NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

Preparing for Anything: What to Do When a Hypothetical Ferry Disaster Overlaps with a National Presidential Convention

This is a post by NOAA Scientific Support Coordinator Frank Csulak.

A small boat on the Delaware River with Philadelphia's skyline in the background

In June 2016, team of federal and state emergency responders practiced responding to a hypothetical ferry disaster and oil spill scenario in anticipation of the Democratic National Convention, which occurred in Philadelphia at the end of July. (Credit: Kevin Harber, CC BY-NC-ND 2.0)

When you’re in the business of emergency response, you need to be prepared for all kinds of disasters and all kinds of scenarios. Being a NOAA Scientific Support Coordinator, the disaster scenarios I’m usually involved with have some connection to the coast or major U.S. waterways.

And being ready for a disaster means practicing pretty much exactly what you would do during an emergency response, even if it’s for a relatively unlikely scenario, such as a catastrophic ferry explosion, collision, and oil spill during a major political party convention.

What follows is the hypothetical scenario that a team of federal and state emergency responders walked through at a training workshop from June 12-14, 2016 in Philadelphia, Pennsylvania.

U.S Coast Guard Sector Delaware Bay hosted this practice scenario in anticipation of the Democratic National Convention, which occurred (thankfully without any major security incidents) in Philadelphia at the end of July. The team involved was comprised of members from the U.S. Secret Service, Federal Bureau of Investigation, New Jersey and Pennsylvania state police, U.S. Coast Guard, and NOAA.

Ready for Anything You Can Imagine (And This Is Imagined)

Exercise scenario: It is the first day of the Democratic National Convention, which is taking place in Philadelphia, Pennsylvania. Tens of thousands of people, including hundreds of elected officials and the Democratic Party’s presumptive presidential candidate, are just arriving at the event.

The Secret Service reports that VIPs continue to land at Philadelphia International Airport. Security is tight. A large safety perimeter has been established around the convention center, with surrounding streets and highways closed to all traffic and thousands of law enforcement officers posted at strategic locations throughout the city.

Meanwhile, the RiverLink Ferry is making the 2:00 p.m. trip from Philadelphia to Camden, New Jersey. There are 21 passengers and two crew members on board. The ferry is crossing the federal channel of the Delaware River when an explosion of unknown cause erupts from the ferry’s engine room. The explosion causes the vessel to lose propulsion and steering. It begins listing to the starboard side and drifting down the Delaware River. Smoke can be seen billowing from vents and openings.

Simultaneously, the tug The Caribbean Sea II is pushing the barge The Resource II upriver. The barge attempted to avoid the distressed ferry but is unsuccessful, striking the ferry and causing significant structural damage to both vessels.

Damaged barge on the Mississippi River.

A damaged barge which caused an oil spill on the Mississippi River in early 2016. Responders need to prepare for all kinds of maritime disasters. (U.S. Coast Guard)

Numerous ferry passengers are thrown onto the deck or into the river; others begin jumping into the water. Responders from the U.S. Coast Guard, New Jersey State Police Marine Services Bureau, and the marine units of the Philadelphia Fire and Police Departments all rushed to the scene. Already, they encounter both seriously injured survivors and casualties as far as 200 yards down river of the vessels.

Rescue boats pick up eight survivors from the water and begin offloading them at Penn’s Landing Marina. Responders continue to evacuate people from the sinking ferry until it slips completely under water in the vicinity of the Penn’s Landing helicopter port. A total of 14 people are rescued and three bodies recovered, some found as far as a quarter mile down river. Six people remain missing.

Thankfully, no injuries are reported among the tugboat’s four person crew. However, one of the two crewmembers on the barge, a 60-year-old male, has fallen and broken his arm. He appears to be going into shock and needs to be evacuated.

As a result of the collision, the tug only has partial steering capabilities but continues to push the barge several hundred yards up river, where it drops anchor. The two damaged vessels remain in the river channel, and as responders assess the vessels’ conditions, they uncover that the barge is leaking oil. Manhole-sized bubbles of oil are burping to the water’s surface, coming from the port side damage below the water line. Oil appears to be leaking from a tank which is holding 5,000 barrels of oil. In all, the barge is carrying 50,000 barrels of heavy bunker fuel oil.

Reining in Hypothetical Chaos

Three damaged vessels. People injured, dead, and missing. A potentially large oil spill on a busy river. First responders diverted from a high-security national event to a local aquatic incident In other words, quite a hypothetical mess.

Was the explosion on the ferry due to terrorism? Was it due to human error? Or was it due to a mechanical malfunction in the engine room? We had to imagine how we would deal with these many complicated issues in the heat of the moment.

Group of responders in safety vests standing and sitting around tables.

NOAA Scientific Support Coordinator Frank Csulak, standing at right, briefing the Unified Command during another U.S. Coast Guard oil spill training exercise in Virginia in 2015. (U.S. Coast Guard)

As a member of the local Coast Guard’s response team during this exercise, I helped with many key decisions and procedures and with establishing priorities for response. I acted as a member of what’s known in the emergency response community as the “Unified Command,” or the established hierarchy of agencies and organizations responding to an emergency, such as an oil spill or hurricane.

In this scenario, I was specifically charged with commanding, coordinating, and managing the oil spill response, which is my specialty. I started by identifying and obtaining resources to support the spill response and cleanup and conducting an assessment of natural resources at risk from the oil. Meanwhile, I coordinated with my NOAA support team of scientists back in Seattle, Washington, to provide information on local weather conditions, tides, oil trajectory forecasts, and modeling of the oil’s fate and effects.

In addition, I had to coordinate a variety of notifications and consultations required under the Endangered Species Act, the Essential Fish Habitat provision of the Magnuson-Stevens Act, and the National Historic Preservation Act, which protects historical and archaeological sites.

As you can see, my role during a disaster like this hypothetical one is far-reaching. And that’s not even everything. I also helped protect nearby wetlands and other environmentally sensitive areas from the thick, spreading oil; prioritized which areas needed protective booming to prevent contact with oil; and led the response’s environmental team, which had representatives from the U.S. Fish and Wildlife Service, Delaware, Pennsylvania, New Jersey, and the U.S. Coast Guard. Of course, all of this was an exercise and there was no ferry incident and no oil spill.

During the actual Democratic National Convention, which took place July 25–29, 2016, I was ready and waiting for any call for help from Coast Guard Sector Delaware Bay. I’m pleased to report that it never came, but if it did, I’d know what to do.

Editor’s note: NOAA’s Office of Response and Restoration also supported the U.S. Coast Guard’s maritime security activities surrounding the Republican National Convention in Cleveland, Ohio, July 18–21, 2016. Two NOAA staff members worked as part of the Coast Guard’s Incident Management Team in Cleveland, managing the event’s data in our online mapping tool known as ERMA® (Environmental Response Management Application), and coordinating with the several other agencies involved with the convention’s security.

The Coast Guard provided maritime security and monitored potential situations along the Lake Erie shoreline and the Cuyahoga River during the convention. ERMA allowed Coast Guard leadership and others in the command post to access near real-time data, such as locations of field teams and tracked vessels, as well as other agency data such as Department of Homeland Security safety zones, infrastructure status, and protest locations. This gave them a comprehensive picture of the Coast Guard’s efforts and the ability to assess potential issues from any location.

Photo of Philadelphia waterfront courtesy of Kevin Harber and used under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic license.

NOAA Scientific Support Coordinator Frank Csulak.

Frank Csulak is a NOAA Scientific Support Coordinator with the Office of Response and Restoration. Based in New Jersey, he is the primary scientific adviser to the U.S. Coast Guard for oil and chemical spill planning and response in the Mid-Atlantic region, covering New York, Delaware Bay, Baltimore, Hampton Roads, and North Carolina.

Leave a comment

Science of Oil Spills Training: Apply for Fall 2016

Two men speaking on a beach with a ferry in the background.

Science of Oil Spills classes help new and mid-level spill responders better understand the scientific principles underlying oil’s fate, behavior, and movement, and how that relates to various aspects of cleanup. The classes also inform responders of considerations to minimize environmental harm and promote recovery during an oil spill. (NOAA)

Science of Oil Spills (SOS) classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions.

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled an autumn Science of Oil Spills (SOS) class in Portsmouth, New Hampshire, October 3-7, 2016.

OR&R will accept applications for this class through Monday, August 15, and will notify accepted participants by email no later than Monday, August 22.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.

Leave a comment

How Do You Begin to Clean up a Century of Pollution on New Jersey’s Passaic River?

A mechanical dredge pulls contaminated sediment from the bottom of the Passaic River.

A mechanical dredge removes sediment from an area with high dioxin concentrations on the Passaic River, adjacent to the former Diamond Alkali facility in Newark, New Jersey. (NOAA)

Dozens of companies share responsibility for the industrial pollution on New Jersey’s Passaic River, and several Superfund sites dot the lower portion of the river. But one of the perhaps best-known of these companies (and Superfund sites) is Diamond Alkali.

In the mid-20th century, Diamond Alkali (later Diamond Shamrock Chemicals Company) and others manufactured pesticides and herbicides, including those constituting “Agent Orange,” along the Passaic. The toxic waste from these activities left an undeniable mark on the river, which winds about 80 miles through northern New Jersey until it meets the Hackensack River and forms Newark Bay.

Fortunately, the U.S. Environmental Protection Agency (EPA), with support from the natural resource trustees, including NOAA, U.S. Department of Interior, New Jersey Department of Environmental Protection, and the New York State Department of Environmental Protection, has released a plan to clean up the lower eight miles of the Passaic River, which passes through Newark.

Those lower eight miles are where 90 percent of the river’s contaminated sediments are located [PDF] and addressing contamination in this section of the river is an important first step.

A History of War

Ruins of an old railroad bridge end part way over the Passaic River.

Ruins of an old Central Railroad of New Jersey bridge along the Passaic River hint at a bustling era of industrialization gone by. (Credit: Joseph, Creative Commons)

A major contributor to that contamination came from what is known as Agent Orange, a mix of “tactical herbicides,” which the U.S. military sprayed from 1962 to 1971 during the Vietnam War. These herbicides removed tropical foliage hiding enemy soldiers.

However, an unwanted byproduct of manufacturing Agent Orange was the extremely toxic dioxin known as TCDD. Dioxins are commonly released into the environment from burning waste, diesel exhaust, chemical manufacturing, and other processes. The EPA classifies TCDD as a human carcinogen (cause of cancer).

Pollution on the Passaic River stretches back more than two centuries, but its 20th century industrial history has left traces of dioxins, pesticides, polychlorinated biphenyls (PCBs), heavy metals, and volatile organic compounds in sediments of the Passaic River and surrounding the Diamond Alkali site. Testing in the early 1980s confirmed this contamination, and the area was added to the National Priorities List, becoming a Superfund site in 1984.

Many of these contaminants persist for a long time in the environment, meaning concentrations of them have declined very little in the last 20 years. As a result of this pollution, no one should eat fish or crab caught from the Lower Passaic River, a 17 mile stretch of river leading to Newark Bay.

Finding a Solution

But how do you clean up such a complex and toxic history? The federal and state trustees for the Lower Passaic River provided technical support as EPA grappled with this question, debating two possible cleanup options, or “remedies,” for the river. The cleanup option EPA ultimately settled on involves dredging 3.5 million cubic yards of contaminated sediments from the river bottom and removing those sediments from the site. Then, a two-foot-deep “cap” made of sand and stone will be placed over contaminated sediments remaining at the bottom of the river.

This will be an enormous effort—one cubic yard is roughly the size of a standard dishwasher. According to NOAA Regional Resource Coordinator Reyhan Mehran, it will be one of the largest dredging projects in Superfund history. While the entire project could take more than ten years, Judith Enck, EPA Regional Administrator for New York, has pointed out that the process involves “cleaning up over a century of toxic pollution.”

A Tale of Two Remedies

Aerial view of New York City skyline, Newark, and industrial river landscape.

Manhattan skyline from over Newark, New Jersey. The view is across the confluence of the Passaic and Hackensack Rivers and shows the industrial buildup in the area. (Credit: Doc Searls, Creative Commons Attribution 2.0 Generic license)

Mehran describes the alternatives analysis as a complicated one—choosing between two cleanup remedies, the one described above and an “in-water” disposal solution. This second approach called for removing the contaminated sediments from the riverbed and burying them in Newark Bay, in what is known as a “confined aquatic disposal cell.” That essentially involves digging a big hole in the bottom of the bay, removing the clean sediments for use elsewhere, filling it with the contaminated sediments, and capping it to keep everything in place.

While the less expensive of the two options, serious concerns were raised about the potential effect this in-water solution would have on the long-term ecosystem health of Newark Bay.

The chosen remedy, which calls for removing the contaminated sediment from the riverbed and transporting it away by rail to a remote site on land, was selected as the better solution for the long-term health of the ecosystem. Finding the best option incorporated the scientific support and analysis of NOAA and the trustees.

As NOAA’s Mehran explains, “The site, with some of the highest concentrations of dioxins in sediment, is in the middle of one of the most densely populated parts of our nation, which makes the threat to public resources tremendous.”

While the upper and middle segments of the Passaic River flow through forests and natural marshes, areas bordering the lower river are densely populated and industrial. Because of industrialization, habitat for wildlife within Newark Bay has already been severely altered, yet the bay’s shallow waters continue to provide critically needed habitat for fish such as winter flounder, migratory birds including herons and egrets, and numerous other species.

“The watershed of the Lower Passaic River and Newark Bay is highly developed,” emphasizes Mehran, “and the resulting scarcity of ecological habitat makes it all the more valuable and important to protect and restore.”

Learn more about the cleanup plan for the Lower Passaic River [PDF].

Photo of Jersey Central Ruins used courtesy of Joseph, Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic license.

Photo of Manhattan skyline with Passaic and Hackensack Rivers used courtesy of Doc Searls, Creative Commons Attribution 2.0 Generic license.

Leave a comment

Restoration along Oregon’s Willamette River Opens up New Opportunities for Business and Wildlife

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

Salmon, mink, bald eagles, and other wildlife should be lining up to claim a spot among the lush new habitat freshly built along Oregon’s Willamette River. There, a few miles downstream from the heart of Portland, construction at the Alder Creek Restoration Project is coming to a close. Which means the reshaped riverbanks and restored wetlands are open for their new inhabitants to move in.

This 52 acre project is the first habitat restoration effort for the Portland Harbor Superfund Site and has been implemented specifically to benefit fish and wildlife affected by years of industrial contamination in the harbor.

Salmon, lamprey, osprey, bald eagle, mink, and others will now enjoy sandy beaches, native vegetation, and large pieces of wood to perch on or hide underneath. These features replace the saw mill, parking lots, and other structures present on the property before it was purchased by Wildlands, Inc. Chinook salmon and osprey have already been seen seeking refuge and searching for food in the newly constructed habitat.

Wildlands is a business that intends to sell ecological “credits” from this restoration project. The credits that the Alder Creek project generates are available for purchase to resolve the liability of those who discharged oil or hazardous substances into Portland Harbor.

Newly planted wetland vegetation on the bank of a river.

Habitat restored at Alder Creek in Oregon in 2014 was planted with native vegetation in 2015. (Photo courtesy Wildlands)

Construction on the restoration site began in the summer of 2014. First, hundreds of thousands of yards of wood chips were removed from the site of a former saw mill and several buildings were demolished. A channel was excavated on the western portion of the site, which was continued through the eastern half of the site when construction resumed in 2015.

View a time lapse video of channel construction on the Alder Creek site:

Also this year, efforts involved removing invasive vegetation, planting native vegetation, and installing large wood structures along the channel to create ideal places for young fish to rest, feed, and hide from predators.

Rowed dirt field next to river channels.

View of newly created channels on the Alder Creek site connecting to Oregon’s Willamette River. Salmon and osprey have already been seen making themselves at home in the newly constructed habitat. (Photo courtesy of Wildlands)

After a final breach of the earthen dam dividing the restoration site this September, water now flows across the newly restored area. Once additional planting is completed this winter, the project will officially be “open for business,” although some entrepreneurial wildlife are already getting a head start.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Oregon, she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.

Leave a comment

NOAA Is Supporting Oil Spill Response in Kentucky After Tugs Collide on Mississippi River

On the evening of September 2, 2015, two tug boats collided on the Mississippi River near Columbus, Kentucky, spilling slurry oil into the river.

Early reports, which later may be corrected, indicate an estimated 120,500 gallons of oil were released from a hole in the cargo tank of a barge being towed by the tug Dewey R during the collision. The spill and ensuing response closed the river between mile markers 938 and 922, south of Paducah, Kentucky, but the waterway was reopened to vessel traffic as of September 8.

At the request of the U.S. Coast Guard, NOAA’s Office of Response and Restoration is supporting the response and sending oil spill and data management experts to the scene of the spill. NOAA scientific support coordinators are providing a variety of information for the response, including river flow forecasts, chemistry of the spilled oil, a submerged oil assessment (because this heavier oil may sink), and other information to help determine where the spill will go and what can be done to protect our waterways and keep commerce moving.

The natural resource agencies also are beginning to assess potential impacts to natural resources, a first step to determining whether restoration is needed as a result of the spill.

Updates from NOAA about this oil spill may be available on IncidentNews.

What Is Slurry Oil?

Slurry oil is a residual oil resulting from the refining process and when spilled, most of it will sink or become suspended in the water column. A U.S. Coast Guard overflight the morning of September 3 revealed a floating sheen of oil four to five miles downstream of the discharge, which is not unexpected with this type of heavy oil.

Learn more about different types of oil and their behaviors when spilled and read about a 2005 slurry oil spill in the Gulf of Mexico.

How Is an Oil Spill in a River Different Than One in the Ocean?

From dams and density to muddy waters and vegetation, rivers offer a very different environment than the ocean during an oil spill.

Read more about the kinds of unique challenges we have to consider during an oil spill in a river.

More Information About Oil Spills

Find basic information related to oil spills, cleanup, impacts, and restoration, as well as NOAA’s role during and after oil spills.

Leave a comment

Expanding a Washington River’s Floodplain to Protect Northwest Salmon and Communities

Bridge over industrial waterway in Tacoma and view of Mt. Rainier.

Mt. Rainier looms over the Thea Foss Waterway as it leads out to Commencement Bay, the industrial heart of Tacoma, Washington. Two new restoration projects will make up for the natural resource damages caused by organizations releasing hazardous substances into this and a neighboring waterway. (Photo: Kendrick Hang, Attribution 2.0 Generic License)

From the edge of the Emmons Glacier on Washington’s tallest peak, the scenic White River winds down the mountain, through forest, and joins the Puyallup River before finally reaching the sea at an industrial port in the city of Tacoma.

Here, in the salty waters of Puget Sound’s Commencement Bay, iconic Northwest salmon start their own journey in reverse. These fish head up waterways toward Mt. Rainier, where they were born, where they will spawn, and where they will die.

Recently NOAA and our partners announced a restoration project that will improve the floodplain of the White River for migrating fish. One of Mt. Rainier’s largest rivers and one of Puget Sound’s most important areas for imperiled salmon and steelhead, the White River has been re-routed and re-engineered for longer than a century.

This restoration was made possible by the U.S. Department of Justice’s August 6, 2015 announcement that more than 56 parties have agreed to restore key salmon habitat on the White River. The settlement will also permanently preserve intertidal habitat in Wheeler Osgood Waterway in Tacoma’s Commencement Bay. Fulfilling these restoration projects will resolve their liability for natural resource damages caused by releasing hazardous substances into the bay’s Thea Foss and Wheeler-Osgood Waterways.

Person along the wooded edge of a river in Washington.

One restoration project will set back levees on the White River and widen its previously re-engineered floodplain. This will create better habitat for migrating fish to feed, rest, and spawn, as well as offer improved flood protection for nearby homes and businesses. (NOAA)

The White River project will not only help protect the region’s salmon but also its communities as it sets back levees and widens the floodplain. By restoring fish habitat and providing slower-moving side channels on the river, the proposed project will reopen 121 acres of historic floodplain around the river. Allowing floodwaters more room to flow, this project will also help reduce the risk of flood damage for more than 200 nearby homes and businesses.

The latest project will continue a long legacy of ensuring those responsible for releasing hazardous materials—from industrial chemicals such as PCBs to heavy metals including lead and zinc—into Commencement Bay are held accountable for restoring public natural resources. This is the 20th natural resources settlement related to pollution in Commencement Bay, which is the industrial heart of Tacoma. Through these settlements, more than 350 acres of Puget Sound habitat will have been restored, offsetting impacts to salmon, other fish, and wildlife harmed by pollution in the bay.

Those responsible for the pollution will monitor and adaptively manage the project under a 10-year plan that ensures at least 32.5 acres of the restoration site are inundated by the river and thus accessible to fish. They also will pay more than $1 million toward the natural resource trustees’—including NOAA’s—assessment, oversight and the long-term stewardship costs of maintaining the project over the next 100 years and beyond.


Opening up the Hudson River for Migrating Fish, One Dam at a Time

This is a post by Carl Alderson of NOAA’s Restoration Center and Lisa Rosman of NOAA’s Office of Response and Restoration.

Creek passing over a dam in winter.

Water, both frozen and liquid, tumbles over the Orrs Mill Dam on Moodna Creek, a tributary of the Hudson River, in Cornwall, New York. NOAA scientists Lisa Rosman and Carl Alderson are investigating dams and other structures that are potentially preventing fish from migrating up these waterways. (NOAA)

One wintry day near the pre-Civil War–era town of Stockport, New York, NOAA scientists Lisa Rosman and Carl Alderson carefully edged their way down the snowy banks of Claverack Creek.

They pushed past the debris of a nearby maintenance yard, filled with old buses and cars and surrounded by junk covered in snow and ice. A roar of water could be heard just beyond this scene, tumbling out from the remains of a dam. The dam was framed by an assortment of large natural boulders and scattered concrete masses, everything partially blanketed in a snowy white ruin.

As the team surveyed this landscape, a seamless portrait of the Hudson River Valley emerged, making it easy to see how everything was connected. Cameras and video recorders, GPS units and notebooks came flying quickly in and out of warm pockets, with hands glad to be thrust back in after the duo collected the information they sought.

The scientists were scouting this particular creek for features they had spotted in satellite imagery. The purpose? To locate, verify, and catalog blockages to fish movement and migration.

­­They could see that this crumbling structure had been much higher at one time. Something, likely a storm, had sheared off the top portion of the dam. Even with the breach, the damage did not allow the river to flow freely past the dam’s base. So, the question for the team remained: Could migrating fish navigate past what was left of this dam?

Additional research revealed more about this remnant from another time. The Van De Carr Dam once powered a 19th century paper mill and a mattress factory, part of the national transition to water power and the start of the industrial age.

Today, however, NOAA has classified this dam as a barrier for fish trying to follow their instincts and migrate up this tributary of the Hudson River, as their parents and ancestors did before them.

Identifying Barriers

Rosman and Alderson are investigating potential habitat restoration opportunities along 69 tributaries to the Hudson River estuary. The Hudson River is a federal Superfund site spanning almost 200 miles from Hudson Falls in the north to the Battery in New York City.

Beginning in the late 1940s, two General Electric (GE) capacitor manufacturing plants in Hudson Falls and Fort Edward, New York, released industrial chemicals known as PCBs (polychlorinated biphenyls) into the Hudson River environment over several decades. The PCB pollution has contaminated Hudson River fish and wildlife, their prey, and their habitats.

The investigation assesses the potential for removing dams and culverts that are preventing fish from migrating up and downstream within the Hudson River Valley. Removing abandoned dams and upgrading culverts will provide fish with access to habitat in tributaries of the Lower Hudson River, upstream of the river’s tidal influence.

Barrier after barrier, this scientific duo determines which dams on Hudson River tributaries still provide services, such as water supply, recreation, or hydroelectric power, and those which no longer serve any meaningful function. Back in the office, they enter the information collected in the field into a database that now includes more than 400 potential barriers to fish, both man-made and natural.

Dams and improperly sized or installed culverts have prevented important migratory fish, such as American shad and river herring, from swimming further upstream to spawn, as well as reducing the passage of the historically far-reaching American eel. In addition, NOAA catalogs the rivers’ natural barriers—steep gradients, rock ledges, waterfalls—to estimate the extent that most fish previously could travel upstream before the presence of dams.

Through a combination of advanced digital mapping software and scouting trips such as the one to Claverack Creek, Alderson and Rosman are identifying potential fish restoration projects. These projects will help make up for the decades when people were either not allowed to fish or retain catches along portions of the Hudson River and were advised against eating its highly polluted fish.

Opening up Rivers and New Opportunities for Collaboration

The data Rosman and Alderson are collecting help support other programs as well. NOAA and other government agencies prioritize removing or updating the barriers that provide the best opportunities for habitat improvement and fish passage. Dams that are not candidates for removal may still benefit from structures such as fish ladders, rock ramps, or bypass channels designed to enhance fish passage over or around the dam.

Already, their efforts have helped communicate the potential for habitat restoration in the region. In October 2014, they shared information about their database of fish barriers at a workshop co-hosted by New York State Department of Environmental Conservation’s (NYSDEC) water, dam safety, and estuary programs.

Later, at an April 2015 summit in Poughkeepsie, New York, the Hudson River Estuary Program announced the official kick-off of a new grant program that will benefit the river and its migrating fish. The program will award $750,000 to restore tributaries of the Hudson River and improve their resilience (e.g., dam removal and culvert and bridge upgrades) and $800,000 for local stewardship planning.

The grant announcement and collaboration among NOAA, NYSDEC, and several key stakeholders, including the Hudson River Estuary Program, The Nature Conservancy, and Scenic Hudson, signals an era of growing cooperation and interest in bringing back migrating fish to their historic habitats and improving the vitality of the Hudson River and its tributaries.