NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Restoration of an Injured Caribbean Coral Reef

Broken coral on ocean floor.

A coral cache location where fractured corals were protected prior to reef reattachment. NOAA

The waters surrounding the Puerto Rico archipelago are known for the diversity and beauty of the coral reefs. Those reefs are also under great pressure from population density, land uses, and shipping traffic.

On Oct.  27, 2009 the tanker Port Stewart grounded in coral reef habitat on the southeast coast of Puerto Rico near the entrance to Yabucoa Channel. The tanker was carrying 7 million gallons of oil. Local efforts freed the ship the same day it grounded without an oil spill but both the grounding and removal process caused extensive injury to the reef.

Nearly 93 percent of Puerto Rico’s coral reefs are rated as threatened, with 84 percent at high risk and among the most threatened in the Caribbean. The Port Stewart incident directly destroyed about 512 square meters (about 5,551 square feet) of the living coral reef. The injured habitat had a diverse community of soft corals (octocorals), sponges, and hard corals (scleractinian), including Staghorn coral (Acropora cervicornis), a threatened species under the Endangered Species Act.

National Oceanic and Atmospheric Administration and the Puerto Rico Department of Natural and Environmental Resources officials have been working on a restoration plan for the area, which is now available for public comment. The period for comments ends Feb. 10, 2017.

When a reef is injured it’s important to take emergency restoration actions to salvage as many of the corals as possible. Following the grounding work began to triage corals and plan emergency restoration which lasted through 2010. This included surveying and mapping the area affected by the incident and salvaging as many living corals as possible. Emergency restoration efforts are designed to meet most of the actions needed to revive the injured reef.

Scuba diver underwater with string and plastic pipe grid.

Broken corals were draped on a floating coral array frame in order to grow bigger. Divers attached Acropora coral fragments, one of many coral types affected by the grounding. NOAA

In the Port Stewart case that included salvaging scleractinian corals, the hard reef-building animals that create skeletons under their skin. The skeletons are made from calcium carbonate and protect the coral animals and offer a base that other coral can attach themselves to, creating the reef community. The actions of emergency crews were able to save about 1,000 corals.

Scientists have monitored injured reef for the past six years and consider restoration efforts successful. According to monitoring reports, survivorship of reattached corals is comparable to that of naturally occurring corals in the area.

NOAA has the responsibility to conserve coral reef ecosystems under the Coral Reef Conservation Act of 2000. You can read more about how NOAA is working to restore damages reefs in the following articles:

Restoring a Coral Reef Hit by Tanker in Puerto Rico

NOAA and Partners Work Quickly to Save Corals Hit by Catamaran in Puerto Rico

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

How to Restore a Damaged Coral Reef

How Do Oil Spills Affect Coral Reefs?

The Ship M/V Jireh Runs Aground a Coral Reef in Puerto Rico

 


Leave a comment

Restoring a Coral Reef Hit by Tanker in Puerto Rico

Scuba diver underwater near rocks.

A diver rescued live coral for emergency reattachment. Photo taken less than 12 hours after grounding shows how fast NOAA mobilized. (Sea Ventures Inc. photo)

U.S. coral reefs are impacted by 3 ­- 4 large groundings a year.  On Dec. 15, 2009 the danger became reality near Guayanilla Bay, Puerto Rico when the liquid natural gas carrier Matthew grounded on the coral reef there causing substantial harm. It wasn’t just the grounding that injured the coral. During attempts to free the tanker the bow of the ship was moved from side to side causing further injury to the reef structure.

Although no oil was spilled, by the time the ship was removed a total of 3,200 square meters (about 34,444 square feet) of living coral reef was mangled or destroyed.

National Oceanic and Atmospheric Administration and the Puerto Rico Department of Natural and Environmental Resources officials have been working on a restoration plan for the area, which is now available for public comment. The period for comments ends Feb. 10, 2017.

In the aftermath of groundings, impacted corals are often broken, dislodged, or flipped over. These fragments are subject to abrasion, scour, and sedimentation, which ultimately result in death. Unchecked, these damages can result in additional reef loss and instability. However, if dislodged fragments can be collected and stabilized shortly after physical impacts then the probability of survival increases substantially. After the grounding a triage team of divers, which included NOAA, salvaged live corals from the rubble. The corals were cached in a safe, stable underwater area in an effort to keep them alive until they could be permanently reattached.

The emergency restoration actions lasted through 2010 and were designed to address most of the potential restoration actions that might be needed for the injured reef.  Emergency response efforts were able to save about 7,000 corals.

Restored coral reef.

Fully restored coral in Guayanilla Bay, Puerto Rico provides recreation and commercial benefits. NOAA

Species harmed included fractured and crushed hard corals (scleractinian), dislodged soft corals (octocorals). Staghorn coral, classified as threatened under the Endangered Species Act were also injured and swaths of the sea floor were scraped and pulverized.

Coral reefs are one of the most economically valuable ecosystems on earth, providing hundreds of billions of dollars in food, jobs, recreational opportunities, and coastal protection. NOAA has the responsibility to conserve coral reef ecosystems under the Coral Reef Conservation Act of 2000.

You can read more about how NOAA is working to restore damages reefs in the following articles:

NOAA and Partners Work Quickly to Save Corals Hit by Catamaran in Puerto Rico

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

How to Restore a Damaged Coral Reef

How Do Oil Spills Affect Coral Reefs?

The Ship M/V Jireh Runs Aground a Coral Reef in Puerto Rico


Leave a comment

Argo Merchant: The Birth of Modern Oil Spill Response

Black and White photo of ship sinking in ocean.

The Argo Merchant was carrying 7.7 million gallons of fuel oil when it went off course and became stuck on Dec. 15, 1976. Credit: Coast Guard Historian

When the Argo Merchant ran aground on Nantucket Shoals off Massachusetts early on Dec. 15, 1976, and spilled nearly 8 million gallons of heavy fuel oil, it became the worst marine oil spill the United States had seen. It also led to the eventual creation of the Office of Response and Restoration (OR&R).

The maverick research team

In 1974, as work began on the Alaska pipeline, NOAA scientists and academics realized there were important unanswered questions about oil spills.

“How does oil behave in water, that’s what we wanted to know,” recalled Peter Grose, who was then at NOAA’s Environmental Data Services Center in the District of Columbia. “The Environmental Research Lab in Boulder were looking at impacts from Alaskan drilling. We had the simplest models then of how oil moved with wind and waves. Jerry Galt was the modeler in ERL. …. He was kind of leader of the pack.”

Santa Barbara oil spill research

“What made me stand out at the moment was I was focusing my work on oil trajectories,” Galt said. The Boulder group was looking for a way to study oil spills. It was suggested they go to Santa Barbara, where they could observe natural ocean oil seeps. Galt, along with other interested NOAA researchers, formed the first Spilled Oil Response (SOR) team.

“We were sort of mavericks,” Galt said. “This was all sort of unofficial.”

The team set some ground rules for that first trip, Galt said. All equipment had to fit into a suitcase and ocean flyovers would be from a Cessna 172, the  most commonly available rent-a-plane and already certified by Federal Aviation Administration to fly with the doors off. That made it easier for the team to drop dye into the ocean and photograph how it spread.

After a week in Santa Barbara, according to Galt, “We said well, let’s think about this and what we learned, make some notes and get together after Christmas. … Well, we didn’t make Christmas.”

The Argo Merchant spill

Word of the Argo Merchant spill spread quickly, and because the loosely formed SOR team (Galt’s colleagues from Boulder and Grose’s in D.C.) had a preliminary oil spill plan, it was decided they would head to Massachusetts.

“We took planes and shuttles to Hyannis,” said Grose. “We wanted to know if the oil stayed together or broke into smaller chunks. Did it absorb into the water column? We wanted to look at weather.”

On the trip with Grose, a physical oceanographer, was chemical oceanographer James Mattson and marine ecologist Elaine Chan. Galt’s team from Boulder included David Kennedy. The team embarked on two weeks of intense observations.

“We started being obnoxious, asking scientific questions,” Galt said. “I immediately contacted people in Woods Hole and MIT doing oceanography there and we went and talked to the Coast Guard about getting on over-flights.”

At first, the team was not there in an official capacity, but that soon changed.

“We found out a truism of oil spills: If you’re not part of the solution, you’re part of the problem,” said Galt. “So, the Coast Guard said, ‘You want to go out on our airplanes? We need observers. You work for us, all right?’ We said OK and off we went.”

The team rose at dawn to catch the Coast Guard’s flight over the spill, taking photos. For perhaps the first time, divers were enlisted to go under the spill to determine if the oil was getting into the water column. Oil samples were taken. Then the team would convene at a local hotel to analyze the day’s data.

“We learned how to develop film in a hotel room,” Galt said. “I was there for a week to start with and during that week I think I spent 10 hours in bed. … I went home for Christmas dinner and fell asleep at the table, and after I woke up I went back to the spill.”

From HAZMAT to OR&R

In addition to publishing a report in record time, the team’s experiences resulted in the improvement of science equipment and oil-spill-response techniques.

“With Argo Merchant we developed a camera that could record time,” said Grose. “It’s hard to photograph a spill in intervals when you don’t have a timestamp on the photo. That seems like a little thing, but when you come back with 10 rolls of film it ends up being a big thing.”

The experience with the Argo Merchant spill answered some of team’s questions, and showed the need for more spill information, leading to the creations of the Hazardous Materials Response Division (HAZMAT), and finally to the Office of Response and Restoration.

“In the end,” Grose said, “what we learned was how much there was to still learn about oil spills.”

This is the third in a series of six stories examining the oil spill in 1976 of tanker Argo Merchant resulting in the creation of the Office of Response and Restoration.


Leave a comment

1976: A Winter of Ship Accidents

Ship broken in two in water.

The tanker Sansinena exploded in Los Angeles harbor on Dec. 17, 1976, spilling 1.3 million gallons of heavy oil. USCG

The winter of 1976-77 was a bad time for oil spills in the United States. I was still in middle school, but I remember doing a science report on oil spills. In a short time period there were multiple major oil spills, including these:

  • The tanker Argo Merchant ran aground on Dec. 15, 1976 and later broke apart off Nantucket Island, Massachusetts, spilling 7.6 million gallons of heavy fuel oil.
  • The tanker Sansinena exploded in Los Angeles Harbor, California, on Dec. 17, 1976, spilling 1.3 million gallons of heavy oil. Nine crew were killed and 46 people were injured.
  • Christmas Eve 1976 was not all quiet, when the tanker Oswego Peace spilled 5,000 gallons of bunker fuel into New London Harbor, Connecticut.
  • The tanker Olympic Games ran aground in the Delaware River, south of Philadelphia Pennsylvania, on Dec. 27, 1976, spilling 145,000 gallons of crude.

The rash of incidents continued into the New Year.

  • On Jan. 4, 1977, the tanker Universe Leader, loaded with 21 million gallons, ran aground in the Delaware River, New Jersey. It was refloated without a spill.
  • Also on Jan. 4, 1977, the tanker Grand Zenith, loaded with 8 million gallons of oil, was lost with all hands off the coast of New England. Only a few pieces of debris and an oil slick were found.
  • On Jan. 10, 1977, the tanker Chester A. Poling broke in half and sank off Gloucester, Massachusetts. It had just discharged its cargo and was only carrying ballast, but still spilled 14,000 gallons of diesel. One crew member was killed.

The large number of tanker accidents and loss of life alarmed the public and Congress. Hearings were quickly held in the District of Columbia in January, 1977. The hearing transcripts provide an insight into shipping and pollution concerns of the time. These concerns included the risk of spills from the still-under-construction Trans-Alaska Pipeline System that would open in a few months. The hearings concluded, but the rash of spills that winter did not.

  • On Jan. 17, 1977, the tanker Irene’s Challenger, loaded with 9.6 million gallons of crude oil, broke apart and sank near Midway Island in North Pacific Ocean. Three crew were lost.
  • On Feb. 2, 1977, the tank barge Ethel H spilled 480,000 gallons of crude oil into New York Harbor.
  • On Feb. 26, 1977, the tanker Hawaiian Patriot broke apart and sank off Hawaii, spilling 31 million gallons of crude oil. All but one of the crew were rescued. This little known incident is still considered the largest tanker spill in United States waters.

This winter marks the 40th anniversary of NOAA’s spill response program — a program that began, not surprisingly, in the wake of all of these incidents. In December, the Office of Response and Restorations (OR&R) will post a series of stories on NOAA’s leading role in oil spill response.


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

This Is How We Help Make the Ocean a Better Place for Coral

Large corals on the seafloor.

The ocean on its own is an amazing place. Which is why we humans like to explore it, from its warm, sandy beaches to its dark, mysterious depths. But when humans are involved, things can and often do go wrong.

That’s where we come in. Our corner of NOAA helps figure out what impacts have happened and what restoration is needed to make up for them when humans create a mess of the ocean, from oil spills to ship groundings.

In honor of World Ocean Day, here are a few ways we at NOAA make the ocean a better place for corals when ships accidentally turn them into undersea roadkill.

First, we literally vacuum up broken coral and rubble from the seafloor after ships run into and get stuck on coral reefs. The ships end up crushing corals’ calcium carbonate homes, often carpeting the seafloor with rubble that needs to be removed for three reasons.

  1. To prevent it from smashing into healthy coral nearby.
  2. To clear space for re-attaching coral during restoration.
  3. To allow for tiny, free-floating coral babies to settle in the cleared area and start growing.

Check it out:A SCUBA diver using a suction tube to vacuum coral rubble from the seafloor during coral restoration after the VogeTrader ship grounding.Sometimes, however, the broken bits get stuck in the suction tube, and you have to give it a good shake to get things moving. SCUBA divers shaking a suction tube to clear it on the seafloor.Next, we save as many dislodged and knocked over corals as we can. In this case, popping them into a giant underwater basket that a boat pulls to the final restoration site.

SCUBA diver placing coral piece into a large wire basket on the seafloor during coral restoration after the VogeTrader ship grounding.Sometimes we use “coral nurseries” to regrow corals to replace the ones that were damaged. This is what that can look like:

Staghorn coral fragments hanging on an underwater tree structure of PVC pipes.Then, we cement healthy corals to the seafloor, but first we have to prepare the area, which includes scrubbing a spot for the cement and coral to stick to.

SCUBA diver scrubbing a spot on the seafloor for the cement and coral to stick to.(And if that doesn’t work very well, we’ll bring out a power washer to get the job done.)

SCUBA diver using a power washer to clear a spot on the seafloor for the cement and coral to stick to during coral restoration after the VogeTrader ship grounding.Finally, we’re ready for the bucket of cement and the healthy coral.

SCUBA diver turning over a bucket of cement on the seafloor during coral restoration after the VogeTrader ship grounding.

Instead of cement, we may also use epoxy, nails, or cable ties to secure corals to the ocean floor.

After all that work, the seafloor goes from looking like this:

View of seafloor devoid of coral before restoration.To this:

View of seafloor covered with healthy young coral and fish after restoration due to the VogeTrader grounding.

Ta-da! Good as new, or at least, on its way back to being good-as-new.

When that’s not enough to make up for all the harm done to coral reefs hit by ships, we look for other restoration projects to help corals in the area, like this project to vacuum invasive algae off of coral reefs in Oahu.

Watch how this device, dubbed the “Super Sucker,” works to efficiently remove the yellow-brown algae that is smothering the corals:

Or, as another example of a coral restoration project, we set sail each year to the remote Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands to pull more than 50 tons of giant, abandoned fishing nets off of the pristine coral reefs.

In 2014, that included removing an 11 ton “monster net” from a reef:

For the most part, the coral restoration you’ve seen here was completed by NOAA and our partners, beginning in October 2013 and wrapping up in April 2014.

These corals were damaged off the Hawaiian island of Oahu in February of 2010 when the cargo ship M/V VogeTrader ran aground and was later removed from a coral reef in Kalaeloa/Barber’s Point Harbor.


Leave a comment

NOAA and Partners Work Quickly to Save Corals Hit by Catamaran in Puerto Rico

Experts estimate that thousands of corals were broken, dislodged, buried, or destroyed when the 49-foot-long catamaran M/V Aubi ran aground along the north coast of Puerto Rico the night of May 14, 2015.

Traveling from the Dominican Republic to San Juan, Puerto Rico, the recreational boat became grounded on a coral reef, causing significant damage to the reef. As the vessel was being moved, the vessel’s two hulls slowly ground further into the reef, forming mounds of coral and leaving rubble on the ocean bottom. UPDATED 5/27/2015: The area of the vessel’s direct impact is 366 square meters (not quite 4,000 square feet), while partial impact covers more than 1,000 square meters (roughly 10,764 square feet).

On the night of the grounding, responders were immediately concerned about preventing a spill of the fuel on board the Aubi. The fuel had to be removed from the fuel tanks in the aluminum hulls of the catamaran before it was moved off of the coral reefs. By the evening of May 15, approximately 1,500 gallons of fuel had been removed successfully, readying the vessel to be towed from the reef. It was pulled free during high tide the next morning.

The location of the grounding is in a Puerto Rico Marine Reserve, overseen by the Puerto Rico Department of Natural and Environmental Resources.

Crushing News and Rubble Rousers

The species of coral affected by the accident are mostly Diploria, or brain coral, and Acropora palmata, or elkhorn coral. Listed as threatened under the Endangered Species Act, elkhorn coral is one of the most important reef-building corals in the Caribbean. Brain coral, found in the West Atlantic Ocean and the Caribbean, is also an important reef-building coral and is known for its stony, brain-like appearance.

Although there was significant damage to the coral, an oil spill fortunately was prevented. While exposure to oil may kill corals, it more frequently reduces their ability to perform photosynthesis and causes growth or reproductive problems.

A multi-organizational team, which included NOAA, was able to salvage over 800 coral colonies (or fragments of colonies), moving them into deeper water nearby for temporary holding.  About 75 very large colonies of brain coral were righted but unable to be moved because of their size.

Broken brain coral on seafloor.

Brain coral (Diploria) and elkhorn coral (Acropora palmata) represent the majority of the coral species affected by this vessel grounding. (NOAA)

With buckets and by hand, the team filled 50 loads of rubble (approximately nine cubic yards) into open kayaks and small boats to transport them to a deeper underwater site that Puerto Rico Department of Natural Resources had approved for dumping.  All that material, moved in one day, would otherwise likely have washed into the healthy reef adjacent to the damaged one and potentially caused even more harm.

While poor weather has been preventing further work at the grounding site this past week, the team expects to restart work soon. Once that happens, initial estimates are that it will take 10-15 days to reattach the salvaged corals and to secure the rubble most at risk of moving. Stabilizing or removing the remaining rubble and rebuilding the topographic complexity of the flattened seafloor, accomplished using large pieces of rubble, would likely take an additional 10 days.

Both the location and nature of the corals dominating the area make it a very viable location for complete restoration using nursery-grown corals, but the scope and scale would still need to be determined.

Small Boat, Big Impact?

Healthy brain coral on seafloor.

An area of healthy corals near the site of the grounded M/V Aubi. Divers acted quickly to protect these corals from being damaged by the large amounts of rubble loose on the seafloor after the accident. (NOAA)

Even though the vessel involved in this grounding was relatively small, an unofficial, anecdotal report from the team working on the site noted that the amount of damage appeared comparable to that caused by the groundings of much larger vessels, such as tankers.

If not for the quick work of the U.S. Coast Guard, Puerto Rico Department of Natural Resources, NOAA, support contractors, volunteers from non-governmental organizations, and members of the local community, the damage could have been much worse.

Healthy coral reefs are among the most biologically and economically valuable ecosystems on earth.

According to NOAA’s Coral Reef Conservation Program, a little-known fact is that corals are in fact animals, even though they may exhibit some of the characteristics of plants and are often mistaken for rocks.

Learn more about how NOAA dives to the rescue of corals in the Caribbean when they become damaged by grounded ships.