NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Creative Solutions Save Money and Marsh Along Galveston Bay, Texas

Hazardous waste sites create a cascade of impacts that affect the health of communities, water quality, and the local environment. That’s why the long-term cleanup and restoration of these sites often requires a coordinated—and creative—regional approach.

This was certainly the case for the Malone Services Company hazardous waste site in Texas City, Texas. By combining efforts and funding in unexpected ways, federal, state and local partners came up with the most effective restoration solutions for the area, saving time and money along the way.

A Hazardous History

Located on the shores of Swan Lake and Galveston Bay, the 150-acre Malone facility produced decades of pollution affecting both groundwater within the site and runoff into nearby surface waters, creating long-term contamination problems for the region. Hundreds of businesses sent more than 480 million gallons of waste to the Malone facility for reclamation, storage, and disposal. During its operation from 1964 to 1997, waste products from those industries included acids, contaminated residues, solvents, and waste oils.

Designated a Superfund site in 2001, state and federal agencies collaborated early on during the cleanup, investigating the extent of the contamination, assessing which natural resources were affected, and planning restoration solutions to make up for these impacts. By sharing information they all needed, the agencies avoided additional costs from performing independent studies.

Aerial view of Malone Services Company waste site next to wetlands and Galveston Bay.

An aerial view of the Malone Services Company hazardous waste site shows the proximity of wetlands and Galveston Bay. (Department of the Interior)

Officially called “trustees,” the state and federal agencies involved included the Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, the Texas General Land Office, NOAA, and the U.S. Fish and Wildlife Service. Working together, the trustees carried out the Natural Resources Damage Assessment process for the Malone waste site. In 2012, they reached a settlement with the responsible parties for approximately $3.1 million. In the settlement, the trustees determined that Malone’s pollution had significant negative impacts on natural resources, affecting upland-woodland, freshwater marsh, and saltwater marsh habitat around the Malone site.

To restore those natural resources, the trustees finalized the damage assessment and restoration plan [PDF] in 2015.  Key elements of the plan center on restoring nearby natural areas, including freshwater wetlands in Campbell Bayou, terrestrial woodlands in the Virginia Peninsula Preserve, and intertidal saltwater wetlands in Pierce Marsh.

Creative Restoration at Pierce Marsh

Situated on the north shore of West Galveston Bay, not far from the Malone site, Pierce Marsh covers more than 2,300 acres, supports vibrant seasonal and year-round bird and fish populations, and is home to commercial and recreational fisheries. It is also located near vital, colonial water bird nesting islands and serves as an important feeding area during the nesting season.

However, the marsh became completely flooded by the 1990s, compromising its habitat quality as the ground beneath it sank due to subsidence. “Pierce Marsh has experienced one of the greatest rates of wetland loss in Galveston Bay and the restoration of its fish and wildlife habitat is recognized as a regional restoration priority,” noted Jamie Schubert, NOAA Restoration Center Marine Habitat Specialist. The Galveston Bay Foundation, a co-owner of the land, has spent the last 15 years methodically restoring the marsh.

Money from the Malone settlement is funding the restoration of 70 acres of wetland at Pierce Marsh. Having each federal and state agency contribute to a portion of the success—through the funding, planning, engineering, design, permitting, implementation, or monitoring—this restoration project has saved time and money.

Birds swoop over a pipeline releasing mud into a marsh.

Sediments pouring from the end of a long pipeline are raising the ground elevation of Pierce Marsh, improving habitat for birds and fish and helping make up for the loss of similar habitat due to pollution at the Malone waste site. (Credit: John Morris/Mike Hooks, Inc.)

One cost-saving example came out of NOAA habitat conservation experts and U.S. Army Corps of Engineers project manager, Seth Jones, both serving on an Interagency Coordination Team for the Texas Gulf Intracoastal Waterway. The Corps maintains the waterway, dredging it deep and wide enough to meet current shipping demands. Out of those meetings emerged the idea to “beneficially” use the sediments from the waterway dredging to raise the ground level of Pierce Marsh.

“Our project delivery team included NOAA, the Galveston Bay Foundation, Texas Parks and Wildlife, U.S. Fish and Wildlife Service, the Texas General Land Office, and the Texas Department of Transportation,” said Jones. “It was because of their instrumental input throughout the design phase that we are going to get a good start on the Galveston Bay Foundation’s long-term marsh restoration plan at Pierce Marsh complex.”

To pay for transportation of the dredged sediments to restore the marsh, the Texas trustees recommended that combined settlement funds from the Malone Services Company site, the Tex Tin hazardous waste site (also in the area), and another Texas state pollution case could help fund the needed restoration, yielding more restoration for their dollars.

“This beneficial use project has multiple benefits—it keeps the dredged material away from existing seagrass areas in West Bay and helps restore lost wetland habitat that has disappeared over the last fifty years in this area,” said Bob Stokes, President of Galveston Bay Foundation.

A Restoration Recipe for Success

Small levee of sediment and grass in a marsh.

A small levee constructed in Pierce Marsh, near Galveston Bay, Texas, contains dredged sediments that will restore marsh elevation and improve habitat quality. (NOAA)

Members of the trustee council have expressed enthusiasm for the project as well. “The U.S. Fish and Wildlife Service is excited to be part of the Pierce Marsh restoration project, which will restore estuary marsh habitat and benefit migratory birds and waterfowl,” said Benjamin Tuggle, Southwest Regional Director, U.S. Fish and Wildlife Service. “Multiple state, federal, and NGO partners have come together to restore contaminated areas at the Malone site.”

The Texas trustees anticipate building upon these efforts and using this approach to continue restoring coastal marshes, making ongoing monitoring of the project very important. They have partnered with Galveston Bay Foundation and Ducks Unlimited to monitor sediment settlement rates, which are used to assess project success and inform future projects.

“The Pierce Marsh reclamation project will make a significant contribution to restoring the coastal wetlands and natural resources that have been lost over time in this part of West Galveston Bay,” according to Richard Seiler, Program Manager of the Texas Commission on Environmental Quality Natural Resource Trustee Program. “The project represents a true team effort between the Texas Commission on Environmental Quality and the other state and federal natural resource trustees, the U.S. Army Corps of Engineers, and our NGO partners, the Galveston Bay Foundation and Ducks Unlimited.”

The restoration of Pierce Marsh is a success story of interagency cooperation and partner coordination. Federal and state agencies and non-profit organizations with differing missions came together on a project that would benefit everyone involved. Working together to share financial and technical resources, ultimately enabled them to use sediment historically viewed as waste material to restore vital coastal habitat, enhancing the area for wildlife and fisheries for generations to come.


Leave a comment

After Decades of Pollution, Bringing Safe Fishing Back to Kids in Southern California

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

A boy holds up a scorpion fish on a boat.

A boy participating in the Montrose youth fishing program shows off his catch, a scorpion fish, from the Betty-O fishing boat with Marina Del Rey Anglers in southern California. (NOAA)

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

Polluted waters and polluted fish seem like obvious (and good) reasons to skip a fishing trip at such a beach, and they are.

For a long time, that was the case for a certain slice of coastal southern California, and those skipped fishing trips really add up. Fortunately, NOAA and our partners are responsible for making up for those trips never taken and do so through the Natural Resource Damage Assessment process.

From the late 1940s to the early 1970s, factories, including one owned by the Montrose Chemical Corporation, released several million pounds of DDT and roughly 256,000 pounds of PCBs through ocean outfall pipes onto the Palos Verdes Shelf off of southern California. These chemicals made their way up the food chain, impacting fish and wildlife, and in turn, people too.

By 1991, the high chemical concentrations in fish prompted the California Office of Environmental Health and Hazard Assessment to issue its first consumption advisory for common sportfish found along the southern California coast.

A boy stands next to a sign warning not to eat contaminated fish, with people fishing off a pier beyond.

Decades of pollution dumped onto the Palos Verdes Shelf off of southern California later led to fish consumption advisories, warning people of the dangers of eating contaminated fish. (NOAA)

At the same time, media reports amplified the message that fish were contaminated in this area, which resulted in a large number of anglers completely shying away from fishing within the contaminated zone—whether the fish they were catching were affected or not. In addition, unaware of the dangers, low-income, subsistence anglers continued to catch and eat contaminated fish.

All of these factors contributed to a measurable impact to these types of fishing opportunities in southern California, prompting the need to restore them.

Connecting Kids with Fishing

Following a natural resource damages settlement in 2000, NOAA’s Montrose Settlements Restoration Program (MSRP) was developed to restore wildlife, fishing, and fish habitat that were harmed by DDTs and PCBs in the southern California marine environment.

In our 2005 restoration plan [PDF], we identified the need for a public information campaign targeted to youth and families, which would help anglers make informed decisions about what to do with the local fish they caught. Our program was also hoping to change the public perception about local fishing by giving anglers information about alternative, safe fish species to catch and consume and which species to avoid.

Starting in 2007, we funded and supported a youth fishing outreach mini-grant program, one of the major components of this campaign. For this program, we teamed up with local fishing clubs, youth groups, environmental organizations, aquaria, and the City of Los Angeles to educate young people and their families about safe fishing practices.

The program focused on three key and seven secondary messages related to recreational fishing in the area and included a hands-on fishing component. Participating groups also distributed our What’s the Catch? comic books [PDF] and fish identification cards [PDF] to youth who took part in the program. Some of the activities included touring a local aquarium to reinforce fish identification and playing interactive games that demonstrated bioaccumulation of chemicals in the food chain.

Since the campaign started in 2007, over 20,000 youth have participated in our fishing outreach program through eight participating organizations. All of these organizations were serving low-income or at-risk youth ages 5-19 years old and included having kids actually fish from either a boat or pier.

Fishing for Information

Starting in 2012, we started surveying youth, teachers, and counselors at the end of each fishing outreach program. Featuring questions such as “Did you enjoy the fishing today?” and “Did you learn how to identify fish which are safe to eat?” these surveys helped us understand whether kids were actually learning the program’s key messages.

A group of kids surround a man filleting fish on a pier.

Staff from the City of Los Angeles show kids how to properly fillet a fish to reduce their intake of contaminants. (NOAA)

We found that the program improved each year. By 2015 at least 86% of youth understood our top three key messages:

  • Fishing is one of the most common outdoor activities in the world, allowing people to make a personal connection with nature.
  • There are many fish in southern California that are healthy to eat.
  • A small number of fish are not safe to eat.

The frequency and type of secondary messages that were taught by our partnering organizations varied among programs. In most cases, programs improved with teaching these concepts each year, with at least 77% of youth understanding most of the secondary messages:

  • DDT and PCB contaminants bioaccumulate up the food chain.
  • DDTs and PCBs, harmful chemicals to wildlife and humans, were dumped into the ocean for more than 30 years in southern California and are still in the environment today.
  • Eating only the fillet and throwing away the insides of the fish is a safe way to eat.
  • Grilling a fillet is the safest way to prepare fish to eat.
  • Look for signs on piers telling you which fish are not safe to eat.
  • All fish are an important part of the ocean ecosystem. If you do not keep a fish for the table, gently return it to the ocean.
  • You play an important role in preserving our ocean resources. Follow fishing rules and regulations to be good ocean stewards.

Feel the Learn

Youth group on board a boat with volunteers from Marina Del Rey Anglers holding up foam board educational signs.

Since the campaign started in 2007, over 20,000 kids have participated in the fishing outreach program through eight participating organizations, all of which worked with low-income or at-risk youth. Here, a group of kids on board a boat with volunteers from Marina Del Rey Anglers show off some of the educational signs used in the program. (NOAA)

We also surveyed third, fourth, and fifth grade teachers that participated in the Fun Fishing Program at The SEA Lab in Redondo Beach, California. Teachers evaluated the usefulness of our comic book and fish identification cards, which they received before their field trip.

At least 96% of teachers surveyed over four years agreed that the comic book presented useful information for their students, captured student’s interests, and was a resource they could easily use in the classroom. For the fish identification card, at least 87% of teachers felt similarly about this educational tool.

We also know that students who participated in the program at The SEA Lab remembered what they learned from their field trip six months later. More than half of the students we surveyed at this later date recalled seven out of 10 program messages correctly and were making healthier decisions when eating fish. Teachers who were also surveyed during this time showed that more than 50% were occasionally teaching concepts related to six of the program messages in their classrooms.

In the final year of this fishing outreach program (due to the full use of funding allocations outlined in the restoration plan), we are planning to support two organizations, The SEA Lab and the City of Los Angeles, in summer and fall 2016.

The program has been hugely successful at improving the health of children and their families and introducing them to the joyful sport of fishing, while showing lasting impacts on teachers and students. This success is due in a big way to the dedication of our many partners and especially those who provided thousands of volunteer hours.

Fishing Outreach Program Partner Organizations:

Cabrillo Marine Aquarium (2007)

The SEA Lab (2007-2016)

United Anglers of Southern California (2009/2011)

Asian Youth Center (2009)

Friends of Colorado Lagoon (2011-2012)

City of Los Angeles-Department of Recreation and Parks (2011-2016)

Marina Del Rey Anglers Fishing Club (2012-2015)

Los Angeles Rod and Reel Club (2014-2015)

Gabrielle Dorr

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.


Leave a comment

How Do We Measure What We Lose When an Oil Spill Harms Nature?

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a post by economist Adam Domanski of NOAA’s Office of Response and Restoration.

A beach closed sign on a fence in front of an ocean beach at Coal Point.

When an oil spill closes a beach, economists will count how many trips to the coast were affected by that spill and use information on where those trips were originating to measure the lost value per lost trip. This informs the amount of restoration that needs to make up for those losses. (Used with permission of Chris Leggett)

After oil spills into the ocean, NOAA studies the impacts to animals and plants, but we also make sure to measure the direct impacts to people’s use of nature. This is all part of the Natural Resource Damage Assessment process, which makes up for those impacts.

Humans can value environmental quality just for its existence (think of remote mountains and pristine beaches). In the Natural Resource Damage Assessment process, this “non-use value” is most often compensated for by replacing the natural resources or services that were lost.

Oil and Fun Don’t Mix

However, people can also value the environment because they use it for recreational or cultural purposes. For example, people may be affected if they can’t go fishing, boating, or walking along the beach because of an oil spill.

When oil or another contaminant comes near shore, sometimes people will cancel their planned trip, sometimes they’ll change where they’re going, and other times they’ll still take a trip but will enjoy it less. Trustees of the affected resources, like NOAA, apply different tools to measure these recreational use losses (we’ll talk about cultural losses in an upcoming blog post).

However, people may make one of these changes even if there isn’t any oil present on the beach. Sometimes beaches or fishing areas may be closed because cleanup crews or environmental assessment teams are present. Other times, people may hear about an oil spill in the news and may change their trip based on their reasonable expectation that the oil spill will affect their trip in some way.

Infographic showing three scenarios for how people react to an oil spill: some people stay home from the beach, some people go to a beach farther from the oil spill, and some people go to the same beach but have a less enjoyable experience.

Thanks to the Oil Pollution Act, any one of these changes is an impact than we can quantify in the Natural Resource Damage Assessment process.

Counting How Much Less Fun

Under the Oil Pollution Act, people generally can file legal claims for two types of economic losses related to recreational use due to a spill. Lost revenue to local businesses, such as stores, restaurants, and hotels, is a private loss and is reserved for those businesses to claim. On the other hand, the lost value to the would-be hikers, boaters, anglers, and swimmers is considered a public loss and is the responsibility of trustees, that is, local, state, and federal agencies and tribes acting as stewards of the affected public natural resources.

People walking on a developed portion of white sand beach at the ocean.

Pollution makes for a bad day at the beach, which is why NOAA also measures the impact of oil spills and chemical releases on people’s use of natural resources. (NOAA)

To measure these public damages, trustee economists will count how many trips to the coast were affected by that particular oil spill and use information on where those trips were originating to measure the lost value per lost trip. Together, these two pieces make up the trustee claim for lost recreational use after an oil spill.

To measure lost trips, trustees will often use on-site, telephone, or mail surveys in combination with on-site or aerial counts of people on the coast. Sometimes, we can take advantage of other data sources that already tell us how many people visit the coast, such as existing beach attendance data, parking meter counts, or recreational fishing surveys.

For example, after the 2007 Cosco Busan oil spill in San Francisco Bay, trustees performed on-site counts of people at some beaches, used a telephone survey to estimate the levels of use at others, and relied on the California Recreational Fisheries Survey to estimate trips taken by anglers. This information was combined with weather data in a statistical model to predict the number of people that would have taken trips if the oil spill hadn’t occurred. The assessment estimated that there had been over 1 million lost trips.

The lost value per lost trip is measured using economic models that combine information on where people live and which recreational sites they can choose from. Just like shopping at the grocery store (where you choose from lots of different products at different prices), recreators choose between lots of different access points, each of which has a different “price” (in terms of gas and travel time).

People standing around a pier fishing.

When pollution affects people’s ability to use and enjoy natural resources, such as fishing, we use money from the entity responsible for the pollution to fund projects that will benefit the very same users who were affected. (NOAA)

Using many observations of how many people choose which sites at which prices, economists can measure the recreational demand for each site. When a site is affected by an oil spill, this model can be used to determine the lost value to recreators. For the Cosco Busan oil spill, this approach estimated that the average lost value per lost trip was $18.25 (as measured in 2007 dollars).

The goal of the Natural Resource Damage Assessment process is to compensate the public for the harm caused by a spill. After we calculate the lost value, the trustees aren’t done yet. Using money from the entity responsible for the oil spill, we spend restoration dollars on projects that will benefit the very same users who were affected. A few examples of projects we have built include fishing piers, boat ramps, parks, and artificial reefs.

Survey Says

So, how important are lost recreational use claims to the Natural Resource Damage Assessment process? Here are a few approximate numbers from past oil spill cases:

As you can see, surveying how people use the environment is a critical part of this process. And although taking surveys can be annoying, they often times generate really useful data that economists get super excited about—and from which you can directly benefit. So, the next time you get asked if you want to take a survey, take the opportunity to make an economist happy and say yes.

Learn more about the economics of Natural Resource Damage Assessment and the value of a good day at the beach (video).

adam-domanski_150Adam Domanski is an economist who specializes in non-market valuation with the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. He received his PhD in Economics from North Carolina State University and has worked on numerous oil spill and hazardous waste site cases. In his spare time he enjoys traveling and spending time outside.


Leave a comment

From Kayaking to Carbon Storage, What We Stand to Gain (and Lose) from Our Coasts

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a guest post by Stefanie Simpson of Restore America’s Estuaries.

People sitting in canoes and standing on a shoreline.

When coastal habitats are damaged or destroyed, we lose all of the benefits they provide, such as carbon storage and places to canoe. (NOAA)

Estuaries, bays, inlets, sounds—these unique places where rivers meet the sea can go by many different names depending on which region of the United States you’re in. Whether you’re kayaking through marsh in the Carolinas, hiking through mangrove forest in the Everglades, or fishing in San Francisco Bay, you are experiencing the bounty estuaries provide.

Natural habitats like estuaries offer people an incredible array of benefits, which we value in assorted ways—ecologically, economically, culturally, recreationally, and aesthetically.

Estuaries, where saltwater and freshwater merge, are some of the most productive habitats in the world. Their benefits, also called “ecosystem services,” can be measured in a variety of ways, such as by counting the number of birding or boating trips made there or by measuring the amount of fish or seafood produced.

If you eat seafood, chances are before ending on up your plate, that fish spent at least some of its life in an estuary. Estuaries provide critical habitat for over 75% of our commercial fish catch and 80% of our recreational fish catch. Coastal waters support more than 69 million jobs and generate half the nation’s Gross Domestic Product (GDP) [PDF]. Estuaries also improve water quality by filtering excess nutrients and pollutants and protect the coast from storms and flooding.

Another, perhaps less obvious, benefit of estuaries is that they are also excellent at removing carbon dioxide from the atmosphere and storing it in the ground long-term. In fact, estuary habitats like mangroves, salt marshes, and seagrasses store so much carbon, scientists gave it its own name: blue carbon.

How do we know how much carbon is in an estuary? Scientists can collect soil cores from habitats such as a salt marsh and analyze them in the lab to determine how much carbon is in the soil and how long it’s been there.

But you can also see the difference. Carbon-rich soils are made up of years of accumulated sediment and dead and decaying plant and animal material. These soils are dark, thick, and mucky—much different from the sandy, mineral soils you might find along a beach.

Science continues to improve our understanding of ecosystem services, such as blue carbon, and their value to people. For example, in 2014 a study was conducted in the Snohomish Estuary in Washington’s Puget Sound to find out just how much carbon could be stored by restoring estuaries. The study estimated that full restoration of the Snohomish Estuary (over 9,884 acres) would remove 8.9 million tons of carbon dioxide from the atmosphere—that’s roughly equal to taking 1,760,000 cars off the road for an entire year.

Estuary restoration would not only help to mitigate the effects of climate change but would have a positive cascading effect on other ecosystem services as well, including providing habitat for fish, improving water quality, and preventing erosion.

Healthy estuaries provide us with so many important benefits, yet these habitats are some of the most threatened in the world and are disappearing at alarming rates. In less than 100 years, most of these habitats may be lost, due to human development and the effects of climate change, such as sea-level rise.

When we lose estuaries and other coastal habitats, we lose all of the ecosystem services they provide, including carbon storage. When coastal habitat is drained or destroyed, the carbon stored in the ground is released back into the atmosphere and our coast becomes more vulnerable to storms and flooding. It is estimated that half a billion tons of carbon dioxide are released every year due to coastal and estuary habitat loss.

These benefits can also be compromised when coastal habitats are harmed by oil spills and chemical pollution. People also feel these impacts to nature, whether because an oil spill has closed their favorite beach or chemical dumping has made the fish a tribe relies on unsafe to eat.

Scientists and economists continue to increase our understanding of the many benefits provided by our coastal habitats, and land managers use this information to protect and restore habitats and their numerous services. Stay tuned for more this week as NOAA’s Office of Response and Restoration and Restore America’s Estuaries explore how our use of nature suffers from pollution and why habitat restoration is so important.

Stefanie Simpson.Stefanie Simpson is the Blue Carbon Program Coordinator for Restore America’s Estuaries where she works to promote blue carbon as a tool for coastal restoration and conservation and coordinates the Blue Carbon National Network. Ms. Simpson is also a Returned Peace Corps Volunteer (Philippines 2010-12) and has her Master of Science in Environmental Studies.

The views expressed here reflect those of the author and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


Leave a comment

What Are Our Options for Restoring Lands Around Washington’s Hanford Nuclear Reservation?

Shrub-covered plains next to the Columbia River and bluffs beyond.

The dry shrub-steppe habitat at Washington’s Hanford Nuclear Reservation is rare for the region because it is so extensive, intact, and relatively healthy. (Department of Energy)

Many people might be inclined to write off the wide, dry plains stretching around the Hanford Nuclear Reservation as lost lands. After all, this area in eastern Washington was central to the top-secret Manhattan Project, where plutonium was produced for nuclear bombs used against Japan near the end of World War II. In addition, nuclear production continued at Hanford throughout the Cold War, ending in 1987.

This history left an undeniable legacy of pollution, which is still being studied and addressed today.

Yet this land and the Columbia River that curves in and around it are far from being irredeemable. The Hanford site encompasses 586 square miles. Yes, some parts of Hanford have been degraded by development from its nine (now decommissioned) nuclear reactors and associated processing plants and from chemical and radionuclide contamination.

But the site also includes vast, continuous tracts of healthy arid lands that are rare in a modern reality where little of nature remains untouched by humans.

Where We Are and Where We’re Going

This potential is precisely what encourages Christina Galitsky, who recently joined NOAA’s Office of Response and Restoration to work on the Hanford case. Currently, she is leading a study at Hanford as part of a collaborative effort known as a Natural Resource Damage Assessment, a process which is seeking to assess and make up for the years of environmental impacts at the nuclear site.

“The purpose of our study is to begin to understand habitat restoration options for Hanford,” Galitsky explained. “We are starting with terrestrial habitats and will later move to the aquatic environment.”

A worker drains a pipe that contains liquid chromium next to a nuclear reactor.

From the 1940s to 1980s, the Hanford site was used to produce plutonium in nuclear weapons, and which today is home to the largest environmental cleanup in the United States. Here, a cleanup worker deals with chromium pollution near one of the decommissioned nuclear reactors. (Department of Energy)

NOAA is involved with eight other federal, state, and tribal organizations that make up the Hanford Natural Resource Trustee Council, which was chartered to address natural resources impacted by past and ongoing releases of hazardous substances on the Hanford Nuclear Reservation.

The study, begun in the summer of 2015, will be crucial for helping to inform not only restoration approaches but also the magnitude of the environmental injury assessment.

“We want to understand what habitat conditions we have at Hanford now,” Galitsky said, “what restoration has been done in similar dry-climate, shrub-steppe habitats elsewhere and at Hanford; what restoration techniques would be most successful and least costly over the long term; and how to best monitor and adapt our approaches over time to ensure maximum ecological benefit far into the future.”

The Hanford site is dominated by shrub-steppe habitat. Shrub-steppe is characterized by shrubs, such as big sagebrush, grasses, and other plants that manage to survive with extremely little rainfall. The larger Hanford site, comprised of the Hanford Reach National Monument and the central area where nuclear production occurred, contains the largest blocks of relatively intact shrub-steppe habitat that remain in the Columbia River Basin.

More Work Ahead

Roads and facilities of Hanford next to the Columbia River with bluffs and hills beyond.

The Hanford site, which the Columbia River passes through, encompasses 586 square miles of sweeping plains alongside an atomic legacy. (Department of Energy)

Galitsky’s team includes experts from NOAA, the Washington Department of Fish and Wildlife, and other trustees involved in the damage assessment. For this study, they are reviewing reports, visiting reference and restoration sites in the field, creating maps, and organizing the information into a database to access and analyze it more effectively.

They presented their preliminary results to the trustee council in November. So far, they are finding that limited restoration has been done at Hanford, and, as is fairly common, long-term data tracking the success of those efforts are even more limited. Over the next six months, they will expand their research to restoration of similar shrub-steppe habitats elsewhere in the Columbia Basin and beyond.

Thanks to additional funding that stretches into 2017, the team will begin a second phase of the study later this year. Plans for this phase include recommending restoration and long-term habitat management approaches for the trustee council’s restoration plan and examining the benefits and drawbacks of conducting shrub-steppe restoration both on and off the Hanford site.

Steppe up to the Challenge

Two American White Pelicans fly over the Columbia River and Hanford's shrubby grasslands.

A surprising diversity of plants and animals, such as these American White Pelicans, can be found in the lands and waters of Hanford. (NOAA)

The natural areas around Hanford show exceptional diversity in a relatively small area. More than 250 bird species, 700 plant species, 2,000 insect species, and myriad reptiles, amphibians, and mammals inhabit the site. In addition, its lands are or have been home to many rare, threatened, and sensitive plants, birds, reptiles, and mammals, such as the Pygmy rabbit

Furthermore, the shrub-steppe habitat at Hanford holds special significance because this habitat is so rare in the Columbia Basin. Elsewhere in the region, urban and agricultural development, invasive species, and altered fire regimes continue to threaten what remains of it. As Galitsky points out, “At Hanford there is an opportunity to restore areas of degraded shrub-steppe habitat and protect these unique resources for generations.”

Restoring habitats on or near the Hanford site may create benefits not only on a local level but also more broadly on a landscape scale. These efforts have the potential to increase the connectivity of the landscape, creating corridors for wildlife and plants across the larger Columbia River Basin. The team will be evaluating these potential landscape-scale effects in the second phase of this project. Stay tuned.


Leave a comment

Accidents on a Flooded Lower Mississippi River Keep NOAA Busy with a Rash of Spills

Damaged barge on the Mississippi River.

A barge carrying slurry oil being pushed by the towing vessel Amy Francis hit the Natchez-Vidalia Bridge, Jan. 21, 2016. The barge reportedly has a maximum potential of more than 1 million gallons of slurry oil on board. (U.S. Coast Guard)

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that oil spills occur every day in U.S. waters? Rivers bustling with ship traffic, such as the Mississippi, are no exception to this rule.

In the past few weeks, we’ve been involved with quite a few accidents involving vessels carrying oil and chemicals on the Lower Mississippi River.

These river accidents coincided with high water and swift currents. Despite safeguards for vessel traffic put in place by the U.S. Coast Guard, the river conditions resulted in ships colliding, hitting bridges and ground, and breaking away from their towing vessels. One unlucky railroad bridge in Vicksburg, Mississippi, has been hit by vessels five times already this year.

Even now, the NOAA River Forecast Center reports that the Lower Mississippi is experiencing moderate flood conditions. It’s difficult to navigate a river with a tow of barges at any flow—and extremely challenging when the flow is high and fast. In spite of everyone’s best efforts, under conditions like these, accidents can and do still happen, and investigations are ongoing into the precise causes.

Luckily, most of the incidents that have occurred were relatively minor, resulted in no injuries to vessel crews, and all spills received immediate responses from state and federal agencies. Still, when oil or chemicals spill into rivers, we know that they differ from spills in the ocean or along coasts, and therefore present different challenges for spill responders.

Here are just a few of the dozen or so spills and near-spills we know of and which have been keeping our spill modelers, chemists, and Scientific Support Coordinators busy over the past few weeks.

January 21, 2016: A barge being towed by the UTV Amy Frances struck the Natchez Bridge, where Highway 84 crosses over the Lower Mississippi River between Mississippi and Louisiana, in the vicinity of Mile Marker 363. As a result, two of the barge’s tanks were damaged, spilling slurry oil, which our chemical lab confirmed was denser than water. That means this oil sinks.

In the wake of this oil spill, one of our Scientific Support Coordinators helped survey the river to detect sunken oil. Given the river’s very fast and turbulent water at the time, we think any oil released from the damaged tanks was immediately broken into small droplets and carried downstream while also sinking below the river surface. Any oil that reached the bottom was probably mixed with or buried by the sand moving downstream near the river bottom. This is because rivers that move a lot of water also move a lot of sediment.

In addition, we provided information on the expected fate and effects of the barge’s spilled slurry oil and on the animals and habitats that could be at risk.

Workers on a river edge pump oil from a damaged barge.

Response crews remove oil from the damaged MM-46 barge, Jan. 23, 2016, on the Mississippi River. Crews estimate that approximately 76,000 gallons of clarified oil mixture is still unaccounted for. Crews continue to take soundings of the damaged barge tank to determine the amount spilled while assessment teams work to locate missing product. (U.S. Coast Guard)

January 25, 2016: Just a few days later, the Coast Guard called on us for advice related to a barge containing liquid urea ammonium nitrate (liquid fertilizer), which sank south of Valewood, Mississippi, at Mile Marker 501 on the Mississippi River. Side-scan sonar indicates the barge is upside-down on the river bottom, approximately 80 feet down.

Given the position and water pressure, we believe the chemical cargo stored on the barge was likely released into the river. The chemical is heavier than water and will mix quickly into the water column. Because elevated levels of ammonia can affect aquatic life, our focus was on predicting and tracking where the chemical would go downriver and what would happen to it. Salvage efforts for the barge itself continue.

January 26, 2016: The next day, two vessel tows collided upriver of New Orleans, Louisiana, near Mile Marker 130 on the Lower Mississippi River. The collision capsized one of two barges carrying caustic soda, or sodium hydroxide. We provided the Coast Guard with an initial chemical hazard assessment for this chemical, which is a strong base. The release of a large enough quantity of sodium hydroxide could raise the pH of the water around it, posing a risk to local fish and other aquatic life nearby. The barge is secure, but righting it is difficult in the swift currents. No pollution release has been reported to date.

Science for Spills of All Kinds

During these kinds of spills, we have to be ready to provide the same round-the-clock, science-based support to the Coast Guard and other agencies as big spills like the Deepwater Horizon in the Gulf of Mexico.

For example, if a chemical has spilled into a river, we need to know where it’s going to go, what’s going to happen to it, and what, if any, species will be harmed by it. To help answer the “where’s it going?” question, our response specialists use the spill trajectory tool, GNOME, to predict the possible route the pollutant might follow.

To better understand the pollutant and its possible effects, we use software tools such as CAMEO Chemicals to provide information about the chemical’s properties, toxicity, and behavior as it is diluted by the river water. Our Chemical Aquatic Fate and Effects (CAFE) database contains information on the effects of thousands of chemicals, oils, and dispersants on aquatic life.

The Mississippi River and its floodplain are home to a diverse population of living things. On the Lower Mississippi, there may be as many as 60 separate species of mussel. To protect vulnerable species, we use our Environmental Sensitivity Index maps and data to report what animals or habitats could be at risk, particularly those that are threatened or endangered. Keeping responders and the public safe and minimizing environmental harm are two of our top priorities during any spill, no matter the size.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


1 Comment

Working to Reverse the Legacy of Lead in New Jersey’s Raritan Bay

Person standing at a fenced-off beach closed to the public.

Some of the beach front at Old Bridge Waterfront Park in New Jersey’s Raritan Bay Slag Superfund site is closed to fishing, swimming, and sunbathing due to lead contamination leaching from metal slag used in the construction of a seawall and to fortify a jetty. (NOAA)

Once lined with reeds, oysters, and resort towns, New Jersey’s Raritan Bay, like many other bodies of water, today is feeling the effects of industrial transformation begun decades ago.

Around 1925, the National Lead Company became the largest lead company in the United States. The company is perhaps best known for their white-lead paints, sold under the Dutch Boy label. One of its many facilities was located in Perth Amboy, a town on the western edge of Raritan Bay, where it operated a lead smelter that generated wastes containing lead and other hazardous substances.

A Toxic Toll

Illustration of a little boy painting used in Dutch Boy paints logo.

This image was adopted by the National Lead Company in 1913 for its Dutch Boy paints. A version of it still is in use today. (New York Public Library Digital Collections/Public domain)

During the late 1960s and early 1970s, slag from National Lead’s lead smelter in Perth Amboy was used as building material to construct a seawall along the southern shoreline of Raritan Bay, several miles to the south of the facility.

Slag is a stony waste by-product of smelting or refining processes containing various metals. Slag, battery casings, and demolition debris were used to fill in some areas of a nearby marsh and littered the marsh and beaches along the bay.

In September 1972, the New Jersey Department of Environmental Protection received a tip that the slag being placed along Raritan Bay at the Laurence Harbor beachfront contained lead.

Over time, contamination from the slag and other wastes began leaching into the water, soil, and sediments of Raritan Bay, which is home to a variety of aquatic life, including flounder, clams, and horseshoe crabs, but evidence of the pollution only became available decades later.

Cleaner Futures

By 2007 the New Jersey Department of Environmental Protection had confirmed high levels of lead and other metals in soils of Old Bridge Waterfront Park on Raritan Bay’s south shore. State and local officials put up temporary fencing and warning signs and notified the public about health concerns stemming from the lead in the seawall.

The following year, New Jersey asked the U.S. Environmental Protection Agency (EPA) to consider cleaning up contaminated areas along the seawall because of the elevated levels of metals. By November 2009, the EPA confirmed the contamination and declared this polluted area in and near Old Bridge Waterfront Park a Superfund site (called Raritan Bay Slag Superfund site). They installed signs and fencing at a creek, marsh, and some beaches to restrict access and protect public health.

In May 2013 EPA selected a cleanup strategy, known as a “remedy,” to address risks to the public and environment from the pollution, and in January 2014 they ordered NL Industries, which in 1971 had changed its name from the National Lead Company, to conduct a $79 million cleanup along Raritan Bay.

Cleanup will involve digging up and dredging the slag, battery casings, associated waste, and sediment and soils where lead exceeds 400 parts per million. An EPA news release from January 2014 emphasizes the concern over lead:

“Lead is a toxic metal that is especially dangerous to children because their growing bodies can absorb more of it than adults. Lead in children can result in I.Q. deficiencies, reading and learning disabilities, reduced attention spans, hyperactivity and other behavioral disorders. The order requires the removal of lead-contaminated material and its replacement with clean material in order to reduce the risk to those who use the beach, particularly children.”

Identifying Impacts

Public health hazard sign about lead contamination on a beach and jetty.

A jetty and surrounding coastal area on Raritan Bay is contaminated with lead and other hazardous materials from slag originating at the National Lead Company’s Perth Amboy, New Jersey, facility. (NOAA)

After the Raritan Bay Slag site became a Superfund site in late 2009, NOAA’s Office of Response and Restoration worked with the EPA to determine the nature, extent, and effects of the contamination. Under a Natural Resource Damage Assessment, NOAA’s Damage Assessment, Remediation, and Restoration Program and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, have been assessing and quantifying the likely impacts to the natural resources and the public’s use of those resources that may have occurred due to the contamination along Raritan Bay.

As part of this work, we are identifying opportunities for restoration projects that will compensate for the environmental harm as well as for people’s inability to use the affected natural resources, for example, due to beach closures and restricted access to fishing.

“The south shore of Raritan Bay is an important ecological, recreational, and economic resource for the New York-New Jersey Harbor metropolitan area,” said NOAA Regional Resource Coordinator Lisa Rosman. “Cleanup and restoration are key to improving conditions and allowing public access to this valuable resource.”

Watch for future updates on progress toward restoration on Raritan Bay.