NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Restoration Efforts Hatch Hope for Endangered Seabirds on California’s Channel Islands

This is a post by Jennifer Boyce, biologist with NOAA’s Restoration Center and Montrose Settlements Restoration Program.

Santa Barbara Island is a world apart. Only one square mile in area, it is the smallest island in the Channel Islands National Park, located off the coast of Southern California and lone dwelling place for some unique species of animals and plants.

The island has no land predators, which makes it a haven for seabirds. But human threats to seabirds, including industrial pollution and introduced species, have left their mark even on this haven. Seabird populations began dropping as pollution thinned their eggshells to the breaking point and exotic plants replaced their native nesting habitat.

So imagine the excitement when biologists recently discovered the first ever nests of the rare and threatened Scripps’s Murrelet among two areas restored on the island for their benefit.

A petite, black-and-white seabird, the Scripps’s Murrelet also is threatened by predators introduced to its breeding colonies and by oil spills. While Santa Barbara Island has the largest colony of Scripps’s Murrelet in the United States, the State of California listed this bird as a threatened species [PDF] in 2004 and it currently is a candidate for protection under the federal Endangered Species Act (under a previous name, Xantus’s Murrelet).

Hatching a Better Home

Close up of a murrelet chick's head.

This newly hatched chick was born at Landing Cove, a habitat restoration area on Santa Barbara Island. Its birth gives hope to a threatened species of seabird, the Scripps’s Murrelet. (Andrew Yamagiwa, California Institute of Environmental Studies)

Each spring, murrelets lay one or two eggs in crevices and burrows beneath Santa Barbara Island’s native shrubs. They need the structure and cover provided by native plant communities to protect their nests. Unfortunately, the native shrubs on Santa Barbara Island have been decimated for decades by introduced grazers. Ranchers used to graze sheep on the island, inadvertently bringing non-native plants with them. These and other grazers allowed the non-native plants to proliferate and prevent the few remaining patches of native vegetation from recolonizing the island.

Since 2006, NOAA’s Montrose Settlements Restoration Program has been restoring this habitat for murrelets and other seabirds on Santa Barbara Island, caring for the thousands of native plants they have placed along its dry slopes. Uncovering two nests in two different restoration plots this spring means the project has reached a major milestone.

The older of the two restoration plots where eggs were found, Landing Cove was first planted with native shrubs in December 2008. It can take several years for the shrubs to mature enough to become suitable seabird nesting habitat. One egg was discovered there—on Earth Day, of all days—under a large native shrub planted during restoration efforts. Then, just this week, biologists confirmed that this egg had in fact hatched into a healthy murrelet chick.

The second restored area, Beacon Hill, was planted more recently in 2012, giving biologists both a thrill and surprise to find a second murrelet nest under a native bush planted as part of the project. These nests are a testament to all of the hard work of scientists, restoration experts, and volunteers over the last ten years.

More Than One Way to Break an Egg

Funding to restore these threatened seabirds actually originates in events dating more than half a century earlier.

From the late 1940s to the early 1970s, millions of pounds of the pesticide DDT and the industrial chemicals known as PCBs were discharged into ocean waters off the southern California coast. Most of the DDT originated from the Montrose Chemical Corporation manufacturing plant located in Torrance, California.

DDT released into the ocean near California’s Palos Verdes shelf spread through the food chain, eventually reaching seabirds and causing thinning in their eggs laid on the Channel Islands. The eggshells became so thin that when the adults would sit on the eggs to warm them they would break.

In 2001, following a lengthy period of litigation, NOAA and other federal and state agencies reached a settlement with the responsible parties, establishing the Montrose Settlements Restoration Program. The program is working to restore populations of these rare seabirds and their habitat in the Channel Islands.

Restoration Efforts Taking Flight

Adult murrelet with a chick.

Scripps’s Murrelets only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts. (Gaby Keeler, California Institute of Environmental Studies)

A member of the auk family (which includes Puffins), Scripps’s Murrelets take the term “seabird” to new limits. Murrelets spend almost their entire lives at sea, only coming to land to lay their eggs and hatch their young. Their chicks live up to being a seabird as well, spending only two days on the island before tumbling into the ocean to join their parents—leaving before they can even fly.

These small birds only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts.

One of the goals of the Santa Barbara Island restoration project is to remove the non-native plants at selected areas identified as high quality nesting habitat. Biologists are restoring these areas by then planting native species with the help of lots of volunteers.

This work is by no means easy. To date, over 30,000 plants have been put into the ground. All of the native plants in the project are grown from seed on the island, and growing a mature plant takes six to eight months. One of the challenges to growing these plants is that Santa Barbara is a desert island with no natural water source. All the water needed for raising the native plants must be transported by a National Park Service boat, and moved onto the island by crane in large 400 gallon tanks.

A permanent nursery, which employs water-saving techniques, was constructed on the island to reduce the amount of water that needs to be sent to the island. Recently a drip irrigation system also has been installed at the restoration sites and is greatly improving plant survivorship while reducing water needs.

The two nests found this spring are great signs that the restoration efforts are successful and helping to restore this endangered seabird and others to this unique island. We look forward to finding many more nests in the future. In the meantime, check out this video detailing our efforts to restore seabird habitat on Santa Barbara Island:

Jennifer BoyceJennifer Boyce works for the NOAA Restoration Center, based in Long Beach, California. Jennifer serves as the NOAA trustee on several oil spill restoration Trustee Councils throughout California and is the Program Manager for the Montrose Settlements Restoration Program.


Leave a comment

After a Century Apart, NOAA and Partners Reunite a Former Wetland with San Francisco Bay’s Tides

Excavator removing earth from a breached barrier between tide waters in a slough and the new wetland.

The first of four breaches of tidal levees separating Cullinan Ranch from the tide waters of San Francisco Bay. (NOAA)

Scooping away the last narrow band of mud, a bright yellow excavator released a rush of brackish water into an area cut off from the tides for more than a hundred years.

The 1,200 acre field now filling with water, known as Cullinan Ranch due to its history as a hay farm, is once again becoming a tidal wetland.

On January 6, 2015, more than 100 people celebrated the reintroduction of tide waters to Cullinan Ranch in Solano County, California. For decades before, earthen levees had separated it from the nearby Napa River and San Pablo Bay, a northern corner of the San Francisco Bay Estuary.

With three more levee breaches planned by the end of January, restoration of this 1,500 acre site is nearly complete, with efforts to monitor the project’s progress to follow. Surrounded by state and federal wildlife lands, Cullinan Ranch will fill in a gap in coastal habitat as it becomes integrated with San Pablo Bay National Wildlife Refuge.

How Low Can It Flow

For the most part, Cullinan Ranch will be covered in open water because years of farming, beginning in the 1880s, caused the land to sink below sea level. The open water will provide places for animals such as fish and birds—as well as the invertebrates they like to eat—to find food and rest after big storms.

However, some areas of the property will remain above the low tide level, creating conditions for the plant pickleweed to thrive. While a succulent like cacti, pickleweed can survive wet and salty growing conditions. (Fun fact: Some people enjoy cooking and eating pickleweed. When blanched, it apparently tastes salty and somewhat crispy.) The salt marsh harvest mouse, native to California and one of the few mammals able to drink saltwater, also will take advantage of the habitat created by the pickleweed in the recovering wetland.

Wildlife will not be the only ones enjoying the restoration of Cullinan Ranch. A major highway passes by the site, and Cullinan Ranch has experienced numerous upgrades to improve recreational access for people brought there by Highway 37. Soon anyone will be able to hike on the newly constructed trails, fish off the pier, and launch kayaks from the dock.

Turning Money into Marshes

The restoration of Cullinan Ranch from hay field to tidal wetland has been in the works for a long time, brought about by a range of partners and funding agencies, including NOAA, the U.S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, California Department of Fish and Wildlife, California Wildlife Conservation Board, and Ducks Unlimited. NOAA provided several sources of funding to help finish this restoration project.

In addition to $900,000 from the American Recovery and Reinvestment Act, NOAA contributed $650,000 through a community-based restoration partnership with Ducks Unlimited and $1.65 million awarded for natural resource damages through the Castro Cove trustee council. The latter funding was part of a $2.65 million settlement with Chevron as a result of the nearby Chevron Richmond Refinery discharging mercury and oil pollution into Castro Cove for years. Cullinan Ranch and Breuner Marsh are the two restoration projects Chevron funded to make up for this pollution.

Map of San Francisco Bay showing locations of NOAA restoration projects.

NOAA is working on a number of tidal wetland restoration projects in the north San Francisco Bay. (NOAA)

Cullinan Ranch is one of the largest restoration projects in the north San Francisco Bay, but it is far from the only one NOAA is involved with in the region. Helping reverse a century-long trend which saw many of the bay’s tidal wetlands disappear, NOAA has been working on a suite of projects restoring these historic and important coastal features in northern California.

Watch footage of the earthen levee being breached to reconnect the bay’s tide waters to Cullinan Ranch.


Leave a comment

Carrying on a Nearly Fifty Year Tradition, Scientists Examine the Intersection of Pollution and Marine Life

As reliably as the tides, each month biologist Donald J. Reish would wash over the library at California State University, Long Beach, armed with stacks of 3×5 index cards. On these cards, Reish meticulously recorded every scientific study published that month on pollution’s effects on marine life. When he began this ritual in 1967, this did not amount to very many studies.

“There was essentially none at the time,” says Reish, who helped pioneer the study of pollution’s impacts on marine environments in the 1950s.

Nevertheless, after a year of collecting as much as he could find in scientific journals, he would mail the index cards with their handwritten notes to a volunteer crew that often included his former graduate students, including Alan Mearns, now an ecologist with NOAA’s Office of Response and Restoration. Like a wave, they would return to the library to read, review, and send summaries of these studies back to Reish. At his typewriter, he would compile the individual summaries into one comprehensive list, an “in case you missed it” for scientists interested in this emerging field of study. This compilation would then be published in a scientific journal itself.

By the early 2000s, Reish handed off leadership of this annual effort to Mearns, an early recruit to the project. Today, Mearns continues the nearly 50 year tradition of reviewing the state of marine pollution science and publishing it in the journal Water Environment Research. Their 2014 review, “Effects of Pollution on Marine Organisms,” comes together a little differently than in the 1960s and 70s—and covers issues that have changed with the years as well.

Signs of the Times

Man and woman at a desk covered with scientific papers.

NOAA Office of Response and Restoration biologists Alan Mearns and Nicolle Rutherford tackle another year’s worth of scientific studies, part of an effort begun in 1967. (NOAA)

For starters, vastly more studies are being published on marine pollution and its environmental effects. For this year’s publication, Mearns and his six co-authors, who include Reish and NOAA scientists Nicolle Rutherford and Courtney Arthur, reviewed 341 scientific papers which they pulled from a larger pool of nearly 1,000 studies.

The days of having to physically visit a library each month to read the scientific journals are also over. Instead, Mearns can wait until the end of the year to scour online scientific search engines. Emails replace the handwritten 3×5 index cards. And fortunately, typewriters are no longer involved.

The technology the reviewers are using isn’t the only thing to change with the years. In the early days, the major contaminants of concern were heavy metals, such as copper, which were turning up in the bodies of fish and invertebrates. Around the 1970s, the negative effects of the insecticide DDT found national attention, thanks to the efforts of biologist Rachel Carson in her seminal book Silent Spring.

Today, Mearns and Reish see the focus of research shifting to other, often more complicated pollutants, such as nanomaterials, which can be any of a number of materials roughly 100,000 times smaller than the width of a human hair. On one hand, nanotechnology is helping scientists decipher the effects of some pollutants, while, on the other, nanomaterials, such as those found in cosmetics, show potentially serious effects on some marine life including mussels.

Another major trend has been the evolution of the ways scientists evaluate the effects of pollutants on marine life. Researchers in the United States and Western Europe used to study the toxicity of a pollutant by increasing the amount animals are exposed to until half the study animals died. In the 1990s, researchers began exploring pollutants’ finer physiological effects. How does exposure to X pollutant affect, for example, a fish’s ability to feed or reproduce?

Nowadays, the focus is even more refined, zeroing in on the molecular scale to discern how pollutants affect an animal’s genetic material, its DNA. How does the presence of oil change whether certain genes in a fish’s liver are turned on or off? What does that mean for the fish?

A Year of Pollution in Review

With three Office of Response and Restoration scientists working on this effort, it unsurprisingly features a lot on oil spills and marine debris, two areas of our expertise.

Of particular interest to Mearns and Rutherford, as oil spill biologists, are the studies of biodegradation of oil in the ocean, specifically, how microbes break down and eat components of oil, especially the toxic polycyclic aromatic hydrocarbons (PAHs). Scientists are examining collections of genes in such microbes and determining which ones produce enzymes that degrade PAHs.

“That field has really exploded,” says Mearns. “It’s just amazing what they’re finding once they use genomics and other tools to go into [undersea oil spill] plumes and see what these critters are doing and eating.”

Marine debris research in 2013 focused on the effects of eating, hitchhiking on, or becoming entangled in debris. Studies examined the resulting impacts on marine life, including sea birds, fish, crabs, turtles, marine mammals, shellfish, and even microbes. The types of debris that came up again and again were abandoned fishing gear and plastic fragments. In addition, quite a bit of research attempted to fill in gaps in understanding of how plastic debris might take up and then leach out potentially dangerous chemicals.

Attitude Adjustment

A group of men and women stand around Don Reish.

Reish often relied on his former graduate students, including NOAA’s Alan Mearns, to help review the many studies on marine pollution’s effects each year. Shown here in 2004, Reish (seventh from left) is surrounded by a few of his former students who gathered to honor him at the Southern California Academy of Sciences Annual Meeting. Mearns is fifth from left and another contributer, Phil Oshida of the U.S. Environmental Protection Agency, stands between and behind Mearns and Reish. (Alan Mearns)

Perhaps the most significant change over the decades has been a change in attitudes. Reish recalled a presentation he gave at a scientific meeting in 1955. He was discussing his study of how marine worms known as polychaetes changed where they lived based on the effects of pollution in southern California. Afterward, he sat down next to a professor from another college, whose response to his presentation was, “Don, why don’t you go do something important?”

In 2014 attitudes generally skew to the other end of the spectrum when it comes to understanding human impacts on our world and how intertwined these impacts often are with human well-being.

And while there is a lot of bad news about these impacts, Mearns and Reish have seen some bright spots as well. Scientists are starting to observe slow declines in the presence of toxic chemicals, such as DDT from insecticides and PCBs from industrial manufacturing, which last a long time in the environment and build up in the bodies of living things, such as the fish humans like to catch and eat.

The end of the year is approaching and, reliably, Mearns and his colleagues are again preparing to scan hundreds of studies for their annual review of the scientific literature. Reflecting on this effort, Mearns points out another benefit of bringing together such a wide array of research disciplines. It encourages him to cross traditional boundaries of scientific study, enriching his work in the process.

“For me, it inspires out-of-the-box thinking,” says Mearns. “I’ll be looking at wastewater discharge impacts and I’ll spot something that I think is relevant to oil spill studies…We can find out things from these other fields and apply them to our own.”


Leave a comment

How Ghost Fishing Is Haunting Our Ocean

No, ghost fishing has nothing to do with ghostbusters flicking fishing rods from a boat.

But what is ghost fishing? It’s a not-at-all-supernatural phenomenon that occurs when lost or discarded fishing gear remains in the ocean and continues doing what it was made to do: catch fish. These nets and traps haunt the many types of marine life unlucky enough to become snared in them. That includes species of turtles, fish, sharks, lobsters, crabs, seabirds, and marine mammals.

Fortunately, the NOAA Marine Debris Program isn’t scared off by a few fishing nets that haven’t moved on from the underwater world. For example, through the Fishing for Energy partnership, NOAA is funding projects to study and test ways to keep fishers from losing their gear in the first place and lower the impacts lost gear has on marine life and their homes.

You can learn more about these four recent projects which are taking place from the South Carolina coast to Washington’s Puget Sound. A project at the Virginia Institute of Marine Science at The College of William and Mary will pay commercial fishermen to test special biodegradable panels on crab pots. After a certain amount of time underwater, these panels will break down and begin allowing creatures to escape from the traps. If successful, this feature could help reduce the traps’ ghost fishing potential. The researchers also will be examining whether terrapin turtles, a declining species often accidentally drowned in crab pots, will bypass the traps based on the color of the entrance funnel.

Another, unrelated effort which NOAA and many others have been supporting for years is focused on fishing out the thousands of old salmon nets lost—sometimes decades ago—in Washington’s Puget Sound. These plastic mesh nets sometimes remain drifting in the water column, while other times settling on the seafloor, where they also degrade the bottom habitat.

According to Joan Drinkwin of the Northwest Straits Foundation, the organization leading the effort, “They become traps for fish, diving birds, and mammals. Small fish will dart in and out of the mesh and predators will go after those fish and become captured in the nets. And as those animals get captured in the nets, they become bait for more scavengers.”

You can watch a video about this ongoing project produced by NOAA-affiliate Oregon SeaGrant to learn more about both the problem and the solutions.

Scuba diver next to huge mass of fishing nets underwater.

This “super net” was first reported in September 2013 at Pearl and Hermes Atoll in the Northwestern Hawaiian Islands. In 2014 scuba and free divers removed this mass of fishing gear that was more than 28 feet long, 7 feet wide, and had a dense curtain that extended 16 feet deep. (NOAA)

Thousands of miles away from the Pacific Northwest, ghost nets are also an issue for the otherwise vibrant coral reefs of the Northwestern Hawaiian Islands. Every year for nearly two decades, NOAA has been removing the lost fishing nets which pile up on the atolls and small islands. This year, divers cleared away 57 tons of old fishing nets and plastic debris. One particularly troubling “super net” found this year measured 28 feet by 7 feet and weighed 11.5 tons. It had crushed coral at Pearl and Hermes Atoll and was so massive that divers had to cut it into three sections to be towed individually back to the main NOAA ship. During this year’s mission, divers also managed to free three protected green sea turtles which were trapped in various nets.

But the origins of this huge and regular flow of old fishing nets to the Northwestern Hawaiian Islands remain a mystery. The islands lay hundreds of miles from any city but also within an area where oceanic and atmospheric forces converge to accumulate marine debris from all over the Pacific Ocean.

“You’ll go out there to this remote place and pull tons of this stuff off a reef,” comments Jim Potemra, an oceanographer at the University of Hawaii at Mānoa, “that’s like going to Antarctica and finding two tons of soda cans.”

You can learn more about the NOAA Marine Debris Program’s efforts related to ghost fishing and why certain types of marine life may be more likely to get tangled up in discarded nets and other ocean trash.


Leave a comment

Untangling Both a Whale and Why Marine Life Get Mixed up With Our Trash

Tail-view of humpback whale tangled in rope and nets underwater.

A humpback whale entangled in fishing gear swims near the ocean’s surface in 2005. (NOAA/Hawaiian Islands Humpback Whale National Marine Sanctuary)

In the United States alone, scientific reports show at least 115 different species of marine life have gotten tangled up—literally—in the issue of marine debris. And when you look across the globe that number jumps to 200 species. Those animals affected range from marine mammals and sea turtles to sea birds, fish, and invertebrates.

Sadly, a humpback whale (Megaptera novaeangliae) swimming in the blue waters off of Maui, Hawaii, got first-hand experience with this issue in February 2014. Luckily, trained responders from the Hawaiian Islands Humpback Whale National Marine Sanctuary were able to remove the long tangle of fishing rope wrapped around the whale’s head, mouth, and right pectoral fin. According to NOAA’s National Marine Sanctuaries:

“A long pole with a specially designed hook knife was used by trained and permitted personnel to cut through the entanglement.

Hundreds of feet of small gauge line were collected after the successful disentanglement. The entanglement was considered life threatening and the whale is confirmed to be totally free of gear.”

Check out these short videos taken by the response team for a glimpse of what it’s like trying to free one of these massive marine mammals from this debris:

Net Results

While this whale was fortunate enough to have some help escaping, the issue of wildlife getting tangled in marine debris is neither new nor going away. Recently, the NOAA Marine Debris Program and National Centers for Coastal Ocean Science reviewed scientific reports of ocean life entangled by marine debris in the United States. You can read the full NOAA report [PDF].

They looked at more than 170 reports reaching all the way back to 1928. However, wildlife entanglements didn’t really emerge as a larger problem until after 1950 and into the 1970s when plastic and other synthetic materials became popular. Before that time, fishing gear and “disposable” trash tended to be made out of materials that broke down in the environment, for example, hemp rope or paper bags. Nowadays, when plastic packing straps and nylon fishing ropes get lost or discarded in the ocean, they stick around for a lot longer—long enough for marine life to find and get wrapped up in them.

One of the findings of the NOAA report was that seals and sea lions (part of a group known as pinnipeds) were the type of marine life most likely to become entangled in nets and other debris in the United States. Sea turtles were a close second.

But why these animals? Is there something that makes them especially vulnerable to entanglement?

Location, Location, Location

The two species with the highest reported numbers of entanglements were northern fur seals (Callorhinus ursinus) and Hawaiian monk seals (Monachus schauinslandi). Both of these seals may live in areas where marine debris tends to build up in higher concentrations, increasing their chances of encountering and getting tangled in it.

For example, Hawaiian monk seals live among the coral reefs of the Northwestern Hawaiian Islands, where some 50 tons of old fishing gear washes up each year. These islands are near the North Pacific Subtropical Convergence Zone, where oceanic and atmospheric forces bring together not only plenty of food for marine life but also lots of debris floating in the ocean. Humpback whales migrate across these waters twice a year, which might be how the humpback near Maui ended up in a tangled mess earlier this year.

Just Behave

Monk sleep sleeping on nets on beach.

An endangered Hawaiian monk seal snuggles up on a pile of nets and other fishing gear in the Northwestern Hawaiian Islands. Between the mid-1950s and mid-1990s, the population declined to one-third of its size due at least in part to entanglement in trawl nets and other debris that drift into the Northwestern Hawaiian Islands from other areas (e.g., Alaska, Russia, Japan) and accumulates along the beaches and in lagoon reefs of atolls. (NOAA)

While being in the wrong place at the wrong time can lead to many unhappily tangled marine animals, behavior also plays into the problem. Some species exhibit particular behaviors that unknowingly put them at greater risk when marine debris shows up.

Not only does the endangered Hawaiian monk seal live on shores prone to the buildup of abandoned nets and plastic trash, but the seals actually seem to enjoy a good nap or lounge on piles of old fishing gear, according to visiting scientists in the Northwestern Hawaiian Islands. The playful, curious nature of young seals and humpback whales also makes them more likely to become entangled in marine debris.

Sea turtles, young and old, are another group whose behaviors evolved to help them survive in a world without human pollution but which in today’s world sometimes place them in harm’s way. Young sea turtles like to hide from predators under floating objects, which too often end up being marine debris. And because sea turtles enjoy munching on the food swirling around ocean convergence zones, such as the one in the North Pacific, they also munch on and get mixed up with the marine debris that gathers there too—especially items with loops and openings to get caught on.

While these animals can’t do much about their behaviors, we humans can. You can:


Leave a comment

For a Salt Marsh on San Francisco Bay’s Eastern Shore, Restoration Means a Return to the Tides

Degraded marsh area on edge of bay.

This area along the eastern shore of San Francisco Bay will be enhanced and expanded as part of the restoration of Breuner Marsh. (NOAA)

For more than half a century, a large portion of Breuner Marsh has been walled off from California’s San Francisco Bay, depriving it of a daily infusion of saltwater. The tide’s flooding and drying cycle is a key component of healthy salt marshes. But for decades, a succession of landowners drew up plans for developing the property and therefore were happy to keep the levee up and the bay’s waters out of it.

Today, however, ownership has changed and things look different at Breuner Marsh. The landing strip built for model airplanes is gone, and soon, parts of the levee will be as well. For the first time in years, this land which was once a salt marsh will be reconnected to the bay, allowing it to return to its natural state.

Before the Floodgates Open

A major milepost on the road to restoration for Breuner Marsh originated about five miles down the coast at Castro Cove. From the early 1900s until 1987, this tidal inlet on the eastern shore of San Francisco Bay had a discharge pipe pumping wastewater from the nearby Chevron Richmond Refinery into the cove. As a result, mercury and a toxic component of oil known as polycyclic aromatic hydrocarbons permeated the sediments beneath the cove’s waters.

Aerial view of Castro Cove next to Chevron refinery.

Southern Castro Cove and Chevron Richmond Refinery. Wildcat Creek entering Castro Cove in the background. Photo courtesy of Steve Hampton, California Department of Fish and Game. October 2005

The State of California had pinpointed this area as a toxic hotspot, and by the early 2000s, Chevron was ready to begin cleanup and restoration. Along with the state, NOAA and the U.S. Fish and Wildlife Service assessed the environmental impacts of historical pollution from the refinery and the amount of restoration needed to offset them. Through this Natural Resource Damage Assessment process, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and our partners settled with Chevron on the funding the company would provide to implement that restoration: $2.65 million.

Because the impacts to Castro Cove’s salt marshes occurred over such a long time, even after Chevron cleaned up the roughly 20 worst-affected acres of the cove, there simply was not enough habitat in the immediate area to adequately make up for the backlog of impacts. The 2010 settlement called for Chevron to restore about 200 acres of marsh. This took us up the road to Breuner Marsh, part of a degraded coastal wetland that was ripe for restoration and which became one of two projects Chevron would fund through this settlement.

A Vision of Restoration

The vision for Breuner Marsh turned out to be a lot bigger than the $1 million originally set aside from Chevron’s settlement. A lot of this drive came from the Richmond, California, neighborhood of Parchester Village, a community across the railroad tracks from Breuner Marsh which was advocating the property’s habitat be restored and opened to recreation. Eventually, the East Bay Regional Park District was able to purchase the 218-acre-site and is managing the $8.5 million restoration of Breuner Marsh. Additional funding came from the park district and nine other grants.

Aerial view of marsh construction site, with berm separating the bay from the future marsh.

A view of the Breuner Marsh restoration site, where portions of the area have been graded and are waiting the take down of the berm. (Screen shot from video courtesy of Questa Engineering Corporation/East Bay Regional Park District)

Construction began in 2013 and the project, which also includes building trails, picnic areas, and fishing spots, is expected to wrap up in 2015. While at least 30 acres of Breuner Marsh will be transformed into wetlands fed by the tide, some areas will never be flooded because they sit at higher elevation.

Instead, they will become a patchwork of seasonal wetlands and prairie. Yet this diversity of habitats actually makes the salt marsh even more valuable, because this patchwork creates welcoming buffer zones for various birds, fish, and wildlife as they feed, rest, and reproduce.

But first, those levees need to be breached and the tide needs to reach deep into Breuner Marsh, creating conditions just right for the plants and animals of a salt marsh to take hold once more. Conditions the project managers have been working hard to prepare.


Leave a comment

In Oregon, an Innovative Approach to Building Riverfront Property for Fish and Wildlife

This is a post by Robert Neely of NOAA’s Office of Response Restoration.

Something interesting is happening on the southern tip of Sauvie Island, located on Oregon’s Willamette River, a few miles downstream from the heart of Portland. Construction is once again underway along the river’s edge in an urban area where riverfront property typically is prized as a location for luxury housing, industrial activities, and maritime commerce. But this time, something is different.

This project will not produce a waterfront condominium complex, industrial facility, or marina. And as much as it may look like a typical construction project today, the results of all this activity will look quite different from much of what currently exists along the shores of the lower Willamette River from Portland to the Columbia River.

Indeed, when the dust settles, the site will be transformed into a home and resting place for non-human residents and visitors. Of course, I’m not referring to alien life forms, but rather to the fish, birds, mammals, and other organisms that have existed in and around the Willamette River since long before humans set up home and shop here. Yet in the last century, humans have substantially altered the river and surrounding lands, and high-quality habitat is now a scarce commodity for many stressed critters that require it for their survival.

On the site of a former lumber mill, the Alder Creek Restoration Project is the first habitat restoration project [PDF] that will be implemented specifically to benefit fish and wildlife affected by contamination in the Portland Harbor Superfund Site. The project, managed by a habitat development company called Wildlands, will provide habitat for salmon, lamprey, mink, bald eagle, osprey, and other native fish and wildlife living in Portland Harbor.

Mink at a river's edge.

The Alder Creek Restoration Project will benefit Chinook salmon, mink, and other fish and wildlife living in Portland Harbor. (Roy W. Lowe)

Habitat will be restored by removing buildings and fill from the floodplain, reshaping the riverbanks, and planting native trees and shrubs. The project will create shallow water habitat to provide resting and feeding areas for young salmon and lamprey and foraging for birds. In addition, the construction at Alder Creek will restore beaches and wetlands to provide access to water and food for mink and forests to provide shelter and nesting opportunities for native birds.

Driving this project is a Natural Resource Damage Assessment conducted by the Portland Harbor Natural Resource Trustee Council to quantify natural resource losses resulting from industrial contamination of the river with the toxic compounds PCBs, the pesticide DDT, oil compounds known as PAHs, and other hazardous substances. The services, or benefits from nature, provided by the Alder Creek Restoration Project—such as healthy habitat, clean water, and cultural value—will help make up for the natural resources that were lost over time because of contamination.

Young Chinook salmon on river bottom.

Fish and wildlife species targeted for restoration include salmon (such as the juvenile Chinook salmon pictured here), lamprey, sturgeon, bald eagle, osprey, spotted sandpiper, and mink. (U.S. Fish and Wildlife Service)

Wildlands purchased the land in order to create and implement an early restoration project. This “up-front” approach to restoration allows for earlier implementation of projects that provide restored habitat to injured species sooner, placing those species on a trajectory toward recovery. The service credits—ecological and otherwise—that will be generated by this new habitat will be available for purchase by parties that have liability for the environmental and cultural losses calculated in the damage assessment.

Thus when a party reaches an agreement with the Trustee Council regarding the amount of their liability, they can resolve it by purchasing restoration credits from Wildlands. And Wildlands, as the seller of restoration credits, recoups the financial investment it made to build the project. Finally, and most importantly, a substantial piece of land with tremendous potential value for the fish, birds, and other wildlife of the lower Willamette River has been locked in as high-quality habitat and thus protected from future development for other, less ecologically friendly purposes.

Robert NeelyRobert Neely is an environmental scientist with the National Oceanic and Atmospheric Administration’s Office of Response and Restoration. He has experience in ocean and coastal management, brownfields revitalization, Ecological Risk Assessment, and Natural Resource Damage Assessment. He started with NOAA in 1998 and has worked for the agency in Charleston, South Carolina; Washington, DC; New Bedford, Massachusetts; and Seattle, Washington, where he lives with his wife and daughter. He’s been working with his co-trustees at Portland Harbor since 2005.

Follow

Get every new post delivered to your Inbox.

Join 566 other followers