NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Restoration of an Injured Caribbean Coral Reef

Broken coral on ocean floor.

A coral cache location where fractured corals were protected prior to reef reattachment. NOAA

The waters surrounding the Puerto Rico archipelago are known for the diversity and beauty of the coral reefs. Those reefs are also under great pressure from population density, land uses, and shipping traffic.

On Oct.  27, 2009 the tanker Port Stewart grounded in coral reef habitat on the southeast coast of Puerto Rico near the entrance to Yabucoa Channel. The tanker was carrying 7 million gallons of oil. Local efforts freed the ship the same day it grounded without an oil spill but both the grounding and removal process caused extensive injury to the reef.

Nearly 93 percent of Puerto Rico’s coral reefs are rated as threatened, with 84 percent at high risk and among the most threatened in the Caribbean. The Port Stewart incident directly destroyed about 512 square meters (about 5,551 square feet) of the living coral reef. The injured habitat had a diverse community of soft corals (octocorals), sponges, and hard corals (scleractinian), including Staghorn coral (Acropora cervicornis), a threatened species under the Endangered Species Act.

National Oceanic and Atmospheric Administration and the Puerto Rico Department of Natural and Environmental Resources officials have been working on a restoration plan for the area, which is now available for public comment. The period for comments ends Feb. 10, 2017.

When a reef is injured it’s important to take emergency restoration actions to salvage as many of the corals as possible. Following the grounding work began to triage corals and plan emergency restoration which lasted through 2010. This included surveying and mapping the area affected by the incident and salvaging as many living corals as possible. Emergency restoration efforts are designed to meet most of the actions needed to revive the injured reef.

Scuba diver underwater with string and plastic pipe grid.

Broken corals were draped on a floating coral array frame in order to grow bigger. Divers attached Acropora coral fragments, one of many coral types affected by the grounding. NOAA

In the Port Stewart case that included salvaging scleractinian corals, the hard reef-building animals that create skeletons under their skin. The skeletons are made from calcium carbonate and protect the coral animals and offer a base that other coral can attach themselves to, creating the reef community. The actions of emergency crews were able to save about 1,000 corals.

Scientists have monitored injured reef for the past six years and consider restoration efforts successful. According to monitoring reports, survivorship of reattached corals is comparable to that of naturally occurring corals in the area.

NOAA has the responsibility to conserve coral reef ecosystems under the Coral Reef Conservation Act of 2000. You can read more about how NOAA is working to restore damages reefs in the following articles:

Restoring a Coral Reef Hit by Tanker in Puerto Rico

NOAA and Partners Work Quickly to Save Corals Hit by Catamaran in Puerto Rico

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

How to Restore a Damaged Coral Reef

How Do Oil Spills Affect Coral Reefs?

The Ship M/V Jireh Runs Aground a Coral Reef in Puerto Rico

 


Leave a comment

Remediation vs. Restoration: A Tale of Two Terms

Tall grass growing in muddy marsh water.

Hazardous substances released over time from a Gulf of Mexico oil refinery required NOAA and its partners to restore intertidal marsh at the Lower Neches Water Management Area in Port Arthur, Texas. Photographed here in 2006. (NOAA)

When rivers, coastal waters or the ocean are polluted, regardless of the source, government agencies begin using terms that may be unfamiliar to the general public. Two common terms used are remediation and restoration.

Remediation and restoration describe actions that return natural areas to healthy communities for fish, wildlife, and people. So what is the difference between remediation and restoration?

What is Remediation?

Remediation is the process of stopping or reducing pollution that is threatening the health of people or wildlife. For example, cleaning up sediments – the bottoms of rivers, lakes, marshes, and the ocean – often involves having to physically remove those sediments. One successful method of removing polluted sediments is dredging. Large buckets scoop up contaminated sediment which is then transported by barge to designated areas for safe disposal.

Mechanical shovel scooping rover water.

Excavator dredging soft sediment from Menominee River near former 8th Street slip. NOAA

The Environmental Protection Agency, along with state agencies, often lead these cleanup efforts. The Office of Response and Restoration (OR&R) scientists advise agencies on the most effective methods to minimize remaining contamination and how to avoid harm to plants and animals during the cleanup.

The input of these NOAA scientists helps guide cleanup decisions and promotes faster recovery of wildlife and fish using the area, ultimately benefiting not just the environment but the local economies and communities of these formerly contaminated areas.

What is Restoration?

So if remediation is removal and cleanup of pollution, what is left to do? Plenty.

Once the harmful contamination causing pollutants are removed or contained, the next step is to restore the habitat. Restoration is the enhancement, creation, or re-creation of habitats, those places where fish and wildlife live. During this phase, construction projects are often undertaken to return the environment to a healthy functioning ecosystem.

Volunteers planting grass.

Volunteers plant Switch Grass during the 2010 NOAA Restoration Day event at the NOAA Cooperative Oxford Lab in Oxford, Maryland

Remediation controls the pollution, while restoration efforts, like the construction of wetlands and the planting of trees and vegetation, complete the process of providing healthy habitat for fish and wildlife, and ensuring safe environments for people to live and work in.

Remediation and restoration are most effective when they are done together in a coordinated effort. OR&R partners with other federal and state agencies and nonprofit organizations to not only cleanup pollution and restore habitats, but to hold polluters accountable to fund restoration efforts across America.

Some of the many contaminated sites where OR&R’s remediation and restoration work is ongoing include:


Leave a comment

Preserving Natural Resources for All Americans

People standing in boats on river spraying water with hoses.

To clean sediment following the oil spill in the Kalamazoo River, Michigan, workers sprayed sediment with water and agitated sediment by hand with a rake. (U.S. Environmental Protection Agency)

By Robin Garcia

NOAA’s Office of Response and Restoration (OR&R) works with federal, state, and local agencies to prepare for, respond to, and assess the risks to natural resources following oil spills and hazardous waste releases. Often, OR&R also collaborates with Native American tribes to ensure that response, assessment, and restoration efforts fully address the needs of all communities.

In recognition of Native American History Month, here are past oil spills and hazardous waste releases that OR&R worked on with Native American tribes as trustees, or government officials acting on behalf of the public.

  • Industrial activities beginning in the 1890s released polycyclic aromatic hydrocarbons (PAHs) and other toxins into the St. Louis River in Minnesota. Recreational activities are discouraged in the area and recreational fishing has decreased, likely due to visible sheens. NOAA, the Fond du Lac Bands of Lake Superior Chippewa, and other trustees have completed an assessment of the site and are developing restoration projects with the responsible parties.
  • Since the early 1900s, activities at a wood treatment facility and a shipyard released toxins including PAHs, mercury, and heavy metals into Eagle Harbor in Washington. About 500 acres of Eagle Harbor were contaminated, and seafood consumption advisories are still in effect. NOAA, the Suquamish Tribe, the Muckleshoot Tribe, and other trustees reached a settlement in 1994 and a restoration plan was finalized in 2009. Projects restored and created habitats for species including Chinook salmon and steelhead trout. While these projects are complete, NOAA is providing input as the U.S. Environmental Protection Agency considers additional cleanup efforts.

    Diver underwater planting eel grass.

    A diver plants eelgrass at the Milwaukee Dock site in Eagle Harbor, Washington. (NOAA)

  • In March 1999, a tanker truck jackknifed on a highway, spilling over 5000 gallons of gasoline onto the reservation of the Confederated Tribes of the Warm Springs Reservation of Oregon and into Beaver Creek. The spill occurred in an important spawning and rearing area for Chinook salmon, steelhead, and other migratory fishes. NOAA, the Confederated Tribes, and the U.S. Department of the Interior reached a settlement with the responsible party in 2006 and finalized a restoration plan in 2009. Restoration projects began in 2011, including the restoration of native vegetation and the development of beaver-dam mimicking structures.

Robin Garcia is the Policy Analyst for the Office of Response and Restoration. She supports congressional and partner outreach for the Emergency Response Division, the Assessment and Restoration Division, and NOAA’s Disaster Response Center.


1 Comment

An Estuary in the Shadow of Seattle

People working at marsh's edge.

Volunteers help restore the Duwamish River by planting native vegetation at an Earth Day event hosted at Codiga Park, April 2008. (NOAA)

Update: It’s been announced that a proposed settlement was reached with Seattle to resolve its liability for injured natural resources. Seattle has purchased restoration credits from Bluefield Holdings Inc., a company that develops restoration projects. The city’s credit purchase totals approximately $3.5 million worth of restoration. This is the first natural resource damages settlement to fund restoration through the purchase of credits by a restoration development company. For more details: https://www.justice.gov/opa/pr/city-seattle-agrees-natural-resource-damages-settlement-using-new-market-based-approach

What makes river water flow in one direction in the morning and change direction in the afternoon? Tides.

Where the Duwamish River meets Puget Sound in Washington state this shift of water flow happens daily. The Duwamish pours into the salty waters of Puget Sound, making it Seattle’s downtown estuary. The powerful tides that fill and drain the sound push and pull on the Duwamish causing a shift in directions at the river’s estuary.

This estuary does not look like the estuaries from high school text books. It no longer has a wide delta where the freshwater river fans out to meet the salty ocean. Instead, it looks like a channelized waterway. Almost all of the Duwamish estuarine wetlands and mudflats have been lost to dredging or filling for industrial purposes. Restoring the Duwamish‘s estuary is a massive challenge—requiring government agencies, industry, and the public to work together.

Aerial view of city with river.

Aerial photograph of the Lower Duwamish River. Harbor Island and Elliott Bay are shown in the top left and downtown Seattle in the top center of the photograph. (NOAA)

I am happy to report a significant step forward in this collaboration. NOAA recently produced key answers to some tough questions, based on lessons we learned as we worked on this restoration effort: What works the best to restore this highly urban and developed river and estuary? What are some of the key obstacles we encountered?

Main challenges for restoring the Duwamish:

  • Dealing with costs and challenges of existing contamination
  • Preventing erosion of new restoration
  • Keeping newly-planted vegetation alive—geese and other wildlife love to eat newly planted restoration sites

Key lessons learned for successful restoration:

  • Plan for uncertainty: the most common issue for restoration in urban areas is discovering unexpected challenges, such as sediment contamination during construction.
  • Allow for ongoing maintenance: Restoration isn’t over just because a project is complete. To ensure the long-term success of restoration efforts, continued stewardship of the site is necessary and should be included in project planning.
  • Get the biggest bang for your buck: When companies conduct cleanups of their sites, it is most cost effective to conduct restoration at the same time.
River with grid strung above it.

Geese inside goose exclusion fencing at Boeing Project. (Credit: Boeing)

The challenges and recommendations are only a snapshot of what can be found in the NOAA report, Habitat Restoration in an Urban Waterway: Lessons Learned from the Lower Duwamish River. While the Duwamish estuary may look nothing like it did historically, it is important to always be reminded that it is still full of life. From salmon to kayakers to industry, the estuary serves a key role in the Seattle community. Learn more about what we are doing to restore the Duwamish River.


Leave a comment

Studying Marine Life a Year After the Oil Spill at Refugio State Beach

One year after the pipeline oil spill at Refugio State Beach near Santa Barbara, California, scientists from NOAA and our partners have been back to the site of the spill. They are gathering a new round of samples to help determine the health of the environment and marine life.

This May and June, these teams have been conducting comprehensive scientific surveys to collect data on three distinct but interconnected habitats within the impacted spill zone: sandy beach, subtidal, and rocky intertidal habitats.

Specifically, the surveys are examining:

  • talitrid (beach hopper or “sand flea”) populations in sandy beach habitats.
  • a variety of organisms in rocky intertidal habitat.
  • surfgrass in subtidal habitats.
  • fish, including grunion spawning on the beaches and surfperch in nearshore waters.

Information collected from these sampling efforts will be used to determine the amount of restoration needed to return the environment to the condition it would have been in if not for the spill, and to compensate the public for natural resource injuries and lost recreational opportunities. This is part of the Natural Resource Damage Assessment process, which evaluates the environmental impacts of pollution and implements restoration to make up for those effects.

Ten people stand in the beach surf pulling a seine net to shore.

Scientists pull in a seine net along a beach near Santa Barbara, California, about a year after the oil spill at Refugio State Beach. They are sampling fish known as surfperch to evaluate any impacts from the oil spill. (NOAA)

This pipeline spill occurred on May 19, 2015 and resulted in more than 100,000 gallons of crude oil being released on land, with a portion of the oil reaching the Pacific Ocean. Field teams documented dead fish, invertebrates, and other wildlife in the oiled areas following the spill. The spill also shut down fisheries, closed multiple beaches, and impacted recreational uses, such as camping, non-commercial fishing, and beach visits.

To submit a restoration project idea, please visit: http://bit.ly/refugiorestoration. Learn more about spill cleanup and response efforts at www.refugioresponse.com.


Leave a comment

Restoration on the Way for New Jersey’s Raritan River, Long Polluted by Industrial Waste

The Raritan River as it runs through a wooded area.

A draft restoration plan and environmental assessment is now available for the American Cyanamid Superfund Site which affected the Raritan River in northern New Jersey. (U.S. Coast Guard)

Update: Oct, 20, 2016—Restoration for the Raritan River moved one step closer with the U.S. Department of Justice’s announcement of a settlement for the American Cyanamid Superfund Site. Details can be found here.

Following years of intensive cleanup and assessment at the American Cyanamid Superfund Site, NOAA and our partners are now accepting public comment on a draft restoration plan and environmental assessment [PDF] for this northern New Jersey site.

For many years, the 575 acre site located along the Raritan River in Bridgewater Township was used by the American Cyanamid Company for chemical manufacturing and coal tar distillation.

However, chemical wastes released during manufacturing at the facility harmed natural resources in the sediments and surface waters of the Raritan River and its tributaries. The facility was designated a Superfund site in 1983 due to contamination by a variety of toxic substances including mercury, chromium, arsenic, lead, and PCBs.

The area affected by the contamination provides habitat for a variety of migratory fish, such as alewife, blueback herring, striped bass, rainbow smelt, American shad, American eel, and other aquatic life. In addition, large numbers of birds nest, forage, and migrate along the Raritan River, from raptors and songbirds to waterfowl and shorebirds.

Over the years, NOAA has worked with the U.S. Environmental Protection Agency to ensure a thorough cleanup to protect natural resources in the Raritan River watershed. NOAA and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, evaluated the extent of injury in the river and determined the best path toward restoration.

An Industrial History

Factories and trains at the American Cyanamid chemical manufacturing site, 1940.

The American Cyanamid Company, shown here circa 1940, produced fertilizers, cyanide, and other chemical products whose wastes were released directly into the Raritan River for decades. (Photographer unknown)

The American Cyanamid Company got its start in the early 1900s by developing an effective fertilizer ingredient, a compound of nitrogen, lime, and carbide called cyanamid. By the early 1920s, the company, whose focus had been primarily agricultural products, began producing cyanide for use in gold and silver extraction and hydrocyanic acid, important to rubber production.

Over the next several decades, the American Cyanamid Company diversified, adding chemicals, plastics, dyes, and resins to their growing line of products. Further expanding into pharmaceuticals, the company provided valuable medical products to the World War II effort.

Starting in the 1920s and continuing up to the 1980s, chemical waste associated with the company’s manufacturing practices became an issue. For decades, chemical waste was released directly into the Raritan River.

Waste treatment began in 1940, which meant it was buried at the site or stored in unlined “impoundments,” or reservoirs. That practice stopped in 1979 and dye manufacturing ended three years later. By 1985 there was no more direct discharge into the Raritan River and manufacturing at the site ceased in 1999. It is estimated that over time, 800,000 tons of chemical wastes were buried at the site.

A New Chapter for the Raritan River

The American Cyanamid site on the Raritan River in New Jersey.

The draft restoration plan for the Raritan River aims to restore passage for migratory fish while improving water quality and habitat due to years of industrial pollution at the American Cyanamid manufacturing site. (NOAA)

The restoration plan and environmental assessment were created by NOAA in coordination with the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection. The plan proposes restoration actions that will compensate for any injuries to the river and related natural resources.

A major component of the restoration would be the removal of the Weston Mill Dam, near the confluence of the Millstone and Raritan Rivers. The original dam, a barrier to migratory fish, is thought to have been built around 1700 to power a mill. Removal of the current dam, a 1930s-era concrete replacement of the original, will help to achieve the restoration goals of restoring passage for migratory fish while improving water quality and habitat.

As explained in the plan, removing this dam will return the flow of the Raritan River and the streams it feeds closer to their natural states and do so without negative impacts to endangered species or cultural, sociological, or archaeological resources.

Long situated in an area of industrial activity, the American Cyanamid Superfund Site is only one of several contaminated sites along the Raritan River and its tributaries. Many of these sites are now being remediated, and the watershed is being restored.

According to NOAA Regional Resource Coordinator, Reyhan Mehran, “While it’s likely that this site is among those that contributed to the general degradation of the Raritan River over the last century, the site’s cleanup and compensatory projects will be important parts of the story of restoring the Raritan.”

Learn how to comment on the draft restoration plan and environmental assessment.


Leave a comment

Creative Solutions Save Money and Marsh Along Galveston Bay, Texas

Hazardous waste sites create a cascade of impacts that affect the health of communities, water quality, and the local environment. That’s why the long-term cleanup and restoration of these sites often requires a coordinated—and creative—regional approach.

This was certainly the case for the Malone Services Company hazardous waste site in Texas City, Texas. By combining efforts and funding in unexpected ways, federal, state and local partners came up with the most effective restoration solutions for the area, saving time and money along the way.

A Hazardous History

Located on the shores of Swan Lake and Galveston Bay, the 150-acre Malone facility produced decades of pollution affecting both groundwater within the site and runoff into nearby surface waters, creating long-term contamination problems for the region. Hundreds of businesses sent more than 480 million gallons of waste to the Malone facility for reclamation, storage, and disposal. During its operation from 1964 to 1997, waste products from those industries included acids, contaminated residues, solvents, and waste oils.

Designated a Superfund site in 2001, state and federal agencies collaborated early on during the cleanup, investigating the extent of the contamination, assessing which natural resources were affected, and planning restoration solutions to make up for these impacts. By sharing information they all needed, the agencies avoided additional costs from performing independent studies.

Aerial view of Malone Services Company waste site next to wetlands and Galveston Bay.

An aerial view of the Malone Services Company hazardous waste site shows the proximity of wetlands and Galveston Bay. (Department of the Interior)

Officially called “trustees,” the state and federal agencies involved included the Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, the Texas General Land Office, NOAA, and the U.S. Fish and Wildlife Service. Working together, the trustees carried out the Natural Resources Damage Assessment process for the Malone waste site. In 2012, they reached a settlement with the responsible parties for approximately $3.1 million. In the settlement, the trustees determined that Malone’s pollution had significant negative impacts on natural resources, affecting upland-woodland, freshwater marsh, and saltwater marsh habitat around the Malone site.

To restore those natural resources, the trustees finalized the damage assessment and restoration plan [PDF] in 2015.  Key elements of the plan center on restoring nearby natural areas, including freshwater wetlands in Campbell Bayou, terrestrial woodlands in the Virginia Peninsula Preserve, and intertidal saltwater wetlands in Pierce Marsh.

Creative Restoration at Pierce Marsh

Situated on the north shore of West Galveston Bay, not far from the Malone site, Pierce Marsh covers more than 2,300 acres, supports vibrant seasonal and year-round bird and fish populations, and is home to commercial and recreational fisheries. It is also located near vital, colonial water bird nesting islands and serves as an important feeding area during the nesting season.

However, the marsh became completely flooded by the 1990s, compromising its habitat quality as the ground beneath it sank due to subsidence. “Pierce Marsh has experienced one of the greatest rates of wetland loss in Galveston Bay and the restoration of its fish and wildlife habitat is recognized as a regional restoration priority,” noted Jamie Schubert, NOAA Restoration Center Marine Habitat Specialist. The Galveston Bay Foundation, a co-owner of the land, has spent the last 15 years methodically restoring the marsh.

Money from the Malone settlement is funding the restoration of 70 acres of wetland at Pierce Marsh. Having each federal and state agency contribute to a portion of the success—through the funding, planning, engineering, design, permitting, implementation, or monitoring—this restoration project has saved time and money.

Birds swoop over a pipeline releasing mud into a marsh.

Sediments pouring from the end of a long pipeline are raising the ground elevation of Pierce Marsh, improving habitat for birds and fish and helping make up for the loss of similar habitat due to pollution at the Malone waste site. (Credit: John Morris/Mike Hooks, Inc.)

One cost-saving example came out of NOAA habitat conservation experts and U.S. Army Corps of Engineers project manager, Seth Jones, both serving on an Interagency Coordination Team for the Texas Gulf Intracoastal Waterway. The Corps maintains the waterway, dredging it deep and wide enough to meet current shipping demands. Out of those meetings emerged the idea to “beneficially” use the sediments from the waterway dredging to raise the ground level of Pierce Marsh.

“Our project delivery team included NOAA, the Galveston Bay Foundation, Texas Parks and Wildlife, U.S. Fish and Wildlife Service, the Texas General Land Office, and the Texas Department of Transportation,” said Jones. “It was because of their instrumental input throughout the design phase that we are going to get a good start on the Galveston Bay Foundation’s long-term marsh restoration plan at Pierce Marsh complex.”

To pay for transportation of the dredged sediments to restore the marsh, the Texas trustees recommended that combined settlement funds from the Malone Services Company site, the Tex Tin hazardous waste site (also in the area), and another Texas state pollution case could help fund the needed restoration, yielding more restoration for their dollars.

“This beneficial use project has multiple benefits—it keeps the dredged material away from existing seagrass areas in West Bay and helps restore lost wetland habitat that has disappeared over the last fifty years in this area,” said Bob Stokes, President of Galveston Bay Foundation.

A Restoration Recipe for Success

Small levee of sediment and grass in a marsh.

A small levee constructed in Pierce Marsh, near Galveston Bay, Texas, contains dredged sediments that will restore marsh elevation and improve habitat quality. (NOAA)

Members of the trustee council have expressed enthusiasm for the project as well. “The U.S. Fish and Wildlife Service is excited to be part of the Pierce Marsh restoration project, which will restore estuary marsh habitat and benefit migratory birds and waterfowl,” said Benjamin Tuggle, Southwest Regional Director, U.S. Fish and Wildlife Service. “Multiple state, federal, and NGO partners have come together to restore contaminated areas at the Malone site.”

The Texas trustees anticipate building upon these efforts and using this approach to continue restoring coastal marshes, making ongoing monitoring of the project very important. They have partnered with Galveston Bay Foundation and Ducks Unlimited to monitor sediment settlement rates, which are used to assess project success and inform future projects.

“The Pierce Marsh reclamation project will make a significant contribution to restoring the coastal wetlands and natural resources that have been lost over time in this part of West Galveston Bay,” according to Richard Seiler, Program Manager of the Texas Commission on Environmental Quality Natural Resource Trustee Program. “The project represents a true team effort between the Texas Commission on Environmental Quality and the other state and federal natural resource trustees, the U.S. Army Corps of Engineers, and our NGO partners, the Galveston Bay Foundation and Ducks Unlimited.”

The restoration of Pierce Marsh is a success story of interagency cooperation and partner coordination. Federal and state agencies and non-profit organizations with differing missions came together on a project that would benefit everyone involved. Working together to share financial and technical resources, ultimately enabled them to use sediment historically viewed as waste material to restore vital coastal habitat, enhancing the area for wildlife and fisheries for generations to come.