NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


3 Comments

How Do You Keep Killer Whales Away From an Oil Spill?

This is a guest post by Lynne Barre of NOAA Fisheries.

Two killer whales (orcas) breach in front a boat.

NOAA developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly to keep these endangered animals away from a spill. (NOAA)

I sleep better at night knowing that we have a plan in place to keep endangered Southern Resident killer whales away from an oil spill. Preventing oil spills is key, but since killer whales, also known as orcas, spend much of their time in the busy waters around Seattle, the San Juan Islands, and Vancouver, British Columbia, there is always a chance a spill could happen.

The Southern Residents are a small and social population of killer whales, so an oil spill could have major impacts on the entire population if they were in the wrong place at the wrong time.

We’ve learned from past experience with the 1989 Exxon Valdez oil spill that killer whales and other marine mammals don’t avoid oiled areas on their own and exposure to oil likely can affect their populations. New information on impacts from the 2010 Deepwater Horizon oil spill on bottlenose dolphins (a close relative of killer whales) gives us a better idea of how oil exposure can affect the health and reproduction of marine mammals.

Oil spills are a significant threat to the Southern Resident population, which totals less than 90 animals, and the 2008 recovery plan [PDF] calls for a response plan to protect them. We brought experts together in 2007 to help us identify tools and techniques to deter killer whales from oil and develop a response plan so that we’d be prepared in case a major oil spill does happen.

The Sound of Readiness

Killer whales are acoustic animals. They use sound to communicate with each other and find food through echolocation, a type of biosonar. Because sound is so important, using loud or annoying sounds is one way that we can try to keep the whales away from an area contaminated with oil. We brainstormed a variety of ideas based on experience with killer whales and other animals and evaluated a long list of ideas, including sounds, as well as more experimental approaches, such as underwater lights, air bubble curtains, and hoses.

After receiving lots of input and carefully evaluating each option, we developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly if the whales are headed straight toward a spill. Helicopter hazing, banging pipes (oikomi pipes), and underwater firecrackers are on the short list of options. Here’s a little more about each approach:

  • Helicopters are often available to do surveillance of oil and look for animals when a spill occurs. By moving at certain altitudes toward the whales, a helicopter creates sound and disturbs the water’s surface, which can motivate or “haze” whales to move away from oiled areas.
  • Banging pipes, called oikomi pipes, are metal pipes about eight feet long which are lowered into the water and struck with a hammer to make a loud noise. These pipes have been used to drive or herd marine mammals. For killer whales, pipes were successfully used to help move several whales that were trapped in a freshwater lake in Alaska.
  • Underwater firecrackers can also be used to deter whales. These small explosives are called “seal bombs” because they were developed and can be used to keep seals and sea lions away [PDF] from fishing gear. These small charges were used in the 1960s and 1970s to help capture killer whales for public display in aquaria. Now we are using historical knowledge of the whales’ behavior during those captures to support conservation of the whales.

In addition, our plan includes strict safety instructions about how close to get and how to implement these deterrents in order to prevent injury of oil spill responders and the whales. In the case of an actual spill, the wildlife branch within the Incident Command (the official response team dealing with the spill, usually led by the Coast Guard) would direct qualified responders to implement the different techniques based on specific information about the oil and whales.

Planning in Practice

Several killer whales break the surface of Washington's Puget Sound.

Killer whales use sound to communicate with each other and find food through echolocation. That’s why NOAA’s plan for keeping these acoustic animals away from oil spills involves using sound as a deterrent. (NOAA)

After incorporating the killer whale response plan into our overall Northwest Area Contingency Plan for oil spills, I felt better but knew we still had some work to do.

Since finalizing the plan in 2009, we’ve been focused on securing equipment, learning more about the techniques, and practicing them during oil spill drills. Working with the U.S. Coast Guard and local hydrophone networks (which record underwater sound), we’ve flown helicopters over underwater microphones to record sound levels at different distances and altitudes.

With our partners at the Washington Department of Fish and Wildlife and the Island Oil Spill Association, we built several sets of banging pipes and have them strategically staged around Puget Sound. In 2013 we conducted a drill with our partners and several researchers to test banging pipes in the San Juan Islands. It takes practice to line up several small boats, coordinate the movement of the boats, and synchronize banging a set of the pipes to create a continuous wall of sound that will discourage whales from getting close to oil. We learned a few critical lessons to update our implementation plans and to incorporate into plans for future drills.

A large oil spill in Southern Resident killer whale habitat would be a nightmare. I’m so glad we have partners focused on preventing and preparing for oil spills, and it is good to know we have a plan to keep an oil spill from becoming a catastrophe for endangered killer whales. That knowledge helps me rest easier and focus on good news like the boom in killer whale calves born to mothers in Washington’s Puget Sound.

You can find more information on our killer whale response plan and our recovery program for Southern Resident killer whales.

Lynne Barre in front of icy waters and snowy cliffs.Lynne Barre is a Branch Chief for the Protected Resources Division of NOAA Fisheries West Coast Region. She is the Recovery Coordinator for Southern Resident killer whales and works on marine mammal and endangered species conservation and recovery.


Leave a comment

Who Pays for Oil Spills?

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

Oiled boom and marsh in Louisiana.

The Oil Pollution Act of 1990 states that those responsible for releasing oil and other hazardous materials pay for all costs associated with the cleanup operations, as well as the assessment of environmental impacts and necessary restoration. (U.S. Coast Guard)

After every major oil spill, one question comes up again and again: Who is going to pay for this mess?

While the American public and the environment pay the ultimate price (metaphorically speaking), the polluter most often foots the bill for cleanup, response, and restoration after oil spills.

In sum: You break it, you buy it. But our unspoiled coasts are priceless, and we would rather protect—or at least minimize impacts to—them as much as possible. Which means federal dollars are invested in ensuring top-notch experts are ready to act when oil spills do strike. (Stay tuned for more on that.)

So, Who Pays to Clean up an Oil Spill?

When an oil spill occurs, there are very clear rules about who pays for the direct response activities, the cost of assessing environmental damages, and implementing the necessary restoration.

The Oil Pollution Act of 1990, one legacy of the 1989 Exxon Valdez spill, spells out that those responsible for the pollution pay for all costs associated with the cleanup operations. However, similar to a car accident, insurance companies aren’t going to start writing checks without first looking at the circumstances.

But time is of the essence when oil hits the water, so oil companies and transporting vessels are required to have plans in place to respond immediately. In the rare instances when insurance companies investigate the details of legal (and hence, monetary) responsibility and hesitate to pay additional costs, the U.S. Coast Guard is able to set up an immediate source of funding for federal and state agencies and tribes who support the oil spill cleanup, which pays for their contributions to the response.

If the polluter is ultimately deemed liable for the spill, then they reimburse all expenses to the U.S. Coast Guard. Meaning the polluter pays for the cost of the oil spilled.

What About Restoration After Oil Spills?

Well, what about the environmental impacts left behind after the cleanup ends and everyone goes home? Does the American public pay to restore the animals and plants harmed by the spill?

Scientist leans over a boat to retrieve a dead Kemp's ridley sea turtle from the water.

It takes an average of four years to reach a settlement for environmental damages and then begin restoration after an oil spill. As a result, our job is not only to enforce pollution regulations but to ensure the right type and amount of restoration is achieved. (NOAA)

Nope. Again, the Oil Pollution Act states that parties that release hazardous materials and oil into the environment are responsible not only for the cost of cleaning up the release, but also for restoring any “injuries” (harm) to natural resources that result.

As the primary federal steward (“trustee”) for coastal animals and habitat, NOAA is responsible for ensuring the restoration of coastal resources in at least two specific cases.

First, for coastal resources harmed by releases of hazardous materials (e.g., oil and chemicals) and second, for national marine sanctuary resources harmed by physical impacts (e.g., when a ship grounds on coral reefs in a marine sanctuary).

But What if Polluters Don’t Have to Pay for Everything?

It is possible, though extremely rare, that a polluter can be found not to be liable (e.g., the pollution was caused by an act of war) or the polluter can reach its limit of liability under the law.

So, does the money for cleanup and restoration then come from American taxpayers?

Nope. In these cases, the costs are then covered by the Oil Spill Liability Trust Fund. This fund accrues from taxes on most domestically produced and imported oil. The oil companies, often those responsible for spills, are paying into this fund.

When a spill occurs, those involved in the response, cleanup, and damage assessment can access these funds if the polluter is unknown, unwilling, unable, or not liable for paying the spill’s full costs. For response activities, the fund will cover costs associated with preventing (in the case of a grounded ship that hasn’t released oil yet), minimizing, mitigating, or cleaning up an oil spill.

For natural resource damage assessment, the fund will cover costs associated with assessing an area’s natural resource damages, restoring the natural resources, and compensating the public for the lost use of the affected resources.

Of course, polluters aren’t always eager to accept liability, and accurately assessing environmental damages can take time. In fact, it takes an average of four years to reach a settlement for these damages and then begin restoration after an oil spill. As a result, our job is not only to enforce pollution regulations but to ensure the right type and amount of restoration is achieved.

That means, once again, dollars from polluters are essentially paying for oil spills.

So, the Public Doesn’t Pay for Anything?

Well, okay. The same as with your local fire department, public tax dollars are spent developing a highly trained group of professional emergency response and restoration experts. The more prepared we are to respond when an oil spill happens, the sooner a community can recover, environmentally and economically, from these unfortunate events.

When we aren’t providing direct support to an oil spill (or other marine pollution event), NOAA’s Office of Response and Restoration is hard at work training ourselves (and others) and developing tools and best practices for emergency response and assessment of impacts to natural resources.

Better Safe (and Prepared) Than Sorry

Oil spills can happen at any time of day and any time of year (including holidays). We have to be ready at any time to bring our scientific understanding of how oil behaves in the environment, where it might go, what it might impact, what can be done to address it, and what restoration may be needed.

And we think being prepared before a spill happens is a worthy investment.

Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

It Took More Than the Exxon Valdez Oil Spill to Pass the Historic Oil Pollution Act of 1990

Aerial view of Exxon Valdez tanker with boom and oil on water.

While the tanker Exxon Valdez spilled nearly 11 million gallons of oil into Alaskan waters, a trifecta of other sizable oil spills followed on its heels. These spills helped pave the way for passage of the Oil Pollution Act of 1990, which would vastly improve oil spill prevention, response, and restoration. (NOAA)

If you, like many, believe oil shouldn’t just be spilled without consequence into the ocean, then you, like us, should be grateful for a very important U.S. law known as the Oil Pollution Act of 1990.

Congress passed this legislation and President George H.W. Bush signed it into law 25 years ago on August 18, 1990, which was the summer after the tanker Exxon Valdez hit ground in Prince William Sound, Alaska. On March 24, 1989, this tanker unleashed almost 11 million gallons of oil into relatively pristine Alaskan waters.

The powerful images from this huge oil spill—streams of dark oil spreading over the water, birds and sea otters coated in oil, workers in shiny plastic suits trying to clean the rocky coastline—both shocked and galvanized the nation. They ultimately motivated the 101st Congress to investigate the causes of recent oil spills, develop guidelines to prevent and clean up pollution, and pass this valuable legislation.

Yet that monumental spill didn’t fully drive home just how inadequate the patchwork of existing federal, state, and local laws were at addressing oil spill prevention, cleanup, liability, and restoration. Nearly a year and a half passed between the Exxon Valdez oil spill and the enactment of the Oil Pollution Act. What happened in the mean time?

The summer of 1989 experienced a trifecta of oil spills that drained any resources left from the ongoing spill response in Alaska. In rapid succession and over the course of less than 24 hours, three other oil tankers poured their cargo into U.S. coastal waters. Between June 23 and 24, the T/V World Prodigy spilled 290,000 gallons of oil in Newport, Rhode Island; the T/V Presidente Rivera emptied 307,000 gallons of oil into the Delaware River; and the T/V Rachel B hit Tank Barge 2514, releasing 239,000 gallons of oil into Texas’s Houston Ship Channel.

But these were far from the only oil spills plaguing U.S. waters during that time. Between the summers of 1989 and 1990, a series of ship collisions, groundings, and pipeline leaks spilled an additional 8 million gallons along the United States coastline. And that doesn’t even include another million gallons of thick fuel oil released from a shore-side facility in the U.S. Virgin Islands after it was damaged by Hurricane Hugo.

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Can you imagine—or perhaps remember—sitting at home watching the news and hearing again and again about yet another oil spill? And wondering what the government was going to do about it? Fortunately, in August of 1990, Congress voted unanimously to pass the Oil Pollution Act, which promised—and has largely delivered—significantly improved measures to prevent, prepare for, and respond to oil spills in U.S. waters.

Now, 25 years later, the shipping industry has undergone a makeover in oil spill prevention, preparedness, and response. A couple examples include the phasing out of tankers with easily punctured single hulls and new regulations for driving tankers that require the use of knowledgeable pilots, maneuverable tug escorts, and an appropriate number of people on the ship’s bridge during transit.

Oil spill response research also received a boost thanks to the Oil Pollution Act, which reopened a national research facility dedicated to this topic and shuttered just before the Exxon Valdez spill.

But perhaps one of the most important elements of this law required those responsible for oil spills to foot the bill for both cleaning up the oil and for economic and natural resource damages resulting from it.

This provision also requires oil companies to pay into the Oil Spill Liability Trust Fund, a fund theoretically created by Congress in 1986 but not given the necessary authorization until the Oil Pollution Act of 1990. This fund helps the U.S. Coast Guard—and indirectly, NOAA’s Office of Response and Restoration—pay for the upfront costs of responding to marine and coastal accidents that threaten to release hazardous materials such as oil and also of assessing the potential environmental and cultural impacts (and implementing restoration to make up for them).

This week we’re saying thank you to the Oil Pollution Act by highlighting some of its successes in restoring the environment after oil spills. You can join us on social media using the hashtag #Thanks2OilPollutionAct.


1 Comment

Melting Permafrost and Camping with Muskoxen: Planning for Oil Spills on Arctic Coasts

 Muskoxen near the scientists' field camp on Alaska's Espenberg River.

Muskoxen near the scientists’ field camp on Alaska’s Espenberg River. (NOAA)

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

Alaska’s high Arctic coastline is anything but a monotonous stretch of beach. Over the course of more than 6,500 miles, this shoreline at the top of the world shows dramatic transformations, featuring everything from peat and permafrost to rocky shores, sandy beaches, and wetlands. It starts at the Canadian border in the east, wraps around the northernmost point in the United States, and follows the numerous inlets, bays, and peninsulas of northwest Alaska before coming to the Bering Strait.

Planning for potential oil spills along such a lengthy and varied coastline leaves a lot for NOAA’s Office of Response and Restoration to consider. We have to take into account a wide variety of shorelines, habitats, and other dynamics specific to the Arctic region.

This is why fellow NOAA Office of Response and Restoration scientist Catherine Berg and I, normally based in Anchorage, jumped at the opportunity to join a National Park Service–led effort supporting oil spill response planning in the state’s Northwest Arctic region.

Our goal was to gain on-the-ground familiarity with its diverse shorelines, nearshore habitats, and the basics of working out there. That way, we would be better prepared to support an emergency pollution response and carry out the ensuing environmental impact assessments.

Arctic Endeavors

Man inflating boat next to ATV and woman kneeling on beach.

At right, NOAA Regional Resource Coordinator Dr. Sarah Allan collects sediment samples while National Park Service scientist Paul Burger inflates the boat near the mouth of the Kitluk River in northwest Alaska. (National Park Service)

Many oil spill planning efforts have focused on oil drilling sites on Alaska’s North Slope, especially in Prudhoe Bay and the offshore drilling areas in the Chukchi Sea. However, with increased oil exploration and a longer ice-free season in the Arctic, more ship traffic—and a heightened risk of oil spills—extends to the transit routes throughout Arctic waters.

This risk is especially apparent in the Northwest Arctic around the Bering Strait, where vessel traffic is squeezed between Alaska’s mainland and two small islands. On top of the growing risk, the Northwest Arctic coast, like much of Alaska, presents daunting logistical challenges for spill response due to its remoteness and limited infrastructure and support services.

To help get a handle on the challenges along this region’s coast, Catherine Berg and I traveled to northwest Alaska in July 2015 and, in tag-team fashion, visited the shorelines of the Chukchi Sea in coordination with the National Park Service. Berg is the NOAA Scientific Support Coordinator for emergency response and I’m the Regional Resource Coordinator for environmental assessment and restoration.

The National Park Service is collecting data to improve Geographic Response Strategies in the Bering Land Bridge National Preserve and the Cape Krusenstern National Monument, both flanking Kotzebue Sound in northwest Alaska. These strategies, a series of which have been developed for the Northwest Arctic, are plans meant to protect specific sensitive coastal environments from an oil spill, outlining recommendations for containment boom and other response tools.

Because our office is interested in understanding the potential effects of oil on Arctic shorelines, we worked with the Park Service on this trip to collect information related to oil spill response and environmental assessment planning in northwest Alaska’s Bering Land Bridge National Preserve.

The Wild Life

From the village of Kotzebue, two National Park Service scientists and I—along with our all-terrain vehicle (ATV), trailer, and all of our personal, camping, and scientific gear—were taken by boat to a field camp on the Espenberg River. After arriving, we could see signs of bear, wolf, and wolverine activity near where this meandering river empties into the Bering Sea. Herds of muskoxen passed near camp.

Considering most of the Northwest Arctic’s shorelines are just as wild and hard-to-reach, we should expect to be set up in a similar field camp, with similarly complex planning and logistics, in order to collect environmental impact data after an oil spill. As I saw firsthand, things only got more complicated as weather, mechanics, shallow water, and low visibility forced us to constantly adapt our plans.

Heading west, we used ATVs to get to the mouth of the Kitluk River, where the Park Service collected data for the Geographic Response Strategies, while I collected sediment samples from the intertidal area for chemical analysis. These samples would serve as set of baseline comparisons should there be an oil spill in a similar area.

Traveling there, we saw dramatic signs of coastal erosion, a reminder of the many changes the Arctic is experiencing.

The next day, the boat took us around Espendberg Point into Kotzebue Sound to the Goodhope River estuary. There, we used a small inflatable boat with a motor to check out the different sites identified for special protection in the Geographic Response Strategy. I also took the opportunity to field test the “Vegetated Habitats” sampling guideline I helped develop for collecting time-sensitive data in the Arctic. Unfortunately, the very shallow coastal water presented a challenge for both our vessels; the water was only a few feet deep even three miles offshore.

After an unplanned overnight in Kotzebue (more improvising!), I returned to the field camp via float plane and got an amazing aerial view of the coastline. The Arctic’s permafrost and tundra shorelines are unique among U.S. coastlines and will require special oil spill response, cleanup, and impact assessment considerations.

Sound Lessons

After I returned to the metropolitan comforts of Anchorage, my colleague Catherine Berg swapped places, joining the Northwest Arctic field team.

As the lead NOAA scientific adviser to the U.S. Coast Guard during oil spill response in Alaska, her objective was to evaluate Arctic shoreline types not previously encountered during oil spills. Using our Shoreline Cleanup and Assessment Technique method, she targeted shorelines within Kupik Lagoon on the Chukchi Sea coast and in the Nugnugaluktuk River in Kotzebue Sound. She surveyed the profile of these shorelines and recorded other information that will inform and improve Arctic-specific protocols and considerations for surveying oiled shorelines.

Though we only saw a small part of the Northwest Arctic coastline, it was an excellent opportunity to gauge how its coastal characteristics would influence the transport and fate of spilled oil, to improve how we would survey oiled Arctic shorelines, to gather critical baseline data for this environment, and to field test our guidelines for collecting time-sensitive data after an oil spill.

One of the greatest challenges for responding to and evaluating the impacts of an Arctic oil spill is dealing with the logistics of safety, access, transportation, and personnel support. Collaborating with the Park Service and local community in Kotzebue and gaining experience in the field camp gave us invaluable insight into what we would need to do to work effectively in the event of a spill in this remote area.

First, be prepared. Then, be flexible.

Thank you to the National Park Service, especially Tahzay Jones and Paul Burger, for the opportunity to join their field team in the Bering Land Bridge National Preserve.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


Leave a comment

Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

If your house were burning down, who would you want to respond? The local firefighters, armed with hoses and broad training in first aid, firefighting, and crowd management? Or would your panicked neighbors running back and forth with five-gallon buckets of water suffice?

Presumably, everyone would choose the trained firefighters. Why?

Well, because they know what they are doing! People who know what they are doing instill confidence and reduce panic—even in the worst situations. By being prepared for an emergency, firefighters and other responders can act quickly and efficiently, reducing injuries to people and damage to property.

People who have considered the range of risks for any given emergency—from a house fire to a hurricane—and have formed plans to deal with those risks are more likely to have access to the right equipment, tools, and information. When disaster strikes, they are ready and able to respond immediately, moving more quickly from response to recovery, each crucial parts of the resilience continuum. If they prepared well, then the impacts to the community may not be as severe, creating an opportunity to bounce back even faster.

Having the right training and plans for dealing with disasters helps individuals, communities, economies, and natural resources better absorb the shock of an emergency. That translates to shorter recovery times and increased resilience.

This shock absorption concept applies to everything from human health to international emergency response to coastal disasters.

For example, the Department of Defense recognizes that building a culture of resilience for soldiers depends on early intervention. For them, that means using early education and training [PDF] to ensure that troops are “mission ready.” Presumably, the more “mission ready” a soldier is before going off to war, the less recovery will be needed, or the smoother that process will be, when a soldier returns from combat.

Similarly, the international humanitarian response community has noted that “resilience itself is not achievable without the capacity to absorb shocks, and it is this capacity that emergency preparedness helps to provide” (Harris, 2013 [PDF]).

NOAA’s Office of Response and Restoration recognizes the importance of training and education for preparing local responders to respond effectively to coastal disasters, from oil spills caused by hurricanes to severe influxes of marine debris due to flooding.

Coastline of Tijuana River National Estuarine Research Reserve in southern California.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources, helping coasts bounce back to health even more quickly. (NOAA)

In fiscal year 2014 alone, we trained 2,388 emergency responders in oil spill response and planning. With more coastal responders becoming more knowledgeable in how oil and chemicals behave in the environment, more parts of the coast will become better protected against a disaster’s worst effects. In addition to trainings, we are involved in designing and carrying out exercises that simulate an emergency response to a coastal disaster, such as an oil spill, hurricane, or tsunami.

Furthermore, we are always working to collect environmental data in our online environmental response mapping tool, ERMA, and identify sensitive shorelines, habitats, and species before any disaster hits. This doesn’t just help create advance plans for how to respond—including guidance on which areas should receive priority for protection or response—but also helps quickly generate a common picture of the situation and response in the early stages of an environmental disaster response.

After the initial response, NOAA’s Office of Response and Restoration is well-positioned to conduct rapid assessments of impacts to natural resources. These assessments can direct efforts to clean up and restore, for example, an oiled wetland, reducing the long-term impact and expediting recovery for the plants and animals that live there.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. Our years of experience and scientific expertise enable us to complement their trainings on emergency response operations with time-critical environmental science considerations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources. Our popular Science of Oil Spills class, held several times a year around the nation, is just one such example.

Additionally, we are working with coastal states to develop response plans for marine debris following disasters, to educate the public on how we evaluate the environmental impacts of and determine restoration needs after oil and chemical spills, and to develop publicly available tools that aggregate and display essential information needed to make critical response decisions during environmental disasters.

You can learn more about our efforts to improve resilience through readiness at response.restoration.noaa.gov.

Kate Clark.Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


1 Comment

Like a Summer Blockbuster, Oil Spills and Hurricanes Can Take the Nation by Storm

Wrecked sailboats and debris along a dock after a hurricane.

The powerful wind and waves of a hurricane can damage vessels, releasing their fuel into coastal waterways. (NOAA)

From Twister and The Perfect Storm to The Day After Tomorrow, storms and other severe weather often serve as the dramatic backdrop for popular movies. Some recent movies, such as the Sharknado series, even combine multiple fearsome events—along with a high degree of improbability—when they portray, for example, a hurricane sweeping up huge numbers of sharks into twisters descending on a major West Coast city.

But back in the world of reality, what could be worse than a hurricane?

How about a hurricane combined with a massive oil spill? It’s not just a pitch for a new movie. Oil spills actually are a pretty common outcome of powerful storms like hurricanes.

There are a couple primary scenarios involving oil spills and hurricanes. The first is a hurricane causing one or more oil spills, which is what happened during Hurricane Katrina in 2005 and after Hurricane Sandy in 2012. These kinds of oil spills typically result from a storm’s damage to coastal oil facilities, including refineries, as well as vessels being damaged or sunken and leaking their fuel.

The second, far less common scenario is a hurricane blowing in during an existing oil spill, which is what happened during the 2010 Deepwater Horizon oil spill.

Hurricane First, Then Oil Spills

Stranded and wrecked vessels are one of the iconic images showing the aftermath of a hurricane. In most cases those vessels have oil on board. And don’t forget about all the cars that get flooded. Each of these sources may contain relatively small amounts of fuel, but hurricanes can cause big oil spills too.

Additional damage is often caused by the storm surge, as big oil and chemical storage tanks can get lifted off their foundations (or sheared off in the case of the picture below).

A damaged boat setting on a  fuel dock.

A boat, displaced and damaged in the aftermath of Hurricane Katrina, in late summer of 2005 in the Gulf of Mexico, an area frequented by both hurricanes and oil spills. (NOAA)

Hurricanes Katrina and Rita in 2005 passed through the center of the Gulf of Mexico oil industry and caused dozens of major oil spills and thousands of small spills.

One of the largest stemmed from the Murphy Oil refinery in St. Bernard Parish, Louisiana. Dikes surrounding the oil tanks at the refinery were full from flood waters, so when a multi-million gallon tank failed, oil flowed easily into a nearby neighborhood, leaving oil on thousands of homes and businesses already reeling from the flood waters.

Hurricanes can also create navigation hazards that result in later spills. Hurricane Rita, hitting the Gulf in September 2005, sank several offshore oil platforms. While some were recovered, others were actually left missing. Several months later, the tank barge DBL 152 “found” one of these missing rigs, spilling nearly 2 million gallons of thick slurry oil after striking the sunken and displaced platform hiding below the ocean surface.

A large ship on its side, leaking dark oil on the ocean surface.

In November 2005, tank barge DBL 152 struck the submerged remains of a pipeline service platform that collapsed a few months earlier during Hurricane Rita. The double-hulled barge was carrying approximately 5 million gallons of slurry oil, a type of oil denser than seawater, which meant as the thick oil poured out of the barge, it sank to the seafloor. (Entrix)

Oil Spills and Then a Hurricane Hits

So what happens if a hurricane hits an existing oil spill?

This was a big concern during the summer of 2010 in the Gulf of Mexico. There was an ever-growing slick on the ocean surface, oil already on the shore, and lots of response equipment and personnel scattered across the Gulf cleaning up the Deepwater Horizon spill.

There was a lot of speculation as to what might happen as hurricane season began. Hurricane Alex, a relatively small storm, was the first test. The first impact came days before the storm, as response vessels evacuated the area. Hurricane Alex halted response efforts such as skimming and burning for several days. Hundreds of miles of oil booms protecting the shoreline were displaced by the growing surf.

As the hurricane passed through, floating oil was quickly dispersed by the powerful winds and waves, and the same wave energy buried, uncovered, and moved oil on the shore or in submerged mats of oil near the shoreline. Some oil was likely carried inland by sea spray and flood waters from the storm surge. Oil dissolved in the water column near the surface became even more dispersed, but the deep waters of the Gulf were well out of reach of the stormy commotion at the surface, and the leaking wellhead continued to gush.

But the Deepwater Horizon spill wasn’t the only time hurricanes have butted heads with a massive spill. In 1979, Mexico’s Ixtoc I well blowout in the southern Gulf of Mexico was hit by Hurricane Henri. The main impact of the hurricane’s winds was to dilute and weather the floating oil.

In some places along the Texas coast, beached oil was washed over the barrier islands into the bays behind them, while in other areas stranded oil was buried by clean sand. Many of these oiled areas were reworked a year later when Hurricane Allen battered the coast.

Preventing oil spills is a part of preparing for hurricanes. Coastal oil facilities and vessel owners do their best to batten down the hatches and get their vessels out of harm’s way, but we know that spills may still happen. Atlantic hurricane season, which runs from June 1 to November 30, is a busy time for those of us in oil spill response, and we breathe a sigh of relief when hurricane season ends—just in time for winter storm season to begin.


Leave a comment

One Step Toward Reducing Chemical Disasters: Sharing with Communities Where Those Chemicals Are Located

This is a guest post by emergency planner Tom Bergman.

Dirty label on leaking chemical drum

Attempting to access, collect, and share information on where chemicals are produced, stored, and transported is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. (killbox/Creative Commons Attribution 2.0 Generic License)

The year 2013 saw two major chemical disasters in the United States, which tragically killed 17 people and injured hundreds more. As a result, President Obama signed Executive Order 13650 (EO 13650) August 1, 2013, followed by a report the next year to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

As part of this directive, six federal agencies and departments, including the U.S. Environmental Protection Agency (EPA), formed a work group to investigate how to better help local communities plan for and respond to emergencies involving hazardous substances.

Out of these work group discussions came one area needing improvement which might sound surprising to the average person: data sharing. Specifically, the work group highlighted the need to improve data sharing among the various federal programs that regulate hazardous substances and the state and local communities where those chemicals are produced, stored, and transported.

EPA works with NOAA on the chemical spill planning and response software suite known as CAMEO. These software programs offer communities critical tools for organizing and sharing precisely this type of chemical data.

Lots of Chemicals, Lots of Data

Many parts of the federal government, including several of the agencies involved in the work group, regulate hazardous chemicals in a number of ways to keep our communities safe. That means collecting information from industry on the presence or usage of hazardous substances in communities across the nation. It also results in a lot of data reported on the hazardous materials manufactured, used, stored, and transported in the United States. Making sure these data are shared with the right people is a key goal for chemical safety.

However, federal agencies do not require industry to report all of this information in consistent formats across agencies. Furthermore, this reported information on hazardous chemicals is generally not available to local emergency planners and responders—the very people who would need quick access to that information during a disaster in their community.

Trying to access, collect, and share all of this information is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. Fortunately, however, NOAA and EPA have a suite of software tools—known as CAMEO—that helps make this task a little easier.

One State’s Approach to Better Data Sharing

As required by the Emergency Planning and Community Right-to-Know Act (EPCRA), which was passed to help communities plan for emergencies involving hazardous substances, each state, Local Emergency Planning Committee, and local fire department receives hazardous material information via hazardous chemical inventories, or “Tier 2” reports. This information represents one part of the picture for local communities, but as the federal work group pointed out, it is not enough.

Already familiar with the CAMEO software suite, Oklahoma’s state emergency planners decided to use this complementary set of programs to tackle the goal of better sharing chemical safety data, as outlined in Executive Order 13650.

Under EPCRA, each state is required to have a State Emergency Response Commission to oversee the law’s hazardous chemical emergency planning programs. In Oklahoma, the group is known as the Oklahoma Hazardous Materials Emergency Response Commission (OHMERC).

As their first step toward improving chemical data sharing with local planners, OHMERC set out to obtain hazardous material information from the EPA, Department of Homeland Security, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Then, they sought to make that information available to all Oklahoma Local Emergency Planning Committees (LEPC). Subsequently, these federal agencies began to contact other state representatives to explore avenues to share these data.

Each of the three federal agencies OHMERC contacted provided non-sensitive hazardous material program data—plus the state already had access to some of the information—but these data were in different file formats. Some were contained in spreadsheets, others as PDF files, and still others delivered in text documents. As a result, there was no consistent format for delivering the information to local emergency planners.

Going Local

Oklahoma Local Emergency Planning Committees already use the CAMEO suite of software to manage their Tier 2 (EPA hazardous chemical inventory) reports. As a result, OHMERC decided to use the database program CAMEOfm to deliver additional information from other federal hazardous material programs to these local committees.

For each Tier 2 report, CAMEOfm has an “ID and Regs” section, which typically contains standard identifying codes for each local facility dealing with chemicals. For the appropriate facilities, OHMERC added new designations to the ID fields for the additional regulatory data from the Department of Homeland Security, EPA, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Now, local planners can search CAMEOfm to see which facilities in their jurisdiction are subject to several other hazardous material regulatory programs. If interested, local planners then can contact a facility, inquire why it is regulated by a particular program, gather more information, and plan directly with that facility.

Since all the CAMEOfm records are linked to the MARPLOT mapping program (also part of the CAMEO software suite), Local Emergency Planning Committees now have the information mapped as well. For example, a planner from Tulsa County can search CAMEOfm for locations with chemicals regulated under the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards program (CFATS) and the EPA’s Risk Management Plan and Toxics Release Inventory programs. Next, the planner can display the results on a map using MARPLOT.

In addition, Oklahoma facilities regulated under EPA’s Risk Management Plan program have been encouraged to include the non-sensitive parts of their plans in the “Site Plans” section of CAMEOfm. Many, though not all, of these sites did so, realizing this was an effective method to ensure the local first responders had access to that important information.

Getting Data in Ship Shape

Oklahoma’s Local Emergency Planning Committees now have all of this chemical safety information in a consistent format, located in a familiar program where they easily can access it for planning and response efforts.

Screen shot of CAMEOfm record with chemical information of shipment of Bakken crude oil.

Rail lines provide data that Oklahoma’s state emergency planners want to share with the local planning committees. The data include the appropriate Material Safety Data Sheets (MSDS) for Bakken crude oil, along with emergency response personnel and information for that railroad, and a report of the numbers of trains shipping more than 1 million pounds of Bakken crude. This information is added as a CAMEOfm record quickly and easily, in a way that is completely accessible to the responders and planners along with their other CAMEOfm records.

Another timely example of how Oklahoma is using this CAMEOfm and MARPLOT combination is for managing information on rail shipments of Bakken crude oil through the state. Bakken oil is a highly flammable type of oil typically shipped by train from the Bakken region of North Dakota and Montana and has been involved in a number of high-profile explosions and fires after train cars carrying it have derailed. OHMERC entered this shipment information, provided by the railroads, into CAMEOfm, where it becomes linked to the appropriate railroad map objects in MARPLOT. OHMERC then sends this material in the CAMEOfm and MARPLOT format to the relevant Local Emergency Planning Committees.

Using these programs to better share data is a step that any emergency planner or responder can take. You can find more information about the CAMEO software suite at response.restoration.noaa.gov/cameo.

This is a guest post by Oklahoma emergency planner Tom Bergman. He is the author of the CAMEO Companion and host of the www.cameotraining.org website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years. He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.