NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

National PrepareAthon! Day—April 30, 2016

Three students work at a table with cups of sand and oil.

Shoreline Cleanup Assessment Technique (SCAT) is a systematic method for surveying an affected shoreline after an oil spill. Here students work on an exercise during a recent NOAA-led course. (NOAA)

The White House has designated Saturday, April 30, 2016, as National PrepareAthon! Day.

This campaign asks federal agencies to work with their stakeholders to “coordinate a comprehensive campaign to build and sustain national preparedness, including public outreach and community-based and private-sector programs to enhance national resilience…”

By encouraging organizations and communities to participate, the goal is to increase the number of individuals who:

  • Understand which disasters could happen in their community
  • Know what to do to be safe and mitigate damage
  • Take action to increase their preparedness
  • Participate in community resilience planning

Here at NOAA’s Office of Response and Restoration (OR&R), we know the value of continually improving our capacity to respond to disasters. Whether it is about responding to oil and chemical spills, restoring the environment following a disaster, training emergency responders, developing response tools or making sure that we are communicating effectively during an emergency, our efforts are focused on having the skills and tools to respond quickly and effectively.

Please read: Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters to learn more about how we prepare for disasters such as oil and chemical spills in the marine environment.

We encourage you to visit the National PrepareAthon! website to increase your own preparedness for your local hazards.

Infographic showing cityscape, beach and water with corresponding response tools for each area.

Some of the tools NOAA’s Office of Response and Restoration has developed for use in responding to oil and chemical spills. (NOAA)


Leave a comment

Using a NOAA Tool to Evaluate Toxic Doses of Pollution at the Hanford Nuclear Reservation

This is a post by Troy Baker, an environmental scientist in NOAA’s Office of Response and Restoration.

Salmon swimming in a river.

NOAA and partners are examining whether chromium released at Washington’s Hanford Nuclear Reservation has affected Chinook salmon eggs and young fishes in the Columbia River. (Department of Energy)

Chromium, manganese, zinc.

Elements like these may show up in a daily multivitamin, but when found in a certain form and concentration in water and soil, these elements can cause serious problems for fish, birds, and wildlife. As assessors of environmental harm from pollution, we see this scenario being played out at hazardous waste sites around the country.

Take chromium, for example, which is an element found in some multivitamins and also naturally in rocks, plants, soil, and animals (and thus at very low concentrations in meat, eggs, and cheese). At the Hanford Nuclear Reservation in eastern Washington, we are evaluating how historical discharges of chromium resulting from nuclear fuel production may have affected soils, river sediments, groundwater, and surface waters along the Columbia River bordering this property.

Of particular concern is whether discharged chromium affected Chinook salmon eggs and young fishes. Hanford’s nuclear reactors, first constructed as part of the top-secret Manhattan Project during World War II, required huge amounts of river water to keep the reactor’s nuclear core cool, and chromium compounds were added to keep this essential equipment from corroding.

A little bit of chromium in the environment is considered part of a baseline condition, but if animals and plants are exposed to elevated amounts during sensitive periods, such as when very young, they may receive harmful doses.

How Much Is Too Much?

Have you heard the saying, “the dose makes the poison?” I wanted to find out how my evaluation of what chemicals may cause harm to aquatic species at Hanford matches up to toxicity data from one of NOAA’s software tools, the Chemical Aquatic Fate and Effects (CAFE) database.

I already knew that chromium in surface waters at the level of parts per billion (ppb) has the potential to cause harm at Hanford, including to migratory Chinook salmon and steelhead. But what does that concentration look like?

A helpful analogy from the Washington State Department of Ecology shows just how small that concentration is: One part per billion would be one kernel of corn sitting in a 45-foot high, 16-foot diameter silo.

Digging Through Data

Government scientists set standards called “injury thresholds” to indicate the pollution concentrations when harm reliably occurs to a certain species of animal or type of habitat. It’s my job to see if we can trace a particular contaminant such as chromium back to a source at the Hanford Nuclear Reservation and then document whether aquatic species were exposed to that contaminant for a certain area and time period and harmed as a result.

I’m currently working with my colleagues to set injury thresholds for the amount of chromium and other harmful materials in soils, sediments, and surface waters at the Hanford Nuclear Reservation.

What’s different in this case is that we are evaluating what short-term harm might have occurred to fishes and other animals from either historical pollution mixtures or existing contamination in the Columbia River. To do that, we need large amounts of toxicity data for aquatic species presented in an easy-to-digest format. That’s where NOAA’s CAFE database comes in.

Graph from the CAFE database showing the level of toxic effects for chromium exposure to a range of fish and aquatic invertebrates.

Example data output from NOAA’s CAFE database showing aquatic invertebrates as the most sensitive freshwater aquatic organism after exposure to chromium for 48 hours in laboratory tests. One microgram per liter (µg/L) is equivalent to one part per billion. (NOAA)

Using this toxicity database for aquatic species, I was able to generate multiple scenarios for chromium exposure to a range of freshwater fish and invertebrates found in the database. I could compare at what concentration chromium becomes toxic to these species and easily see which life stage, from egg to adult, is most affected after 24, 48, and 96 hours of exposure.

The results from CAFE confirmed that setting an injury threshold for chromium somewhere within the “very highly toxic” range of exposure (less than 100 parts per billion of chromium) would be appropriate to protect a wide range of aquatic invertebrates and fish. With the help of CAFE, I was able to quickly double-check whether there is any scientific reason to lower or raise the injury thresholds I’m discussing with my Hanford colleagues.

More Contamination, More Work Ahead

hanford-h-reactor-cocooned-columbia-river_noaa_1946

View of Cocooned H reactor at Hanford Nuclear Facility from Locke Island, Columbia River, Washington. The reactor operated for 15 years and was one of nine along the river. (NOAA)

My colleagues and I have a lot more environmental assessment work to do at the Hanford Nuclear Reservation. Home to nine former nuclear reactors plus processing facilities, that site is one of the nation’s most complex pollution cases.

Part of my work at NOAA is to collaborate with my agency and tribal colleagues through the Natural Resource Damage Assessment process to understand whether harm occurred and ultimately restore the environment in a way that’s equivalent to the scale of the injuries.

We are concerned about more than 40 contaminants at Hanford, but that shouldn’t be a problem for CAFE. This database holds information on environmental fate and effects for about 40,000 chemicals.

The next version of CAFE, due out in 2016, will be able to display information on longer-term effects of chemicals beyond 96 hours, increasing to 28 days if laboratory test data are available. Having toxicity data available for longer durations will be a huge help to my work as it gets translated into decisions about environmental restoration in the future.

Learn more about our environmental assessment and restoration work at the Hanford Nuclear Reservation.


Leave a comment

From Kayaking to Carbon Storage, What We Stand to Gain (and Lose) from Our Coasts

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a guest post by Stefanie Simpson of Restore America’s Estuaries.

People sitting in canoes and standing on a shoreline.

When coastal habitats are damaged or destroyed, we lose all of the benefits they provide, such as carbon storage and places to canoe. (NOAA)

Estuaries, bays, inlets, sounds—these unique places where rivers meet the sea can go by many different names depending on which region of the United States you’re in. Whether you’re kayaking through marsh in the Carolinas, hiking through mangrove forest in the Everglades, or fishing in San Francisco Bay, you are experiencing the bounty estuaries provide.

Natural habitats like estuaries offer people an incredible array of benefits, which we value in assorted ways—ecologically, economically, culturally, recreationally, and aesthetically.

Estuaries, where saltwater and freshwater merge, are some of the most productive habitats in the world. Their benefits, also called “ecosystem services,” can be measured in a variety of ways, such as by counting the number of birding or boating trips made there or by measuring the amount of fish or seafood produced.

If you eat seafood, chances are before ending on up your plate, that fish spent at least some of its life in an estuary. Estuaries provide critical habitat for over 75% of our commercial fish catch and 80% of our recreational fish catch. Coastal waters support more than 69 million jobs and generate half the nation’s Gross Domestic Product (GDP) [PDF]. Estuaries also improve water quality by filtering excess nutrients and pollutants and protect the coast from storms and flooding.

Another, perhaps less obvious, benefit of estuaries is that they are also excellent at removing carbon dioxide from the atmosphere and storing it in the ground long-term. In fact, estuary habitats like mangroves, salt marshes, and seagrasses store so much carbon, scientists gave it its own name: blue carbon.

How do we know how much carbon is in an estuary? Scientists can collect soil cores from habitats such as a salt marsh and analyze them in the lab to determine how much carbon is in the soil and how long it’s been there.

But you can also see the difference. Carbon-rich soils are made up of years of accumulated sediment and dead and decaying plant and animal material. These soils are dark, thick, and mucky—much different from the sandy, mineral soils you might find along a beach.

Science continues to improve our understanding of ecosystem services, such as blue carbon, and their value to people. For example, in 2014 a study was conducted in the Snohomish Estuary in Washington’s Puget Sound to find out just how much carbon could be stored by restoring estuaries. The study estimated that full restoration of the Snohomish Estuary (over 9,884 acres) would remove 8.9 million tons of carbon dioxide from the atmosphere—that’s roughly equal to taking 1,760,000 cars off the road for an entire year.

Estuary restoration would not only help to mitigate the effects of climate change but would have a positive cascading effect on other ecosystem services as well, including providing habitat for fish, improving water quality, and preventing erosion.

Healthy estuaries provide us with so many important benefits, yet these habitats are some of the most threatened in the world and are disappearing at alarming rates. In less than 100 years, most of these habitats may be lost, due to human development and the effects of climate change, such as sea-level rise.

When we lose estuaries and other coastal habitats, we lose all of the ecosystem services they provide, including carbon storage. When coastal habitat is drained or destroyed, the carbon stored in the ground is released back into the atmosphere and our coast becomes more vulnerable to storms and flooding. It is estimated that half a billion tons of carbon dioxide are released every year due to coastal and estuary habitat loss.

These benefits can also be compromised when coastal habitats are harmed by oil spills and chemical pollution. People also feel these impacts to nature, whether because an oil spill has closed their favorite beach or chemical dumping has made the fish a tribe relies on unsafe to eat.

Scientists and economists continue to increase our understanding of the many benefits provided by our coastal habitats, and land managers use this information to protect and restore habitats and their numerous services. Stay tuned for more this week as NOAA’s Office of Response and Restoration and Restore America’s Estuaries explore how our use of nature suffers from pollution and why habitat restoration is so important.

Stefanie Simpson.Stefanie Simpson is the Blue Carbon Program Coordinator for Restore America’s Estuaries where she works to promote blue carbon as a tool for coastal restoration and conservation and coordinates the Blue Carbon National Network. Ms. Simpson is also a Returned Peace Corps Volunteer (Philippines 2010-12) and has her Master of Science in Environmental Studies.

The views expressed here reflect those of the author and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

For the First Time in Decades, Scientists Examine How Oil Spills Might Affect Baleen Whales

A North Atlantic right whale's mouth is visible at the ocean surface.

NOAA scientists and partners recently collaborated to examine how oil and dispersants might affect the function of baleen in humpback, bowhead, and right whales (pictured). Hundreds of baleen plates hang from these whales’ top jaws and allow them to filter food from the water. (Credit: Georgia Department of Natural Resources, Permit 15488)

Several days of unseasonably warm weather in late September had Gary Shigenaka starting to wonder how much longer he and his colleagues would be welcome at Ohmsett, a national oil spill research facility in New Jersey.

They were working with whale baleen, and although the gum tissue anchoring their baleen samples had been preserved with formalin, the balmy fall weather was taking a toll. As a result, things were starting to smell a little rank.

Fortunately, cooler weather rounded out that first week of experiments, and the group, of course, was invited back again. Over the course of three week-long trials in September, December, and January, they were trying to tease out the potential impacts of oil and dispersants on whale baleen.

As a marine biologist with NOAA’s Office of Response and Restoration, Shigenaka’s job is to consider how oil spills might threaten marine life and advise the U.S. Coast Guard on this issue during a spill response.

But the last time scientists had examined how oil might affect whale baleen was in a handful of studies back in the 1980s. This research took place before the 1989 Exxon Valdez and 2010 Deepwater Horizon oil spills and predated numerous advances in scientific technique, technology, and understanding.

Thanks to a recent opportunity provided by the U.S. Bureau of Safety and Environmental Enforcement, which runs the Ohmsett facility, Shigenaka and a team of scientists, engineers, and oil spill experts have been able to revisit this question in the facility’s 2.6 million gallon saltwater tank.

The diverse team that made this study possible hails not just from NOAA but also Alaska’s North Slope Borough Department of Wildlife Management (Dr. Todd Sformo), Woods Hole Oceanographic Institution (Dr. Michael Moore and Tom Lanagan), Hampden-Sydney College (Dr. Alexander Werth), and Oil Spill Response Limited (Paul Schuler). In addition, NOAA’s Marine Mammal Health and Stranding Response Program provided substantial support for the project, including funding and regulatory expertise, and was coordinated by Dr. Teri Rowles.

Getting a Mouthful

To understand why this group is focused on baleen and how an oil spill might affect this particular part of a whale, you first need to understand what baleen is and how a whale uses it. Similar to fingernails and hooves, baleen is composed of the protein keratin, along with a few calcium salts, giving it a tough but pliable character.

A hand holds a ruler next to oiled baleen hanging from a clamp next to a man.

Made of the flexible substance keratin, baleen plates have tangles of “fringe hair” that act as nets to strain marine life from mouthfuls of ocean water. This study examined how oil and dispersants might affect the performance of baleen. (NOAA)

Twelve species of whales, including humpback and bowhead, have hundreds of long plates of baleen hanging from the top jaw, lined up like the teeth on a comb, which they use to filter feed. A whale’s tongue rubs against its baleen plates, fraying their inner edges and creating tangles of “fringe hair” that act like nets to catch tiny sea creatures as the whale strains massive gulps of ocean water back out through the baleen plates.

Baleen does vary somewhat between species of whales. Some might have longer or shorter baleen plates, for example, depending on what the whale eats. Bowhead whales, which are Arctic plankton-eaters, can have plates up to 13 feet long.

This study was, at least in part, inspired by scientists wondering what would happen to a bowhead whale if a mouthful of water brought not just lunch but also crude oil from an ill-fated tanker traversing its Arctic waters.

Would oil pass through a whale’s hundreds of baleen plates and coat their mats of fringe hairs? Would that oil make it more difficult for the whale to push huge volumes of water through the oily baleen, causing the whale to use more energy as it tried? Does that result change whether the oil is freshly spilled, or weathered with age, or dispersed with chemicals? Would dispersant make it easier for oil to reach a whale’s gut?

Using more energy to get food would mean the whales then would need to eat even more food to make up for the energy difference, creating a tiring cycle that could tax these gargantuan marine mammals.

Testing this hypothesis has been the objective of Shigenaka’s team. While it might sound simple, almost nothing about the project has been straightforward.

Challenges as Big as a Whale

One of the first challenges was tackled by the engineers at Woods Hole Oceanographic Institution. They were tasked with turning the mechanical features of Ohmsett’s giant saltwater tank into, essentially, a baleen whale’s mouth.

Woods Hole fabricated a special clamp and then worked with the Ohmsett engineering staff to attach it to a corresponding mount on the mechanical bridges that move back and forth over the giant tank. The clamp gripped the sections of baleen and allowed them to be held at different angles as they moved through the water. In addition, this custom clamp had a load cell, which was connected to a computer on the bridge. As the bridge moved the clamp and baleen at different speeds and angles through the water, the team could measure change in drag on the baleen via the load cell.

With the mechanical portion set up, the Ohmsett staff released oil into the test tank on the surface of the water, and the team watched expectantly how the bridges moved the baleen through the thin oil slick. It turned out to be a pretty inefficient way to get oil on baleen. “How might a whale deal with oil on the surface of the water?” asked Shigenaka. “If it’s feeding, it might scoop up a mouthful of water and oil and run it through the baleen.” But how could they simulate that experience?

They tried using paintbrushes to apply crude oil to the baleen, but that seemed to alter the character of the baleen too much, matting down the fringe hairs. After discussions with the Ohmsett engineering staff, the research team finally settled on dipping the baleen into a pool of floating oil that was contained by a floating ring. This set-up allowed a relatively heavy amount of oil to contact baleen in the water and would help the scientists calibrate their expectations about potential impacts.

Testing the Waters

Four black plumes of dispersed oil are released underwater onto long plates of baleen moving behind the applicator.

After mixing chemical dispersant with oil, the research team released plumes of it underwater in Ohmsett’s test tank as baleen samples moved through the water behind the applicator. Researchers also tested the effects of dispersant alone on baleen function. (NOAA)

In all, Shigenaka and his teammates ran 127 different trials across this experiment. They measured the drag values for baleen in a variety of combinations: through saltwater alone, with fresh oil, with weathered oil, with dispersed oil (pre-mixed and released underwater through a custom array designed and built by Ohmsett staff), and with chemical dispersant alone. They tested during temperate weather as well as lower temperature conditions, which clearly thickened the consistency of the oil. They conducted the tests using baleen from three different species of whales: bowhead, humpback, and right whale.

Following all the required regulations and with the proper permits, the bowhead baleen was donated by subsistence whalers from Barrow, Alaska. The baleen from other species came from whales that had stranded on beaches from locations outside of Alaska.

In addition to testing the potential changes in drag on the baleen, the team of researchers used an electric razor to shave off baleen fringe hairs as samples for chemical analysis to determine whether the oil or dispersant had any effects on baleen at the molecular level. They also determined how much oil, dispersed oil, and dispersant were retained on the baleen fringe hairs after the trials.

At this point, the team is analyzing the data from the experimental trials and plans to submit the results for publication in a scientific journal. NOAA is also beginning to create a guidance document on oil and cetaceans (whales and dolphins), which will incorporate the conclusions of this research.

While the scientific community has learned a lot about the apparent effects of oil on dolphins in the wake of the 2010 Deepwater Horizon oil spill, there is very little information on large whales. The body of research on oil’s effects on baleen from the 1980s concluded that there were few and transient effects, but whether that conclusion holds up today remains to be seen.

“This is another piece of the puzzle,” said Shigenaka. “If we can distill response-relevant guidance that helps to mediate spill impacts to whales, then we will have been successful.”

Work was conducted under NOAA’s National Marine Fisheries Service Permits 17350 and 18786.


8 Comments

NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate

Shoal grass seagrass on a sandy ocean floor.

Seagrass beds serve as important habitat for a variety of marine life, and understanding their growth patterns better can help fisheries management and restoration efforts. (NOAA)

Amy Uhrin was sensing a challenge ahead of her. As a NOAA scientist working on her PhD, she was studying the way seagrasses grow in different patterns along the coast, and she knew that these underwater plants don’t always create lush, unbroken lawns beneath the water’s surface.

Where she was working, off the North Carolina coast near the Outer Banks, things like the churning motion of waves and the speed of tides can cause seagrass beds to grow in patchy formations. Clusters of bigger patches of seagrass here, some clusters of smaller patches over there. Round patches here, elongated patches over there.

Uhrin wanted to be able to look at aerial images showing large swaths of seagrass habitat and measure how much was actually seagrass, rather than bare sand on the bottom of the estuary. Unfortunately, traditional methods for doing this were tedious and tended to produce rather rough estimates. These involved viewing high-resolution aerial photographs, taken from fixed-wing planes, on a computer monitor and having a person digitally draw lines around the approximate edges of seagrass beds.

While that can be fairly accurate for continuous seagrass beds, it becomes more problematic for areas with lots of small patches of seagrass included inside a single boundary. For the patchy seagrass beds Uhrin was interested in, these visual methods tended to overestimate the actual area of seagrass by 70% to more than 1,500%. There had to be a better way.

Seeing the Light

Patches of seagrass beds of different sizes visible from the air.

Due to local environmental conditions, some coastal areas are more likely to produce patchy patterns in seagrass, rather than large beds with continuous cover. (NOAA)

At the time, Uhrin was taking a class on remote sensing technology, which uses airborne—or, in the case of satellites, space-borne—sensors to gather information about the Earth’s surface (including information about oil spills). She knew that the imagery gathered from satellites (i.e. Landsat) is usually not at a fine enough resolution to view the details of the seagrass beds she was studying. Each pixel on Landsat images is 30 meters by 30 meters, while the aerial photography gathered from low-flying planes often delivered resolution of less than a meter (a little over three feet).

Uhrin wondered if she could apply to the aerial photographs some of the semi-automated classification tools from imagery visualization and analysis programs which are typically used with satellite imagery. She decided to give it a try.

First, she obtained aerial photographs taken of six sites in the shallow coastal waters of North Carolina’s Albemarle-Pamlico Estuary System. Using a GIS program, she drew boundaries (called “polygons”) around groups of seagrass patches to the best of her ability but in the usual fashion, which includes a lot of unvegetated seabed interspersed among seagrass patches.

Six aerial photographs of seagrass habitat off the North Carolina coast, with yellow boundary lines drawn around general areas of seagrass habitat.

Aerial photographs show varying patterns of seagrass growth at six study sites off the North Carolina coast. The yellow line shows the digitally drawn boundaries around seagrass and how much of that area is unvegetated for patchy seagrass habitat. (North Carolina Department of Transportation)

Next, Uhrin isolated those polygons of seagrass beds and deleted everything else in each image except the polygon. This created a smaller, easier-to-scan area for the imagery visualization program to analyze. Then, she “trained” the program to recognize what was seagrass vs. sand, based on spectral information available in the aerial photographs.

Though limited compared to what is available from satellite sensors, aerial photographs contain red, blue, and green wavelengths of light in the visible spectrum. Because plants absorb red and blue light and reflect green light (giving them their characteristic green appearance), Uhrin could train the computer program to classify as seagrass the patches where green light was reflected.

Classify in the Sky

Amy Uhrin stands in shallow water documenting data about seagrass inside a square frame of PVC pipe.

NOAA scientist Amy Uhrin found a more accurate and efficient approach to measuring how much area was actually seagrass, rather than bare sand, in aerial images of coastal North Carolina. (NOAA)

To Uhrin’s excitement, the technique worked well, allowing her to accurately identify and map smaller patches of seagrass and export those maps to another computer program where she could precisely measure the distance between patches and determine the size, number, and orientation of seagrass patches in a given area.

“This now allows you to calculate how much of the polygon is actually seagrass vegetation,” said Uhrin, “which is good for fisheries management.” The young of many commercially important species, such as blue crabs, clams, and flounder, live in seagrass beds and actively use the plants. Young scallops, for example, cling to the blades of seagrass before sliding off and burrowing into the sediment as adults.

In addition, being able to better characterize the patterns of seagrass habitat could come in handy during coastal restoration planning and assessment. Due to local environmental conditions, some areas are more likely to produce patchy patterns in seagrass. As a result, efforts to restore seagrass habitat should aim for restoring not just cover but also the original spatial arrangement of the beds.

And, as Uhrin noted, having this information can “help address seagrass resilience in future climate change scenarios and altered hurricane regimes, as patchy seagrass areas are known to be more susceptible to storms than continuous meadows.”

The results of this study, which was done in concert with a colleague at the University of Wisconsin-Madison, have been published in the journal Estuarine, Coastal and Shelf Science.


Leave a comment

Redrawing the Coast After Sandy: First Round of Updated Environmental Sensitivity Data Released for Atlantic States

Contsruction equipment moves sand to rebuild a New Jersey beach in front of houses damaged during Hurricane Sandy.

In Brick, New Jersey, construction crews rebuild the beaches in front of homes damaged by Hurricane Sandy. This huge storm actually changed the shape of shorelines up and down the East Coast. (Federal Emergency Management Agency/FEMA)

This is a post by the Office of Response and Restoration’s Jill Petersen.

In 2012 Hurricane Sandy brought devastating winds and flooding to the Atlantic coast. In some parts of New Jersey, flood waters reached nearly 9 feet. Up and down the East Coast, this massive storm actually reshaped the shoreline.

As a result, we’ve been working to update our Environmental Sensitivity Index (ESI) maps to reflect the new state of Atlantic shorelines. These maps and data give oil spill planners and responders a quick snapshot of a shoreline’s vulnerability to spilled oil.

This week, we released the digital data, for use within a Geographic Information System (GIS), for the first regions updated after Hurricane Sandy. Passed the January following Sandy, the Disaster Relief Appropriations Act of 2013 provided funds to update ESI maps for eleven Atlantic coast states, ranging from Maine to South Carolina. For this project, we grouped the states into seven regions.

The GIS data for the regions released this week cover South Carolina and portions of New York and New Jersey, including the Hudson River, south Long Island, and the New York–New Jersey metropolitan area. For these two regions, we mapped more than 300 oil-sensitive species and classified over 17,000 miles of shoreline according to their sensitivity to spilled oil.

Updated GIS data and PDF maps for the remaining regions affected by Sandy will be available in the coming months.

Time for a Change

The magnitude of the overall effort has been unprecedented, and provided us with the opportunity to revisit what was mapped and how, and to update the technology used, particularly as it relates to the map production.

Our first Environmental Sensitivity Index maps were produced in the early 1980s and, since that time, the entire U.S. coast has been mapped at least once. To be most useful, these data should be updated every 5–7 years to reflect changes in shoreline and species distributions that may occur due to a variety of things, including human intervention, climate change, or, as in this case, major coastal storms.

In addition to ranking the sensitivity of different shorelines (including wetlands and tidal flats), these data and maps also show the locations of oil-sensitive animals, plants, and habitats, along with various human features that could either be impacted by oil, such as a marina, or be useful in a spill response scenario, such as access points along a beach.

New Shores, New Features

A street sign is buried under huge piles of sand in front of a beach community.

In the wake of Sandy, we’ve been updating our Environmental Sensitivity Index maps and data and adding new features, such as storm surge inundation data. Hurricane Sandy’s flooding left significant impacts on coastal communities in eleven Atlantic states. (Federal Emergency Management Agency/FEMA)

To gather suggestions for improving our ESI maps and data, we sent out user surveys, conducted interviews, and pored over historical documentation. We evaluated all suggestions while keeping the primary users—spill planners and responders—at the forefront. In the end, several major changes were adopted, and these improvements will be included in all future ESI maps and data.

Extended coverage was one of the most requested enhancements. Previous data coverage was focused primarily on the shoreline and nearshore—perhaps 2–3 miles offshore and generally less than 1 mile inland. The post-Sandy maps and data extend 12 nautical miles offshore and 5 miles inland.

This extension enables us to include data such as deep water species and migratory routes, as well as species occurring in wetlands and human-focused features found further inland. With these extra features, we were able to incorporate additional hazards to the coastal environment. One example was the addition of storm surge inundation data, provided by NOAA’s National Hurricane Center, which provide flood levels for storms classified from Category 1 to Category 5.

We also added more jurisdictional boundaries, EPA Risk Management Facilities (the EPA-regulated facilities that pose the most significant risk to life or human health), repeated measurement sites (water quality, tide gauges, Mussel Watch sites, etc.), historic wrecks, and locations of coastal invasive species. These supplement the already comprehensive human-use features that were traditionally mapped, such as access points, fishing areas, historical sites, and managed areas.

The biological data in our maps continue to represent where species occur, along with supporting information such as concentration, seasonal variability, life stage and breeding information, and the data source. During an oil spill, knowing the data source (e.g., the U.S. Fish and Wildlife Service) is especially important so that responders can reach out for any new information that could impact their approach to the spill response.

A new feature added to the biological data tables alerts users as to why a particular species’ occurrence may warrant more attention than another, providing context such as whether the animals are roosting or migrating. As always, we make note of state and federal threatened, endangered, or listed species.

Next up

Stay tuned for the digital data and PDF maps for additional Sandy-affected regions. While the updated PDF maps will have a slightly different look and feel than prior ones, the symbology and map links will be very familiar to long-time users.

In the meantime, we had already been working on updating ESI maps for two regions outside those funded by the Disaster Relief Appropriations Act. These regions, the outer coast of Washington and Oregon and the state of Georgia, have benefited from the general improvements brought about by this process. As of this week, you can now access the latest GIS data for these regions as well.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.

Follow

Get every new post delivered to your Inbox.

Join 674 other followers