NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Preparing for What Can Go Wrong Because of Hurricanes

A view of the houses and highways along the New Jersey coast which were damaged by Hurricane Sandy.

A view of the houses and highways along the New Jersey coast which were damaged by Hurricane Sandy in 2012. (U.S. Fish and Wildlife Service)

Sandy. Katrina. Andrew. These and many other names stand out in our memories for the power of wind and wave—and the accompanying devastation—which these storms have brought to U.S. shores. Atlantic hurricane season officially begins June 1 and ends November 30, but disasters can and do strike unexpectedly.

Being involved in disaster response, we at NOAA’s Office of Response and Restoration know what can go wrong when a hurricane hits the coast—after all, we’ve seen it firsthand:

Clearly, a lot is at stake when a hurricane sweeps through an area, which is why preparing for hurricanes and other disasters is so important. We can’t stop these powerful storms, but we can prepare ourselves, our homes, and our coastal communities to lessen the impacts and bounce back more quickly after storms hit.

Hurricane Preparedness Week comes as a reminder each May before the Atlantic hurricane season begins. NOAA’s National Weather Service has plenty of tips and guidelines for preparing to weather these storms:

NOAA’s Office of Response and Restoration also takes care to prepare for hurricanes and other disasters.

Sometimes that means building internet and phone access into the stormproof bathrooms of our facilities so that we can continue providing sound science and support to deal with pollution from a storm. Other times that means working with coastal regions to create response plans for disaster debris, training other emergency responders to address oil and chemical spills, and developing software tools that pull together and display key information necessary for making critical response decisions during disasters.

Learn more about how to protect yourself and your belongings from a hurricane.


Leave a comment

NOAA Supporting Spill Response in the Green Canyon Oil Reserve Area of the Gulf of Mexico

Vessels skim oil from the surface of the Gulf of Mexico.

Vessels conduct skimming operations, May 14, 2016, in response to an estimated 88,200 gallons of crude oil discharged from a segment of flow line at the Glider Field approximately 90 miles south of Timbalier Island, Louisiana. As of May 15, the vessels have removed a combined total of more than 51,000 gallons of oily-water mixture since the discharge on May 12, 2016. (U.S. Coast Guard)

NOAA’s Office of Response and Restoration is supporting the U.S. Coast Guard response to an oil spill in the Green Canyon oil reserve area in the Gulf of Mexico. We are providing oil spill trajectory analysis and information on natural resources potentially at risk from the oil. The NOAA Scientific Support Coordinator has been on-scene.

The spill occurred at approximately 11:00 a.m. on May 12, 2016 when 2,100 barrels (88,200 gallons) of oil was discharged from a Shell subsea well-head flow line at the Glider Field. Since then, the source has been secured and the pipeline is no longer leaking. The U.S. Coast Guard reports that the spill happened approximately 90 miles south of Timbalier Island, Louisiana.

We are providing scientific support, including consulting with natural resource trustees and environmental compliance requirements, identifying natural resources at risk, coordinating overflight reports, modeling the spill’s trajectory, and coordinating spatial data needs, such as displaying response data in a “common operational picture.” The reported oil trajectory is in a westerly direction with no expected shoreline impact at this time.

For more details, refer to the May 15 U.S. Coast Guard press release or the May 15 Shell Gulf of Mexico Response press release.


Leave a comment

How Does NOAA Model Oil Spills?

Dark oil drifts near the populated shores of Berkeley and Emerville, California.

After the cargo ship M/V Cosco Busan struck the San Francisco-Oakland Bay Bridge in 2007, NOAA oceanographers modeled how wind, waves, tides, and weather would carry the ship’s fuel oil across San Francisco Bay. Here, dark oil drifts near the shores of Berkeley and Emerville, California, on November 9, 2007. (NOAA)

One foggy morning in 2007, a cargo ship was gliding across the gray waters of San Francisco Bay when it ran into trouble, quite literally. This ship, the M/V Cosco Busan, struck the Bay Bridge, tearing a hundred-foot-long gash in its hull and releasing 53,000 gallons of thick, sticky fuel oil into the bay.

When such an oil spill, or even the threat of a spill, happens in coastal waters, the U.S. Coast Guard asks the oceanographers at NOAA’s Office of Response and Restoration for an oil spill trajectory.

Watch as NOAA’s Ocean Service breaks down what an oil spill trajectory is in a one-minute video, giving a peek at how we model the oil’s path during a spill.

Using a specialized NOAA computer model, called GNOME, our oceanographers forecast the movement of spilled oil on the water surface. With the help of data for winds, tides, weather, and ocean currents, they model where the oil is most likely to travel and how quickly it may come ashore or threaten vulnerable coastal resources, such as endangered seabirds or a busy shipping lane.

During the Deepwater Horizon oil spill, we produced dozens of oil spill trajectory maps, starting on April 21 and ending August 23, 2010, when aerial surveys and satellite analyses eventually showed no recoverable oil in the spill area. You can download the trajectory maps from that spill.

Swirls of oil on the surface of San Francisco Bay west of the Golden Gate Bridge.

Specially trained observers fly over oil spills to gather information that is fed back into NOAA’s trajectory model to improve the next forecast of where the oil is going. (NOAA)

Learn more about how we model and respond to oil spills:

Attempting to Answer One Question Over and Over Again: Where Will the Oil Go?

“Over the duration of a typical spill, we’ll revise and reissue our forecast maps on a daily basis. These maps include our best prediction of where the oil might go and the regions of highest oil coverage, as well as what is known as a “confidence boundary.” This is a line encircling not just our best predictions for oil coverage but also a broader area on the map reflecting the full possible range in our forecasts [PDF].

Our oceanographers include this confidence boundary on the forecast maps to indicate that there is a chance that oil could be located anywhere inside its borders, depending on actual conditions for wind, weather, and currents.”

A Bird’s Eye View: Looking for Oil Spills from the Sky

“Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water … Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.”

Five Key Questions NOAA Scientists Ask During Oil Spills

“Responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.”


Leave a comment

National PrepareAthon! Day—April 30, 2016

Three students work at a table with cups of sand and oil.

Shoreline Cleanup Assessment Technique (SCAT) is a systematic method for surveying an affected shoreline after an oil spill. Here students work on an exercise during a recent NOAA-led course. (NOAA)

The White House has designated Saturday, April 30, 2016, as National PrepareAthon! Day.

This campaign asks federal agencies to work with their stakeholders to “coordinate a comprehensive campaign to build and sustain national preparedness, including public outreach and community-based and private-sector programs to enhance national resilience…”

By encouraging organizations and communities to participate, the goal is to increase the number of individuals who:

  • Understand which disasters could happen in their community
  • Know what to do to be safe and mitigate damage
  • Take action to increase their preparedness
  • Participate in community resilience planning

Here at NOAA’s Office of Response and Restoration (OR&R), we know the value of continually improving our capacity to respond to disasters. Whether it is about responding to oil and chemical spills, restoring the environment following a disaster, training emergency responders, developing response tools or making sure that we are communicating effectively during an emergency, our efforts are focused on having the skills and tools to respond quickly and effectively.

Please read: Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters to learn more about how we prepare for disasters such as oil and chemical spills in the marine environment.

We encourage you to visit the National PrepareAthon! website to increase your own preparedness for your local hazards.

Infographic showing cityscape, beach and water with corresponding response tools for each area.

Some of the tools NOAA’s Office of Response and Restoration has developed for use in responding to oil and chemical spills. (NOAA)


1 Comment

Looking Back: Six Years Since Deepwater

beach-grasses (4)Wednesday, April 20, is the six-year anniversary of the blowout on the Deepwater Horizon oil rig in the Gulf of Mexico.  That terrible incident was the start of a three month-long oil spill that spilled millions of gallons per day until the well was capped on July 15, 2010.    The cleanup took years to complete, the natural resource damage assessment was just finalized this spring, and restoration activities will take decades to complete.  Many long-term research projects are underway and we are still learning about the effects of the spill on the environmental and the coastal communities of the Gulf of Mexico.

On April 4, 2016, the court approved a settlement with BP for natural resource injuries stemming from the Deepwater Horizon oil spill. This settlement concludes the largest natural resource damage assessment ever undertaken. It is safe to say that scientists will be publishing papers and results for decades.  For many of the people involved, the Deepwater Horizon oil spill is considered THE SPILL, the same way the generation of scientists that worked on the Exxon Valdez Spill in Alaska almost 30 years ago consider that event.  We even keep track of events in a rough vernacular based on those incidents.  Post-Deepwater, or Pre-OPA (the Oil Pollution Act, passed in 1990, the summer after the Exxon Valdez spill).  But while those spills generate most of the publicity, policy interest, and research, responders in NOAA and the U.S. Coast Guard and other agencies know that spills are a routine occurrence.  Since the Deepwater Horizon spill, NOAA’s Office of Response and Restoration has responded to over 800 other incidents.  Most are ones that you’ve probably never heard off, but here are a few of the larger incidents since Deepwater.

Enbridge Pipeline Leak, Kalamazoo, Michigan:  On July 25, 2010, while the nation was fixated on the spill in the Gulf of Mexico, an underground pipeline in Michigan also began gushing oil. More than 800,000 gallons of crude oil poured out of the leaking pipeline and flowed along 38 miles of the Kalamazoo River, one of the largest rivers in southern Michigan. The spill impacted over 1,560 acres of stream and river habitat as well as floodplain and upland areas, and reduced recreational and tribal uses of the river. A natural resource damage assessment was settled in 2015 that will result in multiple resource restoration projects along the Kalamazoo River.

Two kayakers on the river with vegetation visible on the water in foreground.

Kayaking on the Kalamazoo River. (NOAA)

Exxon Mobil Pipeline Rupture, Yellowstone River, Montana:  On July 1, 2011, an ExxonMobil Pipeline near Billings, Montana, ruptured, releasing an estimated 31,500 to 42,000 gallons of oil into the iconic river, which was at flood-stage level at the time of the spill.  Oil spread downstream affecting sensitive habitats.

Paulsboro, New Jersey Rail Accident and Release: On November 30, 2012, a train transporting the chemical vinyl chloride derailed while crossing a bridge that collapsed over Mantua Creek, in Paulsboro, N.J., near Philadelphia. Four rail cars fell into the creek, breaching one tank and releasing approximately 23,000 gallons of vinyl chloride. A voluntary evacuation zone was established for the area, and nearby schools were ordered to immediately take shelter and seal off their buildings.

Molasses Spill, Honolulu, Hawaii: On September 8, 2013, a faulty pipeline operated by Matson Shipping Company leaked 233,000 gallons (1,400 tons) of molasses into Hawaii’s Honolulu Harbor.  A large fish kill resulted.

Texas “Y” collision, Galveston, Texas:  On March 22, 2014, the 585 foot bulk carrier ‘M/V Summer Wind’ collided with an oil tank-barge, containing 924,000 gallons of fuel oil.  The collision occurred at the intersection or “Y” in Lower Galveston Bay, where three lanes of marine traffic converge: vessels from the Port of Texas City, the Houston Ship Channel and the Gulf Intracoastal Waterway.   The collision breached the hull of the tank barge, spilling about 168,000 gallons of fuel oil spilled into the waterway. A natural resource damage assessment is underway, evaluating impacts to shoreline habitats, birds, bottlenose dolphins, and recreational uses.

Refugio State Beach Pipeline Rupture, California:   On May 19, 2015, a 24-inch crude pipeline ruptured near Refugio State Beach in Santa Barbara County, California. Of the approximately 100,000 gallons of crude oil released, some was captured and some flowed into the Pacific Ocean.  The spill raised many challenges. The spill occurred in an especially sensitive region of the coast, known for its incredible diversity of marine life and home to the Channel Islands National Marine Sanctuary. The Refugio spill site is also the site of one of the most historically significant spills in U.S. history. Just over 46 years ago, off the coast of Santa Barbara, a well blowout occurred, spilling as much as 4.2 million gallons of oil into the ocean. A natural resource damage assessment for the Refugio spill is underway, focusing on impacts to wildlife, habitat, and lost recreational uses.

Two people in cleanup suits with a shovel stand on a beach with oiled rocks.

Two cleanup crew members work to remove oil from the sand along a portion of soiled coastline near Refugio State Beach, on May 23, 2015. (U.S. Coast Guard)

Barge APEX 3508 Collision, Columbus, Kentucky:  On September 2, 2015, two tug boats collided on the Mississippi River near Columbus, Kentucky, spilling an estimated 120,500 gallons of heavy oil.  The oil sank to the river bottom and had to be recovered by dredge.

Train Derailment, West Virginia:  On February 16, 2015, a CSX oil train derailed and caught fire in West Virginia near the confluence of Armstrong Creek and the Kanawha River. The train was hauling 3.1 million gallons of Bakken crude oil from North Dakota to a facility in Virginia. Of the 109 train cars, 27 of them derailed on the banks of the Kanawha River, but none of them entered the river. Much of the oil they were carrying was consumed in the fire, which affected 19 train cars, and an unknown amount of oil reached the icy creek and river.

Each year NOAA’s Office of Response and Restoration is asked to respond to an average of 150 incidents, and so far this year we have been asked for help with 43 incidents. Most of these were not huge, and include groundings in Alaska, Oregon, Washington, and Hawaii; five sunken vessels, fires at two marinas, a burning vessel, and an oil platform fire; nine oil spills and a chemical spill; and multiple “mystery sheens”—slicks of oil or chemicals that are spotted on the surface of the water and don’t have a clear origin. Since 1990, we have responded to thousands of incidents, helping to guide effective cleanups and protect sensitive resources. Also since 1990 and with our co-trustees, we have settled almost 60 spills for more than $9.7 billion for restoration. We hope that we will never have to respond to another “Deepwater” or “Exxon Valdez”, but should a large disaster occur, we will be ready. In the meantime, smaller accidents happen frequently and we are ready for those, too.

Doug Helton and Vicki Loe contributed to this post.


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

Supporting the Response to a Platform Fire and Oil Spill in Bayou Sorrel, Louisiana

Fire burns in one of several oil tanks on a platform in a bayou.

The Coast Guard, with state and local partners, is responding to an oil production platform fire in Bayou Sorrel, Louisiana, March 15, 2016. One of the tanks reportedly collapsed, releasing an unknown amount of crude oil into a canal. (U.S. Coast Guard)

On the morning of March 15, 2016, the U.S. Coast Guard requested assistance from NOAA‘s Office of Response and Restoration for an oil production platform fire near Berry Lake in Bayou Sorrel, Louisiana.

While crews were working to dismantle the platform, one of the oil storage tanks caught fire. No injuries have been reported. The U.S. Coast Guard is leading the response with state and local agencies.

The platform and one of its storage tanks burned throughout the day on March 15 before the tank partially collapsed, releasing crude oil into a canal. Most of the oil released from the tank continued to burn on the water surface and was consumed.

Responders contained the remaining oil and burn residue in the canal with boom.

Fire-fighting vessel sprays water on an oil tank on a platform in a bayou.

Response crews extinguished the fire on the oil production platform and will continue to monitor the scene in Bayou Sorrel, Louisiana. (U.S. Coast Guard)

A second tank on the platform subsequently caught fire but has been extinguished. The two storage tanks had a maximum capacity of more than 33,000 gallons of crude oil.

We are assisting the Coast Guard’s response by coordinating local weather forecast support, modeling the potential trajectory of spills of oil or burn residue, and outlining the wildlife and habitats that could be at risk in the area. A NOAA Scientific Support Coordinator has reported to the response to provide further help and assess potential impacts of the oil spill.

Bayou Sorrel is predominantly composed of seasonally flooded, forested wetlands with some patches of freshwater marshes and open canals. While oil is unlikely to penetrate flooded or water-saturated soils, it will readily coat and become mixed with floating debris such as branches and leaves.

A variety of birds, particularly diving and wading birds and waterfowl, may be present in the area and might be at risk of coming into contact with oil, which can coat their feathers, be ingested, or inhaled. In addition, fish and invertebrates such as crawfish may be present or spawning in the marshy habitats surrounding the oil platform, and alligators and small-to-medium-sized mammals including mink and river otters may be nearby.

In 2013, NOAA provided on-site technical support for an oil spill from a pipeline in Bayou Sorrel and helped coordinate a controlled burn of the spilled oil in the area’s flooded, wooded swamps. Additionally, we assisted with other oil spills in this area in 2015, 2007, and 1988.

Look for more information about the current oil spill and fire here and at the U.S. Coast Guard’s media site.

Follow

Get every new post delivered to your Inbox.

Join 689 other followers