NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Restoration Efforts Hatch Hope for Endangered Seabirds on California’s Channel Islands

This is a post by Jennifer Boyce, biologist with NOAA’s Restoration Center and Montrose Settlements Restoration Program.

Santa Barbara Island is a world apart. Only one square mile in area, it is the smallest island in the Channel Islands National Park, located off the coast of Southern California and lone dwelling place for some unique species of animals and plants.

The island has no land predators, which makes it a haven for seabirds. But human threats to seabirds, including industrial pollution and introduced species, have left their mark even on this haven. Seabird populations began dropping as pollution thinned their eggshells to the breaking point and exotic plants replaced their native nesting habitat.

So imagine the excitement when biologists recently discovered the first ever nests of the rare and threatened Scripps’s Murrelet among two areas restored on the island for their benefit.

A petite, black-and-white seabird, the Scripps’s Murrelet also is threatened by predators introduced to its breeding colonies and by oil spills. While Santa Barbara Island has the largest colony of Scripps’s Murrelet in the United States, the State of California listed this bird as a threatened species [PDF] in 2004 and it currently is a candidate for protection under the federal Endangered Species Act (under a previous name, Xantus’s Murrelet).

Hatching a Better Home

Close up of a murrelet chick's head.

This newly hatched chick was born at Landing Cove, a habitat restoration area on Santa Barbara Island. Its birth gives hope to a threatened species of seabird, the Scripps’s Murrelet. (Andrew Yamagiwa, California Institute of Environmental Studies)

Each spring, murrelets lay one or two eggs in crevices and burrows beneath Santa Barbara Island’s native shrubs. They need the structure and cover provided by native plant communities to protect their nests. Unfortunately, the native shrubs on Santa Barbara Island have been decimated for decades by introduced grazers. Ranchers used to graze sheep on the island, inadvertently bringing non-native plants with them. These and other grazers allowed the non-native plants to proliferate and prevent the few remaining patches of native vegetation from recolonizing the island.

Since 2006, NOAA’s Montrose Settlements Restoration Program has been restoring this habitat for murrelets and other seabirds on Santa Barbara Island, caring for the thousands of native plants they have placed along its dry slopes. Uncovering two nests in two different restoration plots this spring means the project has reached a major milestone.

The older of the two restoration plots where eggs were found, Landing Cove was first planted with native shrubs in December 2008. It can take several years for the shrubs to mature enough to become suitable seabird nesting habitat. One egg was discovered there—on Earth Day, of all days—under a large native shrub planted during restoration efforts. Then, just this week, biologists confirmed that this egg had in fact hatched into a healthy murrelet chick.

The second restored area, Beacon Hill, was planted more recently in 2012, giving biologists both a thrill and surprise to find a second murrelet nest under a native bush planted as part of the project. These nests are a testament to all of the hard work of scientists, restoration experts, and volunteers over the last ten years.

More Than One Way to Break an Egg

Funding to restore these threatened seabirds actually originates in events dating more than half a century earlier.

From the late 1940s to the early 1970s, millions of pounds of the pesticide DDT and the industrial chemicals known as PCBs were discharged into ocean waters off the southern California coast. Most of the DDT originated from the Montrose Chemical Corporation manufacturing plant located in Torrance, California.

DDT released into the ocean near California’s Palos Verdes shelf spread through the food chain, eventually reaching seabirds and causing thinning in their eggs laid on the Channel Islands. The eggshells became so thin that when the adults would sit on the eggs to warm them they would break.

In 2001, following a lengthy period of litigation, NOAA and other federal and state agencies reached a settlement with the responsible parties, establishing the Montrose Settlements Restoration Program. The program is working to restore populations of these rare seabirds and their habitat in the Channel Islands.

Restoration Efforts Taking Flight

Adult murrelet with a chick.

Scripps’s Murrelets only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts. (Gaby Keeler, California Institute of Environmental Studies)

A member of the auk family (which includes Puffins), Scripps’s Murrelets take the term “seabird” to new limits. Murrelets spend almost their entire lives at sea, only coming to land to lay their eggs and hatch their young. Their chicks live up to being a seabird as well, spending only two days on the island before tumbling into the ocean to join their parents—leaving before they can even fly.

These small birds only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts.

One of the goals of the Santa Barbara Island restoration project is to remove the non-native plants at selected areas identified as high quality nesting habitat. Biologists are restoring these areas by then planting native species with the help of lots of volunteers.

This work is by no means easy. To date, over 30,000 plants have been put into the ground. All of the native plants in the project are grown from seed on the island, and growing a mature plant takes six to eight months. One of the challenges to growing these plants is that Santa Barbara is a desert island with no natural water source. All the water needed for raising the native plants must be transported by a National Park Service boat, and moved onto the island by crane in large 400 gallon tanks.

A permanent nursery, which employs water-saving techniques, was constructed on the island to reduce the amount of water that needs to be sent to the island. Recently a drip irrigation system also has been installed at the restoration sites and is greatly improving plant survivorship while reducing water needs.

The two nests found this spring are great signs that the restoration efforts are successful and helping to restore this endangered seabird and others to this unique island. We look forward to finding many more nests in the future. In the meantime, check out this video detailing our efforts to restore seabird habitat on Santa Barbara Island:

Jennifer BoyceJennifer Boyce works for the NOAA Restoration Center, based in Long Beach, California. Jennifer serves as the NOAA trustee on several oil spill restoration Trustee Councils throughout California and is the Program Manager for the Montrose Settlements Restoration Program.


Leave a comment

On the Chesapeake Bay, Turning Artillery Sites and Landfills into Places for Wildlife

Excavator removes metal debris from the shore of a coastal landfill.

Used from 1972 to 1974, this landfill at Naval Support Facility Indian Head’s site 36 saw more than 57,000 pounds of metal and other materials hauled away as part of its cleanup and restoration. (U.S. Navy)

Roughly 25 miles downstream of Washington, DC, on the Potomac River is a military base known as Naval Support Facility Indian Head. Established in 1890, it is the U.S. Navy’s oldest continuously running ordnance station (ordnance includes artillery and ammunition). In the course of its history, this sprawling 2,500 acre naval installation has served as a research facility, a testing site for artillery, and a manufacturing site for some of the explosive chemical powders used in weapons.

However, as is the case for many other military facilities scattered along the shores of Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities—at one point, the Navy used it to test large naval guns by firing projectiles into the Potomac River—that it was designated a Superfund site and slated for cleanup under CERCLA.

Aerial view of Naval Support Facility Indian Head surrounded by water.

Like many other military facilities along the Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities that it was designated a Superfund site and slated for cleanup. (U.S. Navy)

But tackling environmental cleanup and restoration in a place with such a long history of explosives makes for unusual challenges.

For example, when the cleanup team needed to take soil or water samples, they often had to call in ordnance clearance specialists to help deal with the dangerous chemicals, guns, rockets, missiles, ordnance, and explosives potentially littering the area.

Juxtaposed against this scene at the base is Mattawoman Creek, a beautiful freshwater tidal creek with abundant wetlands and wildlife adjacent to the military site. Migratory fish such as yellow perch, herring, and shad follow the creek as they travel further inland to reproduce. In addition, many fish use the wetlands as a nursery and source of food. Large, hungry birds such as bald eagles, herons, and egrets flock to the area, as well as recreational fishers eager to cast their lines to the plentiful fish.

Fortunately, a detailed investigation indicated that this natural area has not suffered widespread impacts from pollution at the nearby base. Instead, the investigation directed the base’s cleanup strategy to focus on key sections serving as major pollution sources.

Laying Waste

The Caffee Road Landfill at the base’s Site 11 was such a mix of soil, waste, and debris that it actually extended the shoreline up to 150 feet into Mattawoman Creek. In addition to serving as a landfill for Indian Head, the military used the site to burn waste, and munitions and explosives potentially lay buried in pockets along the shoreline.

Getting this landfill—an ongoing source of pollution—under control needed to accomplish three goals: block contact with the contaminated soil, prevent shoreline erosion, and avoid exposing potential ordnance.

The design for remediating this site included placing a protective soil cover over the landfill and stabilizing the shoreline. Historically, shoreline stabilization has been achieved by positioning large rocks and riprap on the edge of the water, which “hardens” the shoreline and would move the wave energy from the protected area to adjacent areas.

Instead, NOAA and the trustee agencies responsible for the area’s natural resources proposed what is called a “living shoreline.” These hybrid shorelines are constructed habitats designed to mimic the functions of natural shoreline habitats and which incorporate both natural habitat and built infrastructure. They aim to provide the same benefits as nature, such as shoreline stabilization, improved water quality, and wildlife habitat. The project was rounded out by planting marsh shrubs and trees along the shoreline and by seeding and mulching the soil cover on top of the landfill.

All the while during these construction operations, the cleanup team had a trained professional clearing the munitions and explosives to provide safe working conditions as they transformed this dump into a safe place for fish, birds, and wildlife.

The close partnership among several federal and state agencies, including the Navy, U.S. Environmental Protection Agency, Maryland Department of the Environment, and the trustees, was instrumental in successfully and efficiently converting this former landfill into vibrant habitat, resulting in savings of more than $700,000.

Recycling for Wildlife

A similar transformation has occurred at a landfill on the base’s Site 36. This landfill, most likely originally part of Chickamuxen Creek and a nearby wetland, was used from 1972 to 1974 and has been inactive since that time. The fill material dumped into the creek was believed to contain metal casings from mines, bombs, and torpedoes—not exactly normal working conditions.

Cleanup focused on removing scrap metal and potential munitions items from the surface of the landfill and the shoreline. The multi-agency team hauled away more than 57,000 pounds of metal and other materials from the site, with much of it recycled rather than left under the existing soil cover. By taking a common-sense approach to removing this debris, the project managed risk and minimized environmental impacts by maintaining natural habitats, including forests and wetlands, whenever possible, while also ensuring the landfill’s soil cover would control pollution.

While there is still work to be done, progress abounds elsewhere on the naval facility. For example, the multi-agency cleanup team removed creek sediments contaminated with mercury and surrounding floodplain soils to protect and enhance restoration of habitat along a tributary to Mattawoman Creek. The tributary has been blocked off from the main channel to prevent mercury from getting to Mattawoman Creek, but with the mercury gone, there is now potential for opening up the tributary and reconnecting it with the creek.

Naval Support Facility Indian Head occupies a unique place in military history, and thanks to efficient collaboration among federal and state agencies working to clean it up, this locale again provides valuable and healthy habitat for fish, birds, and wildlife along the Chesapeake Bay.


Leave a comment

In Mapping the Fallout from the Deepwater Horizon Oil Spill, Developing One Tool to Bring Unity to the Response

This is a post by Katie Wagner, Amy Merten, and Michele Jacobi of NOAA’s Office of Response and Restoration.

The Deepwater Horizon Oil Spill: Five Years Later

This is the fifth in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

After an explosion took place on the Deepwater Horizon drilling platform in the Gulf of Mexico on April 20, 2010, responders sprang into action.

Vessels surveyed the area around the platform, oil booms were deployed, aerial surveying operations were launched, risk assessment and shoreline cleanup teams set out, and many other response activities were underway. Field teams and technical experts from around the country were immediately called to help with the response.

Mapping Organized Chaos

People at a crowded table with computers and maps.

During the Deepwater Horizon oil spill, NOAA debuted the online mapping tool ERMA, which organized crucial response data into one common picture for everyone involved in this monumental spill.

Among our many other responsibilities during this spill, NOAA’s Office of Response and Restoration reported to the scene to help manage the data and information being collected to inform spill response decisions occurring across multiple states and agencies.

The process of responding to an oil spill or natural disaster can often be described as “organized chaos.” Effectively managing the many activities and influxes of information during a response is crucial. Responders need to be aware of the local environment, equipment, and associated risks at the scene of the spill, and government leaders from the closest town to Washington, DC, need to make informed decisions about how to deal with the event. Data-rich maps are one way to organize these crucial data into one common operational picture that provides consistent “situational awareness” for everyone involved.

The Environmental Response Management Application (ERMA®) was developed by NOAA’s Office of Response and Restoration, the U.S. Environmental Protection Agency, and the University of New Hampshire in 2007 as a pilot project, initially focused on the New England coast. ERMA is an online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a centralized, interactive map for environmental disaster response.

In late March of 2010, ERMA was tested in a special oil spill training drill known as the Spills of National Significance Exercise. The industry representatives, U.S. Coast Guard, and state partners participating in this mock oil spill response recognized ERMA’s potential for visualizing large amounts of complex data and for sharing data with the public during an oil spill.

From Test to Trial by Fire

Twenty-five days later, the Deepwater Horizon disaster began. In the first couple of days after the accident, the ERMA team recognized that the scale of the still-developing oil spill would call for exactly the type of tools and skills for which their team had prepared.

A few days into the disaster, the ERMA team created a new, regional version of their web-based mapping application, incorporating data specific to the Gulf of Mexico and the rapidly escalating Deepwater Horizon oil spill. This included geographic response plans (which guide responses to oil spills in specific areas), oil spill trajectories, and locations of designated response vessels, aerial surveys of oil, oiled shoreline assessments, critical habitats, and fishery closure areas.

Screen shot of mapping program for Gulf of Mexico with oil spill data.

A few days into the disaster, the ERMA team created a new, regional version of their web-based mapping application, incorporating data specific to the Gulf of Mexico and the rapidly escalating Deepwater Horizon oil spill. Here, ERMA shows the location of the wellhead, the days of cumulative oiling on the ocean surface, and the level of oiling observed on shorelines. (NOAA)

Due to the size of the spill, NOAA’s Office of Response and Restoration was able to expand the team working on ERMA to include members skilled in data management and scientists familiar with the type of data being collected during a spill response. The ERMA team trained dozens of new Geographic Information Systems (GIS) staff to help upload and maintain the new Deepwater Horizon ERMA site as hundreds of data layers were created weekly.

Within a week of the start of the oil spill, NOAA sent the first of many ERMA team members to work in the command posts in Louisiana, where they could translate the needs of the Federal On-Scene Commanders (those in charge of the spill cleanup and response) into updates and changes for ERMA software developers to make to the mapping application.

ERMA played a critical role in the Deepwater Horizon oil spill response effort. Around a month into the spill, the U.S. Coast Guard selected ERMA as the official common operational picture for all federal, state, and local spill responders to use during the incident. With this special designation, the ERMA tool provided a quick visualization of the sprawling, complicated oil spill situation, and improved communication and coordination among responders, environmental stakeholders, and decision makers. On June 15, 2010 the White House presented a publicly accessible version of the Deepwater Horizon ERMA website, which drew more than 3 million hits the first day it was live. This was an unprecedented effort to make transparent data usually only shared within the command post of an oil spill.

The value of the new tool to the response won it praise from retired Coast Guard Admiral Thad Allen, the national incident commander for the spill, who described its impact, saying, “It allowed us to have a complete picture of what we were doing and what was occurring in the Gulf. The technology has been there, but it’s never been applied in a disaster that was this large scale. It is something that is going to have to incorporate this system into our disaster response doctrine.” Additionally the NOAA development team was one of the finalists for the 2011 Samuel J. Heyman Service to America Medal for Homeland Security contributions by a member of the federal civil service.

From Response to Restoration

In addition to mapping the Deepwater Horizon response and cleanup efforts, ERMA continues to be an active resource throughout the ongoing Natural Resource Damage Assessment and related restoration planning. The Gulf of Mexico coastal resources and habitat data available in ERMA are helping researchers assess the environmental injuries caused by the oil spill.

Five years after this mapping tool’s debut on the national stage during the Deepwater Horizon oil spill, developers continue to improve the platform. NOAA now has nine other ERMA sites customized for various U.S. regions, each of which is kept up-to-date with basic information available around the clock and is publicly available. All regional ERMA websites now reside in the federally approved Amazon Cloud environment for online scalability and durability, and the platform has a flexible framework for incorporating data sources from a variety of organizations.

The Deepwater Horizon oil spill shifted our perspective of who needs data and when they need it. With the help of ERMA, the public, academic communities, and those outside of the typical environmental response community can access data collected during a disaster and be engaged in future incidents like never before.

Visit ERMA Deepwater Gulf Response for a first-hand look at up-to-date and historical data collected during the response, assessment, and restoration planning phases of the Deepwater Horizon oil spill.


Leave a comment

Who Is Funding Research and Restoration in the Gulf of Mexico After the Deepwater Horizon Oil Spill?

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration, and Frank Parker, Associate Director for the NOAA RESTORE Act Science Program, with NOAA’s National Centers for Coastal Ocean Science.

The Deepwater Horizon Oil Spill: Five Years Later

This is the fourth in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

When an oil spill takes place, people want to see the coasts, fish, wildlife, and recreational opportunities affected by that spill restored—so they can be as they were before, as quickly as possible. Fortunately, the Oil Pollution Act of 1990 supports this. After most major oil spills, what routinely happens is the government undertakes a Natural Resource Damage Assessment, a rigorous, scientific process of assessing environmental injuries and, with public input, identifying and implementing the appropriate amount of restoration to compensate for the injuries resulting from this spill (all paid for by those responsible for the pollution).

What is not routine in the wake of an oil spill is the groundswell of support for even more research and restoration, beyond the scope of the usual damage assessment process, to bolster the resilience of the impacted ecosystem and coastal communities. Yet that is exactly what happened after the Deepwater Horizon well blowout in 2010, which renewed a national interest in the unique environment that is the Gulf of Mexico.

In the wake of this disaster, there have been various additional investments, outside of the Natural Resource Damage Assessment process, in more broadly learning about and restoring the Gulf of Mexico. These distinct efforts to fund research and restoration in the Gulf have been sizable, but keeping track of them can be, frankly, a bit confusing.

The many organizations involved are working to ensure the Gulf’s new infusions of funding for restoration and research are well coordinated. However, keep in mind that each effort is independent of the others in funding mechanism, primary mandate, and process.

Tracking Dollars for Gulf Restoration

In one effort, announced while the Macondo well was still gushing oil, BP dedicated up to $500 million dollars to be spent over 10 years “to fund an independent research program designed to study the impact of the oil spill and its associated response on the environment and public health in the Gulf of Mexico.” This investment spawned the Gulf of Mexico Research Initiative, or GOMRI, which is governed by an independent, academic research board of 20 science, public health, and research administration experts and independent of BP’s influence.

Meanwhile, BP faced both potential criminal and civil penalties under the Clean Water Act, which regulates the discharge of pollutants into U.S. waters. When such penalties are pursued by the government for pollution events, such as an oil spill, a portion of the criminal monetary penalties are usually paid to a local environmental foundation or conservation organization to administer the funds.

Ultimately, BP agreed to a $4 billion criminal settlement in 2013, with the bulk of that money going to North American Wetlands Conservation Fund, National Fish and Wildlife Foundation, and National Academy of Sciences.

Chart showing various investments and their recipients for science and restoration efforts in the Gulf of Mexico after the Deepwater Horizon oil spill.

Science and restoration initiatives in the Gulf of Mexico following the Deepwater Horizon oil spill. (NOAA)

That still leaves civil penalties to be determined. Normally, civil penalties under the Clean Water Act are directed to the General Treasury.

However, Congress passed legislation calling for 80 percent of the administrative and civil penalties related to the Deepwater Horizon oil spill to be diverted directly to the Gulf of Mexico for ecological and economic restoration. This legislation, known as the RESTORE Act (Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012), passed on July 6, 2012.

While the full extent of BP’s civil penalties have yet to be determined, in 2013 the Department of Justice finalized a civil settlement with Transocean in the amount of $1 billion. This settlement results in more than $800 million going to the Gulf of Mexico under the RESTORE Act. As to penalties for BP, the court has currently ruled on two of the three trial phases. Based on those rulings, currently under appeal, the penalty cap for BP is $13.7 billion. A third trial phase for factors that are taken into account in establishing the penalty at or under that cap was concluded in February 2015. The court has yet to rule on the third phase of the trial, and the pending appeals have not yet been heard by the appeals court.

NOAA and Restoration in the Gulf

So where does NOAA fit into all of this? NOAA is carrying out its usual duties of working with its partners to assess injury to and restore impacted natural resources through the Natural Resource Damage Assessment process. However, NOAA also is involved in supporting broader Gulf research and resilience, which will complement the damage assessment process, in two new ways through the RESTORE Act.

First, NOAA is supporting in the RESTORE Act’s Gulf Coast Ecosystem Restoration Council, which is chaired by Commerce Secretary Penny Pritzker (NOAA sits in the Department of Commerce). Second, NOAA is leading the Gulf Coast Ecosystem Restoration Science, Observation, Monitoring, and Technology Program, or more simply, the NOAA RESTORE Act Science Program.

A NOAA ship at dock.

NOAA is leading a science program aimed at improving our understanding of the Gulf of Mexico and the plants and animals that live there, in order to better protect and preserve them. (NOAA)

This program exists because we simply don’t know as much as we need to know about the Gulf of Mexico and the plants and animals that live there in order to reverse the general decline of coastal ecosystems and ensure resilience in the future.

To make sure this new science program addresses the needs of the region, NOAA, in partnership with the U.S. Fish and Wildlife Service, met with resource managers, scientists, and other Gulf of Mexico stakeholders to discuss what the focus of the program should be. We heard three key messages loud and clear:

  • Make sure the research we support is closely linked to regional resource management needs.
  • Coordinate with other science initiatives working in the region.
  • Make the results of research available quickly to those who could use them.
Woman checks for bubbles in a sample of water on board the NOAA Ship Pisces.

The NOAA RESTORE Act Science Program is already in the process of making available $2.5 million for research in the Gulf of Mexico, with more opportunities to come. (NOAA)

NOAA and the U.S. Fish and Wildlife Service have designed a science plan [PDF] for the NOAA RESTORE Act Science Program that outlines how we will make this happen.

The science plan describes the research priorities highlighted during our engagement with stakeholders and from reviewing earlier assessments of the science needed to better understand the Gulf of Mexico. These priorities will guide how the program directs its funding over the coming years.

The research priorities include improving our understanding of how much and when freshwater, sediment, and nutrients enter the coastal waters of the Gulf of Mexico and what this means for the growth of wetlands and the number of shellfish and fish in the Gulf of Mexico. Another priority is developing new techniques and technologies for measuring conditions in the Gulf to help inform resource management decisions.

Apply for Research Funding

Currently, the NOAA RESTORE Act Science Program is holding its first competition for funding, with over 100 research teams already responding. It will make $2.5 million available for researchers to review and integrate what we already know about the Gulf of Mexico and work with resource managers to develop strategies directing the program toward our ultimate goal of supporting the sustainability of the Gulf and its fisheries.

The results of this work also will help inform the direction of other science initiatives and restoration activities in the Gulf region. NOAA and the U.S. Fish and Wildlife Service will announce the winners of this funding competition in the fall of 2015.

To learn more about the NOAA RESTORE Act Science Program and future funding opportunities, visit http://restoreactscienceprogram.noaa.gov/.


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


1 Comment

To Save Corals in an Oahu Bay, First Vacuum up Invasive Algae, Then Apply Sea Urchins

Diver placing algae into Super Sucker vacuum hose.

With the help of a gentle vacuum hose attached to a barge — a device known as the “Super Sucker” — divers can now remove invasive algae from coral reefs in Kaneohe Bay in much less time. (Credit: State of Hawaii Division of Aquatic Resources)

Progress used to be painfully slow. On average, it would take a diver two strenuous hours to remove one square meter (roughly 10.5 square feet) of the exotic red algae carpeting coral reefs in Kaneohe Bay, Hawaii. In addition to ripping away thick mats of algae, divers also had to pluck off any remaining algae stuck to the reef and use a hand net to capture bits floating in the surrounding water. Even then, these invasive algae were quick to regrow from the tiniest remnants left behind.

Today, however, divers can clear the same area in roughly half the time, or even less, depending on how densely the algae are growing. How? With the help of a device called the “Super Sucker.”

This underwater vacuum is not much more than a barge equipped with a 40 horsepower pump and long hose that gets lowered into the water. Divers still pull off chunks of algae from the reef, but they then stuff it into the device’s hose. The steady, gentle suction of the Super Sucker pulls the algae—including any tiny drifting remnants—through the hose up to a mesh table on the barge. There, seawater drains out and any critters accidentally caught by the algae-vacuuming can be returned to the ocean. People on the barge can then pack the algae into mesh bags to be taken back to shore. (Watch a video of the Super Sucker at work.)

Super sucker barge with green collection hose in a tropical bay.

The Super Sucker barge at left in Kaneohe Bay. The green collection hose used to vacuum up invasive algae from the reefs below is visible on the water surface. (Credit: State of Hawaii Division of Aquatic Resources)

The success of the Super Sucker stands to be augmented with help from small, spiny sea creatures—sea urchins—as well as a new, dedicated infusion of funding from NOAA which will expand the device’s reach in Oahu’s Kaneohe Bay. But the question remains: How did exotic algae come to cause so much trouble for corals in the first place?

A Welcome Introduction, an Unintended Stay

The problematic marine algae, or seaweed, in Oahu’s Kaneohe Bay actually is a complex of two types of algae originally from Southeast Asia: Kappaphycus and Eucheuma. Both algae were brought to this area on the eastern side of Oahu in the 1970s in an attempt to cultivate them as a source of carrageenan, a thickening agent used in processed foods. While the agricultural endeavor never took off in Oahu, these algae did. Unfortunately, this was somewhat of a surprise. Two years after the algae’s introduction, several studies found a low likelihood of their escaping from experimental pens and threatening coral habitat in the bay.

In the decades since, Kappaphycus and Eucheuma have proven that prediction very wrong, as these algae are now comfortably established in Kaneohe Bay. Because these algae spread aggressively once they arrived in this new environment, they have earned the label “invasive.” The algae have been overgrowing the coral reefs, smothering and killing corals by blocking the sunlight these organisms need to survive. These days, some areas of Kaneohe Bay are no longer dominated by corals but instead by invasive algae.

Tumbleweed-like clumps of invasive algae on a coral reef.

Meet the complex of invasive algae plaguing coral reefs in Oahu’s Kaneohe Bay: Kappaphycus and Eucheuma. These thick, warty, plastic-like, and irregularly branching algae grow in tumbleweed-like clumps, often smothering coral beneath them. (Credit: State of Hawaii Division of Aquatic Resources)

Delivering a Double-Whammy to Invasive Algae

Around 2005, NOAA helped fund the development of the Super Sucker as part of a joint project between the State of Hawaii and the Nature Conservancy. The project was aimed at containing these invasive algae in Kaneohe Bay, a partnership that continues to the present day.

Today, NOAA is becoming involved once more by expanding this project and bringing the Super Sucker into new parts of Kaneohe Bay. NOAA will accomplish this by using part of the nearly $6 million available for restoration after the 2005 grounding of the ship M/V Cape Flattery. When the ship became lodged on coral reefs south of Oahu, efforts to refloat the vessel and avoid an oil spill caused extensive harm to coral habitat across approximately 20 acres, an area now recovering well on its own.

Sea urchins grazing on seaweed on a coral reef.

The native sea urchins eat away at any invasive algae left on the coral, keeping the algae’s growth in check. The State of Hawaii Division of Aquatic Resources is raising these urchins in captivity and releasing them into Kaneohe Bay. (Credit: State of Hawaii Division of Aquatic Resources)

This restoration project will not just involve the Super Sucker, however. Another key component in controlling invasive algae in Kaneohe Bay is reintroducing a native predator. While most plant-eating fish there prefer to graze on other, tastier algae, native sea urchins have shown they are happy to munch away at the tiniest scraps of Kappaphycus and Eucheuma found on reefs. But the number of sea urchins in Kaneohe Bay is unusually low.

Currently, the State of Hawaii Division of Aquatic Resources is raising native sea urchins and experimentally releasing them back into the bay. NOAA’s restoration project for the Cape Flattery coral grounding would greatly expand the combined use of the Super Sucker and reintroduced sea urchins to control the invasive algae.

Together, mechanically removing the algae with the Super Sucker and reintroducing sea urchins in the same area should be effective at curbing the regrowth and spread of invasive algae in the northern part of Kaneohe Bay. Making sure invasive algae do not spread outside the bay is an important part of this coral restoration project. This northern portion, near a major entrance to the bay, is a critical area for containing the algae and making sure it doesn’t escape from the bay to other near shore reefs.

Saving Corals and Creating Fertilizer

Top, coral reef with invasive algae. Bottom, same reef after algae was removed.

Top, coral reef before Super Sucker operations, and bottom, the same reef after the Super Sucker has cleared away the invasive algae. (Credit: State of Hawaii Division of Aquatic Resources)

Ultimately, the goal is to move toward natural controls (i.e., the sea urchins) taking over the containment of Kappaphycus and Eucheuma algae in Kaneohe Bay.

The benefits of removing the algae from the area’s coral reefs are two-fold. First, clearing away the carpets of algae saves the corals that are being smothered beneath them. Second, opening up other areas of the seafloor previously covered by algae creates space for young corals to settle and establish themselves, growing new reef habitat.

Another benefit of clearing the invasive algae in this project is that it provides a source of free fertilizer for local farmers. Not only does it offer a sustainable source of nutrients on agricultural fields but the algae breaks down more slowly and is therefore less susceptible than commercial fertilizer to leaching into nearby waterways.

Even so, a 2004 study confirmed that these algae do not survive in waters with low salt levels, meaning that any algae that do run off from farms into nearby streams will not eventually re-infect the marine environment. Another win.


Leave a comment

Despite Threats, Celebrating Restoration Successes for Seabirds in California

Flocking seabirds on ocean surface with humpback whale tale and NOAA ship in the distance.

Thousands of seabirds flock around a diving humpback whale off Alaska’s Unalaska Island. The NOAA Ship OSCAR DYSON is in the distance. (NOAA)

Seabirds: You may see them perched along a fishing pier poised to scavenge or swooping for fish by the thousands out in the open ocean. This diverse group of marine birds serves as a valuable indicator [PDF] of the health of the ocean and what they have been telling us lately is that they face many threats.

Often victims of oil spills and other pollution, seabirds are threatened by a changing climate, hunting, and introduced species (such as rats or feral cats). In addition, they frequently get caught in fishing nets, a serious concern for many seabirds, particularly if they dive for food.

Yet it’s not all bad news for our feathered friends. Help is on the way.

Bait and Switch

While nearly 7,000 birds were estimated killed after the container ship Cosco Busan spilled heavy oil into San Francisco Bay in 2007, restoration projects are already underway. In 2014 alone, over $15 million was spread across more than 50 projects to enhance and restore beaches and habitat, including seabird habitat, around the Bay Area.

One project in particular is aimed at undoing the damage done to the threatened Marbled Murrelet. In order for these small, chubby seabirds to recover from this oil spill, they need some help keeping jays from eating their eggs. For three years in a row, a restoration project has been working on this in the old growth forests around campgrounds in the Santa Cruz Mountains.

From the Cosco Busan Oil Spill Trustee Council [PDF]: “In order to train jays not to eat murrelet eggs, hundreds of chicken eggs were painted to look like murrelet eggs, injected with a chemical that makes the jays throw up, and placed throughout the forest. Monitoring suggests the jays learn to avoid the eggs and may teach their offspring as well.”

Cleaning up the Neighborhood

Meanwhile, down the California coast, seabirds in the Channel Islands were suffering as a result of the pesticide DDT and industrial chemicals that were dumped into the ocean by local industries years ago. The birds themselves were contaminated by the pollution and their eggshells became dangerously thin, reducing reproduction—a notorious effect of DDT. On top of all that, human activities had been altering seabird habitat on these islands for years.

NOAA’s Montrose Settlements Restoration Program has been focused on reversing this harmful trend with a number of projects to restore seabird nesting habitat, attract seabirds to the restored sites, and to remove non-native plants and animals on the Channel Islands and Baja California Pacific Islands.

On Scorpion Rock, a small islet located off the northeast coast of Santa Cruz Island, biologists have been transforming the inhospitable landscape for Cassin’s Auklets, a small open-ocean seabird. Scorpion Rock had been overrun with dense, non-native ice plant which prevented the seabirds from digging burrows to nest and provided little protection from predators.

Begun in 2008, the restoration of Scorpion Rock is nearly complete. The island now boasts a lush cover of 17 different native plant species, including shrubs that stabilize the soil and offer cover for nesting birds. That work has been paying off.

According to the Montrose Settlements Restoration Program: “Biologists have seen a 3-fold increase in the number of natural Cassin’s Auklets burrows since the project started. Over the last few years, biologists have also observed a lower number of dead adult auklets which means that the native plants are providing adequate cover from predators.”

In the final year of the project, the plan is to use sounds of breeding seabirds to attract greater numbers to the restored habitat on Scorpion Rock, and continue maintaining the native vegetation and monitoring the birds’ recovery.

Learn more about this and other seabird restoration projects in the Channel Islands and watch a video from 2010 about the restoration at Scorpion Rock during its earlier stages:

Follow

Get every new post delivered to your Inbox.

Join 587 other followers