Keeping responders and the public safe and minimizing environmental harm are two of our top priorities during any spill, no matter the size.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


Leave a comment

How Will Climate Change, New Technologies, and Shifting Trade Patterns Affect Global Shipping?

Large waves crash on a huge cargo ship aground on a beach.

After a major storm, a massive bulk cargo ship, the Pasha Bulker, ran aground on a beach in Australia in 2007. (Credit: Tim J. Keegan/Creative Commons Attribution-Share Alike 2.0 Generic license)

This is a guest post by University of Washington graduate students Megan Desillier, Seth Sivinski, and Nicole White.

A warming climate is opening up new shipping routes through the Arctic Ocean as summer sea ice shrinks. Developing technologies allow mega-ships unprecedented in size and cargo to take to the seas. North America is increasingly exporting oil, shifting global trade patterns.

Each of these issues poses a suite of potential challenges for safely shipping commodities across the ocean and around the world. Out of these challenges, new risks are emerging in marine transportation that NOAA and the maritime industry need to consider.

Our group of three graduate students at the University of Washington, with the support of the International Tanker Owners Pollution Federation (ITOPF) and NOAA’s Office of Response and Restoration, are looking to understand how the world’s shipping dynamic has changed in recent years and how these emerging challenges in marine transportation will affect that dynamic. And then we aim to answer: how should NOAA and ITOPF best prepare for responding to these new risks?

In the course of this research project, we will attempt to identify and assess significant emerging risks in marine transportation that have the potential to lead to oil or chemical spills. We are focused on three drivers of emerging risks in the global shipping network: developing technologies, changing patterns of marine trade, and shifting environmental conditions due to climate change. Each of these drivers will be considered within three distinct time frames: the present, 4-10 years from now, and more than 10 years from now.

Risky Business

Fishing vessl half in water and half on a damaged building.

Hurricane Katrina’s storm surge left this fishing vessel on top of a local fish dealer shop in Mississippi. Even small changes in sea levels can have major effects on storm surge. How will a changing climate affect affect global shipping? (NOAA)

The emerging risks that we will identify and assess come from analyzing the network of global cargo ship movements, focusing on the emerging usage of the Northern Sea Route, Northwest Passage, Trans-Arctic Route, the Panama Canal, the Suez Canal, and the possibility of a future Nicaraguan Canal.

At this point in our project, we have come across several interesting findings relating to each of our three main research areas. Within the area of developing technology, for example, we are examining the emerging risk of “mega-vessels,” which include “mega-containers,” “mega-tankers,” and “mega-bulkers,” depending on their cargo type. These mega-vessels are massive and measure significantly larger than previous, standard-sized vessels. For example, any container ship over 10,000 twenty-foot equivalent units, or TEUs, can be considered a “mega-ship.” However, the largest mega-vessel to date can handle 18,000 TEUs.

Bulk carriers are used to transport unpackaged cargo in bulk, such as grain, ore, and cement. These ships have also grown in size to the new mega-bulkers, which can handle over 80,000 deadweight tons (DWT), as opposed to the most common, smaller-sized bulk carrier that can handle 60,000 DWTs. In addition, ships are carrying riskier cargoes, which, depending on the cargo, can lead to a dangerous phenomenon known as liquefaction. In general, liquefaction can occur during events like earthquakes, when intense shaking causes “water-saturated sediment temporarily [to lose] strength and [act] as a fluid.”

This phenomenon can also happen on board ships when a cargo, like nickel-ore, becomes wet either before being loaded or while on board and then liquefies due to the ship’s movements. When that happens, the liquefied cargo quickly destabilizes the ship and can lead to it sinking. There are numerous cases of cargo liquefaction occurring on standard-sized bulk carrier ships, which can result in the loss of both crew and vessel.

Context Clues

We also have incorporated several elements to give social-economic, technological, and environmental context to our research of emerging maritime risks. The social-economic element considers the form of cargoes being shipped, environmental resources potentially affected by pollution, available industry tools, and the types of vessels involved.

As for the technical element, we’ll focus on understanding the gap in the salvage of mega-vessels and vessels in the Arctic region, the increased use of floating production storage and offloading vessels (FPSOs, which act like semi-mobile floating fuel storage tanks), risks from vessel automation technologies, and finally, the increased congestion of ships in high-risk areas and choke points, such as the narrow Bering Strait between Alaska and Russia.

For the environmental context, we’ll examine changing environmental conditions that may present additional risks to marine transportation, such as the increased intensity and frequency of storms, sea level rise, and Arctic sea ice melt.

We’ll also consider some market drivers, such as the North American oil trade and the International Maritime Organization’s Polar Code (which is an international shipping safety code for polar waters), in a broad global context. However, our research will not directly consider organizational, regulatory, and market contextual elements in any significant detail.

Relevance and Risk

After we analyze and categorize potential risks, we’ll consider the materiality, or relevance, of our identified risks and the types of incidents that could result. We’ll be connecting how important our identified risks are to the potential losses and damages to vessels, cargoes, and the environment resulting from specific types of incidents. For example, if larger ships are carrying larger quantities of oil as fuel or cargo, then damage to a ship’s hull could spill more oil and result in greater potential environmental impacts.

Stay tuned for updates on our research over the next few months.

Megan Desillier, Seth Sivinski, and Nicole White are Master’s Candidates at the University of Washington (UW) in the School of Marine and Environmental Affairs working with faculty advisors Robert Pavia and Thomas M. Leschine. The team is researching emerging risks in marine transportation for the International Tanker Owners Pollution Federation (ITOPF) and is being provided additional assistance in their research from the National Oceanic and Atmospheric Administration (NOAA). The students are completing this research over the course of an academic year as part of the thesis/capstone requirement for the School of Marine and Environmental Affairs at the UW. Our team would like to thank our sponsor, ITOPF, as well as NOAA for providing additional assistance. To contact the authors, please email Robert Pavia at bobpavia@uw.edu.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of NOAA or the U.S. federal government.

Photo of Pasha Bulker courtesy of Tim J. Keegan and used under Creative Commons Attribution-Share Alike 2.0 Generic license.


Leave a comment

On the Hunt for Shipping Containers Lost off California Coast

Large waves break on a pier that people are walking along.

The M/V Manoa lost 12 containers in stormy seas off the coast of California in the area of the Greater Farallones National Marine Sanctuary. (Credit: Beach Watch/mojoscoast)

On December 11, 2015, the Matson container ship M/V Manoa was en route to Seattle from Oakland, California, when it lost 12 large containers in heavy seas. At the time of the spill, the ship was maneuvering in order to allow the San Francisco Bay harbor pilot to disembark.

The containers, which are 40 feet long and 9 feet wide, are reported as empty except for miscellaneous packing materials, such as plastic crates and packing materials such as Styrofoam. Luckily there were no hazardous materials in the cargo that was spilled.

The accident occurred about eight miles outside of the Golden Gate Bridge in the Greater Farallones National Marine Sanctuary. Three containers have come ashore, two at or near Baker Beach, just south of the Golden Gate Bridge, and one at Mori Point near Pacifica, California. The search continues for the others.

The Coast Guard is responding to this incident with assistance from NOAA, the National Park Service, State of California, and City of San Francisco. The responsible party is working with an environmental contractor to recover the debris and containers. The Coast Guard asks that if a container is found floating or approaching shore to exercise caution and notify the Coast Guard Sector San Francisco Command Center at 415-399-7300.

On December 14, NOAA’s Office of Response and Restoration became involved when the Coast Guard Sector San Francisco contacted the NOAA Scientific Support Coordinator for the region, Jordan Stout. The Coast Guard requested help from the Office of Response and Restoration in tracking the missing containers. Oceanographer Chris Barker is providing trajectory modeling, using wind and current information to predict the potential direction of the spilled containers.

NOAA chart of waters off San Francisco showing where the shipping containers were lost and where three have been found.

A NOAA oceanographer is using wind and current information to predict the potential direction of the spilled shipping containers off the California coast. This information is helping direct search efforts for the remaining containers. (NOAA)

This accident occurred in NOAA’s Greater Farallones National Marine Sanctuary. The Greater Farallones Marine Sanctuary Association Beach Watch program, provided some of the initial sightings to the Coast Guard, and volunteers are doing additional beach surveys to look for debris and more containers. There is a concern that the containers, contents, or parts of the containers could pose a hazard to wildlife through entanglement or by ingestion. There is also concern about the containers potentially damaging ocean and coastal bottom habitats within the marine sanctuary. (Read a statement from the sanctuary superintendent. [PDF])

This incident illustrates another way that marine debris can enter the environment. According to Sherry Lippiatt of the NOAA Marine Debris Program, “This incident is a reminder that while marine debris is an everyday problem, winter storms and higher ocean swells may increase the amount of debris entering the environment.”

To learn more about how storms can lead to increased marine debris, take a look at the recent article, California’s “First Flush”. For information on how citizen science can help in situations like this, see this article about searching for Japan tsunami debris on the California coast.


Leave a comment

University of Washington Partners with NOAA to Research and Prepare for Changes in the Oil and Gas Industry

This is a guest post by the Emerging Risks Workgroup at the University of Washington in Seattle.

LNG Tanker Arctic Lady near shore.

Hydraulic fracturing, or fracking, has opened up natural gas production in the United States, to the point that industry is increasingly looking to export it as liquified natural gas (LNG) via tanker. (Photo: Amanda Graham/Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic License)

From fracking to oil trains, the landscape of oil production and transportation in North America has been undergoing a major transformation in recent years. This transformation has implications for how NOAA’s Office of Response and Restoration prepares its scientific toolbox for dealing with oil spills. Our group of graduate students from the University of Washington partnered with NOAA on a project to identify major trends in the changes to risk in transporting oil and natural gas along U.S. coasts and major rivers.

Scope

To study these risks, we researched the trends that are changing the way in which petroleum is produced and transported in the United States. We also examined three high-profile incidents:

We reviewed the lessons learned from each of these responses and determined whether they also apply to the emerging risks we identified.

Research on Risks: Fracking, LNG, and Oil Trains

The largest catalyst for changes in the petroleum market in the U.S. is the proliferation of hydraulic fracturing, or “fracking,” combined with horizontal drilling. Fracking is a technique which forces fluids under great pressure through production wells to “fracture” rock formations and free greater amounts of crude oil or natural gas. This has drastically changed the amount of petroleum produced, where the petroleum is produced, and where it is transported.

Fracking also comes with its own transportation issues. The large amounts of wastewater from fracking operations are often transported or treated near waterways, increasing the risk for a spill of contaminated wastewater.

Fracking has increased the amount of natural gas production in the U.S., which is transported within North America as a gas through pipelines. However, with the increase in gas production, energy companies are looking to export some of this outside of North America as liquefied natural gas, or LNG. Several projects have been approved to export LNG, and several more are awaiting approval. LNG is currently transported by tanker, and with these new export projects, LNG tanker traffic will increase.

LNG is also being explored as a marine fuel option, which will require LNG bunkering infrastructure to supply the fuel needs of vessels that will run on LNG. Several LNG terminals and bunkering operations are in various stages of planning and development, and the presence of more vessels carrying LNG as a fuel or cargo will need to be addressed in future spill response planning.

Tanker rail cars over a wood bridge.

According to the Association of American Railroads, U.S. railroads shipping crude oil jumped from 9,500 carloads in 2008 to an estimated 400,000 carloads in 2013. (Photo: Roy Luck/Creative Commons Attribution 2.0 Generic License)

Fracking has also led to greater amounts of crude oil produced in the U.S. Much of this new oil is being transported by rail, historically not a typical way to move lots of crude oil. This change in volume and mode of transportation for crude oil also presents risks for accidents. There have been several recent high-profile derailments of oil trains, many including fires or explosions.

The increase in crude oil transportation by rail is in large part a stopgap measure. First, because existing pipeline infrastructure isn’t available in certain parts of the country, including North Dakota and Wyoming, which are now producing crude oil. Second, because new pipelines take time to get approved and then constructed to serve new areas. Pipeline construction has increased significantly since 2008 but not without some issues.

All of this would be further complicated if the national ban on exporting crude oil (rather than refined oil) were lifted, an idea which has some supporters. This could change the amount and type of oil being transported by different modes to different locations, especially ports, and increase the risk of oil spills into nearby waterways.

Additional Risks and Recommendations

Offshore wind development and LNG infrastructure were also identified as potential risks that could further complicate petroleum production and transport in the United States. These developments could increase traffic in certain areas or place additional obstacles (i.e., wind turbines) in the path of vessels carrying petroleum products, potentially increasing the risk of spills. Additionally, the decrease in Arctic sea ice is changing oil exploration opportunities and shipping routes through the Arctic, which could shift the entire petroleum shipping picture in the U.S.

After analyzing these overall trends, we turned to recommendations from previous incidents involving oil exploration and spills. There were 248 recommendations made in the post-incident reports for the Cosco Busan, Deepwater Horizon, and Shell Kulluk. Out of these 248, we identified 29 recommendations that could apply in the context of these new, overall changes in petroleum transportation. These were divided into five major categories: contingency planning, equipment and responder training, industry oversight, funding, and public outreach and education.

Key Findings

Overall, we identified four major findings about petroleum production and transport:

  • Increased and more complex transportation risk.
  • Trends that hinder spill prevention and complicate spill response.
  • Lessons learned from past incidents are still valid for future responses.
  • There are several potential gaps in regulation, funding, planning, and coordination.

If you have any questions about the group, its members, our research, or would like to read any of our scoping documents, memos, or final paper, please visit our website at www.erw.comuv.com. We are happy to answer any questions.

The Emerging Risks Workgroup (ERW) is a group of four graduate students from the University of Washington working with UW faculty advisor Robert Pavia and Incident Operations Coordinator Doug Helton of NOAA’s Office of Response and Restoration. The students in the group are all part of the Environmental Management Certificate at UW’s Program on the Environment. Stacey Crecy is from the School of Marine and Environmental Affairs, and Andrew Cronholm, Barry Hershly, and Marie Novak are from the Evans School of Public Affairs. The Environmental Management Certificate culminates in a two-quarter capstone project that allows the student teams to work on a project for an outside client and then present their findings.

The ERW would like to thank our sponsor NOAA OR&R, and Doug Helton. We would also like to thank our UW faculty advisor, Robert Pavia of the School of Marine and Environmental Affairs, Anne DeMelle of the Program on the Environment, and all of the people that guided our research.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.