NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Studying Marine Life a Year After the Oil Spill at Refugio State Beach

One year after the pipeline oil spill at Refugio State Beach near Santa Barbara, California, scientists from NOAA and our partners have been back to the site of the spill. They are gathering a new round of samples to help determine the health of the environment and marine life.

This May and June, these teams have been conducting comprehensive scientific surveys to collect data on three distinct but interconnected habitats within the impacted spill zone: sandy beach, subtidal, and rocky intertidal habitats.

Specifically, the surveys are examining:

  • talitrid (beach hopper or “sand flea”) populations in sandy beach habitats.
  • a variety of organisms in rocky intertidal habitat.
  • surfgrass in subtidal habitats.
  • fish, including grunion spawning on the beaches and surfperch in nearshore waters.

Information collected from these sampling efforts will be used to determine the amount of restoration needed to return the environment to the condition it would have been in if not for the spill, and to compensate the public for natural resource injuries and lost recreational opportunities. This is part of the Natural Resource Damage Assessment process, which evaluates the environmental impacts of pollution and implements restoration to make up for those effects.

Ten people stand in the beach surf pulling a seine net to shore.

Scientists pull in a seine net along a beach near Santa Barbara, California, about a year after the oil spill at Refugio State Beach. They are sampling fish known as surfperch to evaluate any impacts from the oil spill. (NOAA)

This pipeline spill occurred on May 19, 2015 and resulted in more than 100,000 gallons of crude oil being released on land, with a portion of the oil reaching the Pacific Ocean. Field teams documented dead fish, invertebrates, and other wildlife in the oiled areas following the spill. The spill also shut down fisheries, closed multiple beaches, and impacted recreational uses, such as camping, non-commercial fishing, and beach visits.

To submit a restoration project idea, please visit: http://bit.ly/refugiorestoration. Learn more about spill cleanup and response efforts at www.refugioresponse.com.


Leave a comment

Restoration on the Way for New Jersey’s Raritan River, Long Polluted by Industrial Waste

The Raritan River as it runs through a wooded area.

A draft restoration plan and environmental assessment is now available for the American Cyanamid Superfund Site which affected the Raritan River in northern New Jersey. (U.S. Coast Guard)

Following years of intensive cleanup and assessment at the American Cyanamid Superfund Site, NOAA and our partners are now accepting public comment on a draft restoration plan and environmental assessment [PDF] for this northern New Jersey site.

For many years, the 575 acre site located along the Raritan River in Bridgewater Township was used by the American Cyanamid Company for chemical manufacturing and coal tar distillation.

However, chemical wastes released during manufacturing at the facility harmed natural resources in the sediments and surface waters of the Raritan River and its tributaries. The facility was designated a Superfund site in 1983 due to contamination by a variety of toxic substances including mercury, chromium, arsenic, lead, and PCBs.

The area affected by the contamination provides habitat for a variety of migratory fish, such as alewife, blueback herring, striped bass, rainbow smelt, American shad, American eel, and other aquatic life. In addition, large numbers of birds nest, forage, and migrate along the Raritan River, from raptors and songbirds to waterfowl and shorebirds.

Over the years, NOAA has worked with the U.S. Environmental Protection Agency to ensure a thorough cleanup to protect natural resources in the Raritan River watershed. NOAA and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, evaluated the extent of injury in the river and determined the best path toward restoration.

An Industrial History

Factories and trains at the American Cyanamid chemical manufacturing site, 1940.

The American Cyanamid Company, shown here circa 1940, produced fertilizers, cyanide, and other chemical products whose wastes were released directly into the Raritan River for decades. (Photographer unknown)

The American Cyanamid Company got its start in the early 1900s by developing an effective fertilizer ingredient, a compound of nitrogen, lime, and carbide called cyanamid. By the early 1920s, the company, whose focus had been primarily agricultural products, began producing cyanide for use in gold and silver extraction and hydrocyanic acid, important to rubber production.

Over the next several decades, the American Cyanamid Company diversified, adding chemicals, plastics, dyes, and resins to their growing line of products. Further expanding into pharmaceuticals, the company provided valuable medical products to the World War II effort.

Starting in the 1920s and continuing up to the 1980s, chemical waste associated with the company’s manufacturing practices became an issue. For decades, chemical waste was released directly into the Raritan River.

Waste treatment began in 1940, which meant it was buried at the site or stored in unlined “impoundments,” or reservoirs. That practice stopped in 1979 and dye manufacturing ended three years later. By 1985 there was no more direct discharge into the Raritan River and manufacturing at the site ceased in 1999. It is estimated that over time, 800,000 tons of chemical wastes were buried at the site.

A New Chapter for the Raritan River

The American Cyanamid site on the Raritan River in New Jersey.

The draft restoration plan for the Raritan River aims to restore passage for migratory fish while improving water quality and habitat due to years of industrial pollution at the American Cyanamid manufacturing site. (NOAA)

The restoration plan and environmental assessment were created by NOAA in coordination with the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection. The plan proposes restoration actions that will compensate for any injuries to the river and related natural resources.

A major component of the restoration would be the removal of the Weston Mill Dam, near the confluence of the Millstone and Raritan Rivers. The original dam, a barrier to migratory fish, is thought to have been built around 1700 to power a mill. Removal of the current dam, a 1930s-era concrete replacement of the original, will help to achieve the restoration goals of restoring passage for migratory fish while improving water quality and habitat.

As explained in the plan, removing this dam will return the flow of the Raritan River and the streams it feeds closer to their natural states and do so without negative impacts to endangered species or cultural, sociological, or archaeological resources.

Long situated in an area of industrial activity, the American Cyanamid Superfund Site is only one of several contaminated sites along the Raritan River and its tributaries. Many of these sites are now being remediated, and the watershed is being restored.

According to NOAA Regional Resource Coordinator, Reyhan Mehran, “While it’s likely that this site is among those that contributed to the general degradation of the Raritan River over the last century, the site’s cleanup and compensatory projects will be important parts of the story of restoring the Raritan.”

Learn how to comment on the draft restoration plan and environmental assessment.


Leave a comment

Creative Solutions Save Money and Marsh Along Galveston Bay, Texas

Hazardous waste sites create a cascade of impacts that affect the health of communities, water quality, and the local environment. That’s why the long-term cleanup and restoration of these sites often requires a coordinated—and creative—regional approach.

This was certainly the case for the Malone Services Company hazardous waste site in Texas City, Texas. By combining efforts and funding in unexpected ways, federal, state and local partners came up with the most effective restoration solutions for the area, saving time and money along the way.

A Hazardous History

Located on the shores of Swan Lake and Galveston Bay, the 150-acre Malone facility produced decades of pollution affecting both groundwater within the site and runoff into nearby surface waters, creating long-term contamination problems for the region. Hundreds of businesses sent more than 480 million gallons of waste to the Malone facility for reclamation, storage, and disposal. During its operation from 1964 to 1997, waste products from those industries included acids, contaminated residues, solvents, and waste oils.

Designated a Superfund site in 2001, state and federal agencies collaborated early on during the cleanup, investigating the extent of the contamination, assessing which natural resources were affected, and planning restoration solutions to make up for these impacts. By sharing information they all needed, the agencies avoided additional costs from performing independent studies.

Aerial view of Malone Services Company waste site next to wetlands and Galveston Bay.

An aerial view of the Malone Services Company hazardous waste site shows the proximity of wetlands and Galveston Bay. (Department of the Interior)

Officially called “trustees,” the state and federal agencies involved included the Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, the Texas General Land Office, NOAA, and the U.S. Fish and Wildlife Service. Working together, the trustees carried out the Natural Resources Damage Assessment process for the Malone waste site. In 2012, they reached a settlement with the responsible parties for approximately $3.1 million. In the settlement, the trustees determined that Malone’s pollution had significant negative impacts on natural resources, affecting upland-woodland, freshwater marsh, and saltwater marsh habitat around the Malone site.

To restore those natural resources, the trustees finalized the damage assessment and restoration plan [PDF] in 2015.  Key elements of the plan center on restoring nearby natural areas, including freshwater wetlands in Campbell Bayou, terrestrial woodlands in the Virginia Peninsula Preserve, and intertidal saltwater wetlands in Pierce Marsh.

Creative Restoration at Pierce Marsh

Situated on the north shore of West Galveston Bay, not far from the Malone site, Pierce Marsh covers more than 2,300 acres, supports vibrant seasonal and year-round bird and fish populations, and is home to commercial and recreational fisheries. It is also located near vital, colonial water bird nesting islands and serves as an important feeding area during the nesting season.

However, the marsh became completely flooded by the 1990s, compromising its habitat quality as the ground beneath it sank due to subsidence. “Pierce Marsh has experienced one of the greatest rates of wetland loss in Galveston Bay and the restoration of its fish and wildlife habitat is recognized as a regional restoration priority,” noted Jamie Schubert, NOAA Restoration Center Marine Habitat Specialist. The Galveston Bay Foundation, a co-owner of the land, has spent the last 15 years methodically restoring the marsh.

Money from the Malone settlement is funding the restoration of 70 acres of wetland at Pierce Marsh. Having each federal and state agency contribute to a portion of the success—through the funding, planning, engineering, design, permitting, implementation, or monitoring—this restoration project has saved time and money.

Birds swoop over a pipeline releasing mud into a marsh.

Sediments pouring from the end of a long pipeline are raising the ground elevation of Pierce Marsh, improving habitat for birds and fish and helping make up for the loss of similar habitat due to pollution at the Malone waste site. (Credit: John Morris/Mike Hooks, Inc.)

One cost-saving example came out of NOAA habitat conservation experts and U.S. Army Corps of Engineers project manager, Seth Jones, both serving on an Interagency Coordination Team for the Texas Gulf Intracoastal Waterway. The Corps maintains the waterway, dredging it deep and wide enough to meet current shipping demands. Out of those meetings emerged the idea to “beneficially” use the sediments from the waterway dredging to raise the ground level of Pierce Marsh.

“Our project delivery team included NOAA, the Galveston Bay Foundation, Texas Parks and Wildlife, U.S. Fish and Wildlife Service, the Texas General Land Office, and the Texas Department of Transportation,” said Jones. “It was because of their instrumental input throughout the design phase that we are going to get a good start on the Galveston Bay Foundation’s long-term marsh restoration plan at Pierce Marsh complex.”

To pay for transportation of the dredged sediments to restore the marsh, the Texas trustees recommended that combined settlement funds from the Malone Services Company site, the Tex Tin hazardous waste site (also in the area), and another Texas state pollution case could help fund the needed restoration, yielding more restoration for their dollars.

“This beneficial use project has multiple benefits—it keeps the dredged material away from existing seagrass areas in West Bay and helps restore lost wetland habitat that has disappeared over the last fifty years in this area,” said Bob Stokes, President of Galveston Bay Foundation.

A Restoration Recipe for Success

Small levee of sediment and grass in a marsh.

A small levee constructed in Pierce Marsh, near Galveston Bay, Texas, contains dredged sediments that will restore marsh elevation and improve habitat quality. (NOAA)

Members of the trustee council have expressed enthusiasm for the project as well. “The U.S. Fish and Wildlife Service is excited to be part of the Pierce Marsh restoration project, which will restore estuary marsh habitat and benefit migratory birds and waterfowl,” said Benjamin Tuggle, Southwest Regional Director, U.S. Fish and Wildlife Service. “Multiple state, federal, and NGO partners have come together to restore contaminated areas at the Malone site.”

The Texas trustees anticipate building upon these efforts and using this approach to continue restoring coastal marshes, making ongoing monitoring of the project very important. They have partnered with Galveston Bay Foundation and Ducks Unlimited to monitor sediment settlement rates, which are used to assess project success and inform future projects.

“The Pierce Marsh reclamation project will make a significant contribution to restoring the coastal wetlands and natural resources that have been lost over time in this part of West Galveston Bay,” according to Richard Seiler, Program Manager of the Texas Commission on Environmental Quality Natural Resource Trustee Program. “The project represents a true team effort between the Texas Commission on Environmental Quality and the other state and federal natural resource trustees, the U.S. Army Corps of Engineers, and our NGO partners, the Galveston Bay Foundation and Ducks Unlimited.”

The restoration of Pierce Marsh is a success story of interagency cooperation and partner coordination. Federal and state agencies and non-profit organizations with differing missions came together on a project that would benefit everyone involved. Working together to share financial and technical resources, ultimately enabled them to use sediment historically viewed as waste material to restore vital coastal habitat, enhancing the area for wildlife and fisheries for generations to come.


1 Comment

Looking Back: Six Years Since Deepwater

beach-grasses (4)Wednesday, April 20, is the six-year anniversary of the blowout on the Deepwater Horizon oil rig in the Gulf of Mexico.  That terrible incident was the start of a three month-long oil spill that spilled millions of gallons per day until the well was capped on July 15, 2010.    The cleanup took years to complete, the natural resource damage assessment was just finalized this spring, and restoration activities will take decades to complete.  Many long-term research projects are underway and we are still learning about the effects of the spill on the environmental and the coastal communities of the Gulf of Mexico.

On April 4, 2016, the court approved a settlement with BP for natural resource injuries stemming from the Deepwater Horizon oil spill. This settlement concludes the largest natural resource damage assessment ever undertaken. It is safe to say that scientists will be publishing papers and results for decades.  For many of the people involved, the Deepwater Horizon oil spill is considered THE SPILL, the same way the generation of scientists that worked on the Exxon Valdez Spill in Alaska almost 30 years ago consider that event.  We even keep track of events in a rough vernacular based on those incidents.  Post-Deepwater, or Pre-OPA (the Oil Pollution Act, passed in 1990, the summer after the Exxon Valdez spill).  But while those spills generate most of the publicity, policy interest, and research, responders in NOAA and the U.S. Coast Guard and other agencies know that spills are a routine occurrence.  Since the Deepwater Horizon spill, NOAA’s Office of Response and Restoration has responded to over 800 other incidents.  Most are ones that you’ve probably never heard off, but here are a few of the larger incidents since Deepwater.

Enbridge Pipeline Leak, Kalamazoo, Michigan:  On July 25, 2010, while the nation was fixated on the spill in the Gulf of Mexico, an underground pipeline in Michigan also began gushing oil. More than 800,000 gallons of crude oil poured out of the leaking pipeline and flowed along 38 miles of the Kalamazoo River, one of the largest rivers in southern Michigan. The spill impacted over 1,560 acres of stream and river habitat as well as floodplain and upland areas, and reduced recreational and tribal uses of the river. A natural resource damage assessment was settled in 2015 that will result in multiple resource restoration projects along the Kalamazoo River.

Two kayakers on the river with vegetation visible on the water in foreground.

Kayaking on the Kalamazoo River. (NOAA)

Exxon Mobil Pipeline Rupture, Yellowstone River, Montana:  On July 1, 2011, an ExxonMobil Pipeline near Billings, Montana, ruptured, releasing an estimated 31,500 to 42,000 gallons of oil into the iconic river, which was at flood-stage level at the time of the spill.  Oil spread downstream affecting sensitive habitats.

Paulsboro, New Jersey Rail Accident and Release: On November 30, 2012, a train transporting the chemical vinyl chloride derailed while crossing a bridge that collapsed over Mantua Creek, in Paulsboro, N.J., near Philadelphia. Four rail cars fell into the creek, breaching one tank and releasing approximately 23,000 gallons of vinyl chloride. A voluntary evacuation zone was established for the area, and nearby schools were ordered to immediately take shelter and seal off their buildings.

Molasses Spill, Honolulu, Hawaii: On September 8, 2013, a faulty pipeline operated by Matson Shipping Company leaked 233,000 gallons (1,400 tons) of molasses into Hawaii’s Honolulu Harbor.  A large fish kill resulted.

Texas “Y” collision, Galveston, Texas:  On March 22, 2014, the 585 foot bulk carrier ‘M/V Summer Wind’ collided with an oil tank-barge, containing 924,000 gallons of fuel oil.  The collision occurred at the intersection or “Y” in Lower Galveston Bay, where three lanes of marine traffic converge: vessels from the Port of Texas City, the Houston Ship Channel and the Gulf Intracoastal Waterway.   The collision breached the hull of the tank barge, spilling about 168,000 gallons of fuel oil spilled into the waterway. A natural resource damage assessment is underway, evaluating impacts to shoreline habitats, birds, bottlenose dolphins, and recreational uses.

Refugio State Beach Pipeline Rupture, California:   On May 19, 2015, a 24-inch crude pipeline ruptured near Refugio State Beach in Santa Barbara County, California. Of the approximately 100,000 gallons of crude oil released, some was captured and some flowed into the Pacific Ocean.  The spill raised many challenges. The spill occurred in an especially sensitive region of the coast, known for its incredible diversity of marine life and home to the Channel Islands National Marine Sanctuary. The Refugio spill site is also the site of one of the most historically significant spills in U.S. history. Just over 46 years ago, off the coast of Santa Barbara, a well blowout occurred, spilling as much as 4.2 million gallons of oil into the ocean. A natural resource damage assessment for the Refugio spill is underway, focusing on impacts to wildlife, habitat, and lost recreational uses.

Two people in cleanup suits with a shovel stand on a beach with oiled rocks.

Two cleanup crew members work to remove oil from the sand along a portion of soiled coastline near Refugio State Beach, on May 23, 2015. (U.S. Coast Guard)

Barge APEX 3508 Collision, Columbus, Kentucky:  On September 2, 2015, two tug boats collided on the Mississippi River near Columbus, Kentucky, spilling an estimated 120,500 gallons of heavy oil.  The oil sank to the river bottom and had to be recovered by dredge.

Train Derailment, West Virginia:  On February 16, 2015, a CSX oil train derailed and caught fire in West Virginia near the confluence of Armstrong Creek and the Kanawha River. The train was hauling 3.1 million gallons of Bakken crude oil from North Dakota to a facility in Virginia. Of the 109 train cars, 27 of them derailed on the banks of the Kanawha River, but none of them entered the river. Much of the oil they were carrying was consumed in the fire, which affected 19 train cars, and an unknown amount of oil reached the icy creek and river.

Each year NOAA’s Office of Response and Restoration is asked to respond to an average of 150 incidents, and so far this year we have been asked for help with 43 incidents. Most of these were not huge, and include groundings in Alaska, Oregon, Washington, and Hawaii; five sunken vessels, fires at two marinas, a burning vessel, and an oil platform fire; nine oil spills and a chemical spill; and multiple “mystery sheens”—slicks of oil or chemicals that are spotted on the surface of the water and don’t have a clear origin. Since 1990, we have responded to thousands of incidents, helping to guide effective cleanups and protect sensitive resources. Also since 1990 and with our co-trustees, we have settled almost 60 spills for more than $9.7 billion for restoration. We hope that we will never have to respond to another “Deepwater” or “Exxon Valdez”, but should a large disaster occur, we will be ready. In the meantime, smaller accidents happen frequently and we are ready for those, too.

Doug Helton and Vicki Loe contributed to this post.


Leave a comment

Using a NOAA Tool to Evaluate Toxic Doses of Pollution at the Hanford Nuclear Reservation

This is a post by Troy Baker, an environmental scientist in NOAA’s Office of Response and Restoration.

Salmon swimming in a river.

NOAA and partners are examining whether chromium released at Washington’s Hanford Nuclear Reservation has affected Chinook salmon eggs and young fishes in the Columbia River. (Department of Energy)

Chromium, manganese, zinc.

Elements like these may show up in a daily multivitamin, but when found in a certain form and concentration in water and soil, these elements can cause serious problems for fish, birds, and wildlife. As assessors of environmental harm from pollution, we see this scenario being played out at hazardous waste sites around the country.

Take chromium, for example, which is an element found in some multivitamins and also naturally in rocks, plants, soil, and animals (and thus at very low concentrations in meat, eggs, and cheese). At the Hanford Nuclear Reservation in eastern Washington, we are evaluating how historical discharges of chromium resulting from nuclear fuel production may have affected soils, river sediments, groundwater, and surface waters along the Columbia River bordering this property.

Of particular concern is whether discharged chromium affected Chinook salmon eggs and young fishes. Hanford’s nuclear reactors, first constructed as part of the top-secret Manhattan Project during World War II, required huge amounts of river water to keep the reactor’s nuclear core cool, and chromium compounds were added to keep this essential equipment from corroding.

A little bit of chromium in the environment is considered part of a baseline condition, but if animals and plants are exposed to elevated amounts during sensitive periods, such as when very young, they may receive harmful doses.

How Much Is Too Much?

Have you heard the saying, “the dose makes the poison?” I wanted to find out how my evaluation of what chemicals may cause harm to aquatic species at Hanford matches up to toxicity data from one of NOAA’s software tools, the Chemical Aquatic Fate and Effects (CAFE) database.

I already knew that chromium in surface waters at the level of parts per billion (ppb) has the potential to cause harm at Hanford, including to migratory Chinook salmon and steelhead. But what does that concentration look like?

A helpful analogy from the Washington State Department of Ecology shows just how small that concentration is: One part per billion would be one kernel of corn sitting in a 45-foot high, 16-foot diameter silo.

Digging Through Data

Government scientists set standards called “injury thresholds” to indicate the pollution concentrations when harm reliably occurs to a certain species of animal or type of habitat. It’s my job to see if we can trace a particular contaminant such as chromium back to a source at the Hanford Nuclear Reservation and then document whether aquatic species were exposed to that contaminant for a certain area and time period and harmed as a result.

I’m currently working with my colleagues to set injury thresholds for the amount of chromium and other harmful materials in soils, sediments, and surface waters at the Hanford Nuclear Reservation.

What’s different in this case is that we are evaluating what short-term harm might have occurred to fishes and other animals from either historical pollution mixtures or existing contamination in the Columbia River. To do that, we need large amounts of toxicity data for aquatic species presented in an easy-to-digest format. That’s where NOAA’s CAFE database comes in.

Graph from the CAFE database showing the level of toxic effects for chromium exposure to a range of fish and aquatic invertebrates.

Example data output from NOAA’s CAFE database showing aquatic invertebrates as the most sensitive freshwater aquatic organism after exposure to chromium for 48 hours in laboratory tests. One microgram per liter (µg/L) is equivalent to one part per billion. (NOAA)

Using this toxicity database for aquatic species, I was able to generate multiple scenarios for chromium exposure to a range of freshwater fish and invertebrates found in the database. I could compare at what concentration chromium becomes toxic to these species and easily see which life stage, from egg to adult, is most affected after 24, 48, and 96 hours of exposure.

The results from CAFE confirmed that setting an injury threshold for chromium somewhere within the “very highly toxic” range of exposure (less than 100 parts per billion of chromium) would be appropriate to protect a wide range of aquatic invertebrates and fish. With the help of CAFE, I was able to quickly double-check whether there is any scientific reason to lower or raise the injury thresholds I’m discussing with my Hanford colleagues.

More Contamination, More Work Ahead

hanford-h-reactor-cocooned-columbia-river_noaa_1946

View of Cocooned H reactor at Hanford Nuclear Facility from Locke Island, Columbia River, Washington. The reactor operated for 15 years and was one of nine along the river. (NOAA)

My colleagues and I have a lot more environmental assessment work to do at the Hanford Nuclear Reservation. Home to nine former nuclear reactors plus processing facilities, that site is one of the nation’s most complex pollution cases.

Part of my work at NOAA is to collaborate with my agency and tribal colleagues through the Natural Resource Damage Assessment process to understand whether harm occurred and ultimately restore the environment in a way that’s equivalent to the scale of the injuries.

We are concerned about more than 40 contaminants at Hanford, but that shouldn’t be a problem for CAFE. This database holds information on environmental fate and effects for about 40,000 chemicals.

The next version of CAFE, due out in 2016, will be able to display information on longer-term effects of chemicals beyond 96 hours, increasing to 28 days if laboratory test data are available. Having toxicity data available for longer durations will be a huge help to my work as it gets translated into decisions about environmental restoration in the future.

Learn more about our environmental assessment and restoration work at the Hanford Nuclear Reservation.


Leave a comment

After Decades of Pollution, Bringing Safe Fishing Back to Kids in Southern California

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

A boy holds up a scorpion fish on a boat.

A boy participating in the Montrose youth fishing program shows off his catch, a scorpion fish, from the Betty-O fishing boat with Marina Del Rey Anglers in southern California. (NOAA)

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

Polluted waters and polluted fish seem like obvious (and good) reasons to skip a fishing trip at such a beach, and they are.

For a long time, that was the case for a certain slice of coastal southern California, and those skipped fishing trips really add up. Fortunately, NOAA and our partners are responsible for making up for those trips never taken and do so through the Natural Resource Damage Assessment process.

From the late 1940s to the early 1970s, factories, including one owned by the Montrose Chemical Corporation, released several million pounds of DDT and roughly 256,000 pounds of PCBs through ocean outfall pipes onto the Palos Verdes Shelf off of southern California. These chemicals made their way up the food chain, impacting fish and wildlife, and in turn, people too.

By 1991, the high chemical concentrations in fish prompted the California Office of Environmental Health and Hazard Assessment to issue its first consumption advisory for common sportfish found along the southern California coast.

A boy stands next to a sign warning not to eat contaminated fish, with people fishing off a pier beyond.

Decades of pollution dumped onto the Palos Verdes Shelf off of southern California later led to fish consumption advisories, warning people of the dangers of eating contaminated fish. (NOAA)

At the same time, media reports amplified the message that fish were contaminated in this area, which resulted in a large number of anglers completely shying away from fishing within the contaminated zone—whether the fish they were catching were affected or not. In addition, unaware of the dangers, low-income, subsistence anglers continued to catch and eat contaminated fish.

All of these factors contributed to a measurable impact to these types of fishing opportunities in southern California, prompting the need to restore them.

Connecting Kids with Fishing

Following a natural resource damages settlement in 2000, NOAA’s Montrose Settlements Restoration Program (MSRP) was developed to restore wildlife, fishing, and fish habitat that were harmed by DDTs and PCBs in the southern California marine environment.

In our 2005 restoration plan [PDF], we identified the need for a public information campaign targeted to youth and families, which would help anglers make informed decisions about what to do with the local fish they caught. Our program was also hoping to change the public perception about local fishing by giving anglers information about alternative, safe fish species to catch and consume and which species to avoid.

Starting in 2007, we funded and supported a youth fishing outreach mini-grant program, one of the major components of this campaign. For this program, we teamed up with local fishing clubs, youth groups, environmental organizations, aquaria, and the City of Los Angeles to educate young people and their families about safe fishing practices.

The program focused on three key and seven secondary messages related to recreational fishing in the area and included a hands-on fishing component. Participating groups also distributed our What’s the Catch? comic books [PDF] and fish identification cards [PDF] to youth who took part in the program. Some of the activities included touring a local aquarium to reinforce fish identification and playing interactive games that demonstrated bioaccumulation of chemicals in the food chain.

Since the campaign started in 2007, over 20,000 youth have participated in our fishing outreach program through eight participating organizations. All of these organizations were serving low-income or at-risk youth ages 5-19 years old and included having kids actually fish from either a boat or pier.

Fishing for Information

Starting in 2012, we started surveying youth, teachers, and counselors at the end of each fishing outreach program. Featuring questions such as “Did you enjoy the fishing today?” and “Did you learn how to identify fish which are safe to eat?” these surveys helped us understand whether kids were actually learning the program’s key messages.

A group of kids surround a man filleting fish on a pier.

Staff from the City of Los Angeles show kids how to properly fillet a fish to reduce their intake of contaminants. (NOAA)

We found that the program improved each year. By 2015 at least 86% of youth understood our top three key messages:

  • Fishing is one of the most common outdoor activities in the world, allowing people to make a personal connection with nature.
  • There are many fish in southern California that are healthy to eat.
  • A small number of fish are not safe to eat.

The frequency and type of secondary messages that were taught by our partnering organizations varied among programs. In most cases, programs improved with teaching these concepts each year, with at least 77% of youth understanding most of the secondary messages:

  • DDT and PCB contaminants bioaccumulate up the food chain.
  • DDTs and PCBs, harmful chemicals to wildlife and humans, were dumped into the ocean for more than 30 years in southern California and are still in the environment today.
  • Eating only the fillet and throwing away the insides of the fish is a safe way to eat.
  • Grilling a fillet is the safest way to prepare fish to eat.
  • Look for signs on piers telling you which fish are not safe to eat.
  • All fish are an important part of the ocean ecosystem. If you do not keep a fish for the table, gently return it to the ocean.
  • You play an important role in preserving our ocean resources. Follow fishing rules and regulations to be good ocean stewards.

Feel the Learn

Youth group on board a boat with volunteers from Marina Del Rey Anglers holding up foam board educational signs.

Since the campaign started in 2007, over 20,000 kids have participated in the fishing outreach program through eight participating organizations, all of which worked with low-income or at-risk youth. Here, a group of kids on board a boat with volunteers from Marina Del Rey Anglers show off some of the educational signs used in the program. (NOAA)

We also surveyed third, fourth, and fifth grade teachers that participated in the Fun Fishing Program at The SEA Lab in Redondo Beach, California. Teachers evaluated the usefulness of our comic book and fish identification cards, which they received before their field trip.

At least 96% of teachers surveyed over four years agreed that the comic book presented useful information for their students, captured student’s interests, and was a resource they could easily use in the classroom. For the fish identification card, at least 87% of teachers felt similarly about this educational tool.

We also know that students who participated in the program at The SEA Lab remembered what they learned from their field trip six months later. More than half of the students we surveyed at this later date recalled seven out of 10 program messages correctly and were making healthier decisions when eating fish. Teachers who were also surveyed during this time showed that more than 50% were occasionally teaching concepts related to six of the program messages in their classrooms.

In the final year of this fishing outreach program (due to the full use of funding allocations outlined in the restoration plan), we are planning to support two organizations, The SEA Lab and the City of Los Angeles, in summer and fall 2016.

The program has been hugely successful at improving the health of children and their families and introducing them to the joyful sport of fishing, while showing lasting impacts on teachers and students. This success is due in a big way to the dedication of our many partners and especially those who provided thousands of volunteer hours.

Fishing Outreach Program Partner Organizations:

Cabrillo Marine Aquarium (2007)

The SEA Lab (2007-2016)

United Anglers of Southern California (2009/2011)

Asian Youth Center (2009)

Friends of Colorado Lagoon (2011-2012)

City of Los Angeles-Department of Recreation and Parks (2011-2016)

Marina Del Rey Anglers Fishing Club (2012-2015)

Los Angeles Rod and Reel Club (2014-2015)

Gabrielle Dorr

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.


Leave a comment

After Pollution Strikes, Restoring the Lost Cultural Bond Between Tribes and the Environment

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

A young boy hangs humpback whitefish on a drying rack next to a river.

Restoring the deep cultural ties between native communities and the environment is an important and challenging part of restoration after oil spills and chemical releases. Here, a boy from the Alaska Native village of Shungnak learns to hang dry humpback whitefish. (U.S. Fish and Wildlife Service)

When I’ve heard residents of the Alaskan Arctic speak about the potential impacts of an oil spill, I don’t hear any lines of separation between the oil spill causing injury to the environment and injury to the community.

Their discussions about the potential harm to walrus or seals inevitably include how this will impact the community’s ability to hunt for food, which affects both their food security and traditions. The cultures of these communities are inextricably tied to the land and sea.

So I ask myself, in the wake of an oil spill in the Arctic, how would we begin to restore that bond between the environment and the communities who live there? How can we even begin to make up for the lost hunting trips between grandparents and grandkids that don’t happen because of an oil spill? Furthermore, how could we help restore the lost knowledge that gets passed down between generations during such activities?

We know nothing can truly replace those vital cultural exchanges and activities that don’t occur because of pollution, but we have to try. Thanks to our federal Natural Resource Damage Assessment laws, polluters are made accountable for these lost cultural uses of natural resources, as well as for the harm to affected lands, waters, plants, and animals.

An Alaska Native expert teaches two boys how to cut and prepare pike for drying.

Many ideas for cultural restoration after pollution center around the concept of teaching youth the traditional ways of using natural resources. Here, students from the Alaska Native village of Selawik learn to cut a pike for drying from a local expert. (U.S. Fish and Wildlife Service)

Here are a few examples of our efforts to restore these cultural uses of coastal resources after they’ve been harmed by oil and chemical spills, as well as some ideas for the future.

Community Camps in Alaska

When the M/V Kuroshima ran around on Unalaska Island, Alaska, in November 1997, approximately 39,000 gallons of heavy oil spilled into Summer Bay, Unalaska’s prime recreational beach. As a result of the spill, access to the bay and its beach was closed off or restricted for several months.

In an effort to restore the lost use of their beach, the local Qawalangin Tribe received funding for an outdoor summer recreational camp, which focuses on tribal and cultural projects such as traditional subsistence harvesting techniques for shellfish and activities with Unangan elders in Alaska’s Aleutian Islands. To ensure the safety of local seafoods eaten by the tribe, NOAA also arranged for further chemical analysis of shellfish tissues and educated the community about the results.

Cultural Apprenticeships in New York

Years of aluminum and hydraulic fluid manufacturing released toxic substances such as PCBs into New York’s St. Lawrence River, near the Canadian border. This history of pollution robbed the St. Regis Mohawk Tribe, whose Mohawk name is Akwesasne, of the full ability to practice numerous culturally important activities, such as fishing. Legal settlements with those responsible for the pollution have provided funding for the tribe to implement cultural programs to help make up for those losses.

But first, representatives from the St. Regis Mohawk Tribe conducted oral history research, hosted community outreach meetings, and solicited restoration project ideas from the community. As a result of these efforts, they determined that two main components of restoration [PDF] were necessary: an apprenticeship program and funding for cultural institutions and programs.

The long-term, master-apprentice relationship program focuses on the four areas of traditional cultural practices that were harmed by the release of hazardous contaminants into the St. Lawrence River and surrounding area. This program also promotes and supports the regeneration of practices associated with traditions in these four areas:

  • Water, fishing, and use of the river.
  • „Horticulture and basketmaking.
  • „Medicinal plants and healing.
  • Hunting and trapping.

Hands-on experience and Mohawk language training are also integral parts of the apprenticeship program.

In addition to this program, resources have been provided to a number of existing Akwesasne-based programs that have already begun the work of responding to the cultural harm caused by this contamination. One example is providing opportunities for Akwesasne youth and surrounding communities to receive outdoor educational experience in a natural and safe location for traditional teachings, such as respect for the land and survival skills.

Planning for the Worst and Hoping for the Best in the Arctic

Whales, polar bears, and walrus carved into a bowhead whale jawbone.

We need to work closely with each tribe affected by an oil spill or chemical release to help them achieve the cultural connection with nature affected by pollution. You can see this connection in action at the Iñupiat Heritage Center in Barrow, Alaska, where local artists carve traditional icons into the jawbone of a bowhead whale. (NOAA)

Discussions with Alaskan Arctic communities have yielded similar suggestions of potential forms of cultural restoration after pollution. A 2012 multi-day workshop with communities in Kotzebue, Alaska, generated an initial list of ideas, including:

  • Teaching traditional celebrations (e.g., foot races and dances).
  • Teaching subsistence practices and survival techniques.
  • Supporting science fairs with an environmental restoration focus.
  • Maintaining and transferring hunting knowledge by educating youth on proper whale, seal, and walrus hunting methods.

This last idea is particularly intriguing and would involve preparing a “virtual hunt” curriculum on how to shoot whales so they can be recovered, how to butcher an animal, and sharing the results of the hunt with others.

After working here at NOAA since 2008, I can rattle off plenty of restoration ideas for an oiled beach, or oiled birds. But when it comes to restoring lost cultural uses of the environment, there are no off-the-shelf project ideas.

Each tribe is unique and how one tribe’s members interact with their natural environment may not be the same as another tribe’s. While there may be similar themes we can build upon, such as teaching language and harvesting skills, we need to work closely with each tribe affected by an oil or chemical spill to help them achieve once again what pollution has taken away.

Follow

Get every new post delivered to your Inbox.

Join 702 other followers