NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Watch Divers Restore Coral Reefs Hit by a Huge Ship in Hawaii

Coral reefs are not to be confused with underwater highways. Unfortunately for the corals, however, navigating huge ships is a tricky business and sometimes reefs do end up on the wrong side of the “road.” (One reason why having up-to-date navigational charts is so important!)

This was the case for corals damaged off the Hawaiian island of Oahu in February of 2010 when the cargo ship M/V VogeTrader ran aground and was later removed from a coral reef in Kalaeloa/Barber’s Point Harbor.

NOAA’s Restoration Center and the State of Hawaii worked quickly to implement emergency restoration (using what look like laundry baskets), using special underwater scientific techniques and technologies, and ultimately restoring the reef after getting some help from vacuums, power washers, and even winter storms.

See divers transform these Hawaiian corals from crushed to flush with marine life:

In the end, these efforts are all part of how we work to help make the ocean a better place for corals and the many other types of marine life that rely on them.

Leave a comment

In Wake of Japan’s 2011 Tsunami, Citizen Scientists Comb California Beaches Counting Debris

Man with clipboard and bag walking on beach.

A volunteer counts and collects the marine debris washed up at Drakes Beach in the Greater Farallones National Marine Sanctuary. (NOAA)

It all started more than five years ago on the other side of the Pacific Ocean. A devastating earthquake and tsunami rocked Japan in 2011, ultimately sweeping millions of tons of debris from the coastline into the ocean. But it wasn’t until June the following year, in 2012, that a 66-foot-long Japanese dock settled on the Oregon coast and reminded the world how the ocean connects us.

NOAA’s Kate Bimrose explained how this event and the resulting concern over other large or hazardous items of Japanese debris spurred the start of NOAA monitoring programs on beaches up and down the West Coast and Pacific islands. She coordinates the program that monitors marine debris in the Greater Farallones National Marine Sanctuary off the north-central California coast.

Thanks to funding from NOAA’s Marine Debris Program, the first surveys in this sanctuary near San Francisco took place in July 2012, a month after the Oregon dock made an appearance. No previous baseline data on debris existed for the shores along this California sanctuary. The only way anyone would know if Japan tsunami marine debris started arriving is by counting how much marine debris was already showing up there on a regular basis.

Training a Wave of Citizen Scientists

Graphic showing an example 100 meter stretch of beach with four 5 meter transects.

Following NOAA Marine Debris Program monitoring protocols, volunteers survey the same 100 meter (328 foot) stretch of beach each month, randomly choosing four sections to cover. Next, they record every piece of trash bigger than a bottle cap in those areas. (NOAA)

To find out how much trash and other manmade debris was washing up, Bimrose trained a small group of dedicated, volunteer “citizen scientists” to perform monthly surveys at four regular California beach sites. Three are located in Point Reyes National Seashore and one is in Año Nuevo State Park, but all are fed by the waters of the Greater Farallones National Marine Sanctuary.

Following NOAA Marine Debris Program monitoring protocols, once a month two volunteers head to the same 100 meter (328 foot) stretch of beach, using GPS coordinates to locate it. Next, they randomly pick four sections, each five meters (nearly 16.5 feet) long, to survey that day. This ensures they cover 20 percent of the area each time.

For those areas, the volunteers record every piece of trash they find that is at least the size of a bottle cap, or roughly an inch long. Having this size standard increases the reliability of the data being collected, providing a more accurate picture of what the ocean is bringing to each beach. NOAA is confident that volunteers are able to scan the sand and find the majority of items larger than an inch sitting on the surface of the beach.

Taking Things to the Next Level

Bottle with Asian characters on the cap.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. (NOAA)

All of the data volunteers gather—from number of items to types of material found—gets entered into a national online database, which will allow NOAA to determine trends in where, what, and how much marine debris is showing up. Leaving the items behind reveals how debris concentrates and persists on shorelines, information which is lost when debris is hauled off the beach.

While gathering this information is useful, Bimrose admitted to one sticking point for her: none of the debris is cleaned up from these four beach locations.

“We want to be able to remove the debris,” she said. “It’s painful for all my volunteers to be out there and record it and not remove it.” However, the good news is that a June 2015 expansion to this monitoring program has added two new beach locations to the rotation, and after volunteers record the debris there, they pack it out. In addition, Bimrose takes out larger groups of one-time volunteers to those locations and trains them on site, creating a broader educational reach for the program.

Bimrose hopes to recruit local school groups as well as businesses to volunteer. Before each survey at the new locations, she introduces the sanctuary and the monitoring program, while passing around mason jars filled with the trash collected at past surveys to give volunteers an idea of what to expect.

These new monitoring sites receive more recreational use than the previous ones, and at least for the one at Ocean Beach, a heavily used shoreline in the heart of San Francisco, that means finding a lot more consumer trash left on the beach.

From clothes and cigarette butts to food wrappers and even toilet paper, the surveys at Ocean Beach are markedly different from those surveys further north at Drakes Beach, the other new site. There, volunteers count and remove mostly small, hard fragments of plastic that appear worn down by sun and sea, indicating the majority of the debris there is brought to shore by the waves, not beachgoers.

Survey Says

Long blue piece of boat insulation sitting on a table.

A volunteer surveying a beach in the Greater Farallones National Marine Sanctuary found this piece of insulation from an elite sailboat that broke apart in San Francisco Bay in 2012. The debris took two months to travel to a shoreline 60 miles north. (NOAA)

After four years of monitoring and roughly 150 surveys, what have they found so far on the north-central California coast? More than 5,000 debris items recorded in all, which, as Bimrose said, is “a good amount but not too crazy.”

Expanding to six survey sites from four only increases what they can learn about debris patterns in this area. As more data roll in, NOAA will able to outline the regional scope of the problem and see patterns between seasons, years, categories, and locations of debris accumulation. One thing that is likely not to change, however, is that plastic debris dominates. It constitutes about 80 percent of the trash found at all sites.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. Through other partners associated with beach cleanups however, three pieces of Japan tsunami debris have been confirmed in California. The most recent was a large green pallet with Kanji lettering that landed on Mussel Beach just south of San Francisco. The discovery reinforces the importance of continuing to monitor debris along sanctuary beaches and shows us how items can persist in the ocean for years before sinking, breaking up, or landing on shore.

Another unusual example linking a piece of debris to the exact event that released it occurred in 2012. During a training run for the America’ Cup sailing race, an $8 million boat capsized and broke apart in San Francisco Bay on October 16, 2012. Two months later, one of Bimrose’s volunteers discovered a piece of insulation from that boat on a beach about 60 miles north.

Every month, Bimrose tags along with at least one pair of volunteers for their survey of one of the four “survey-only” beach sites. On one such occasion, one volunteer, an older gentleman, brought along his wife, who was puzzled by her husband’s constant chatter about “his” beach. According to Bimrose, a lot of the surveys could be considered rather clean or even monotonous. But even so, after a day walking and counting with him, the volunteer’s wife told her, “I totally get it, why he comes out here and rearranges his schedule to do this.”

Leave a comment

To Bring Back Healthy California Ocean Ecosystems, NOAA and Partners Are “Planting” Long-Lost Abalone in the Sea

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

Diver placing PVC tube with small sea snails on the rocky seafloor.

A diver places a PVC tube filled with young green abalone — sea snails raised in a lab — on the seafloor off the southern California coast. (NOAA)

They weren’t vegetables but an excited group of scuba divers was carefully “planting” green abalone in an undersea garden off the southern California coast all the same. Green abalone are a single-shelled species of sea snail whose population has dropped dramatically in recent decades.

On a Wednesday in mid-June, these oceanic “gardeners”—NOAA biologist David Witting and divers from The Bay Foundation—released over 700 young green abalone into newly restored kelp forest areas near Palos Verdes, California. This was the first time in over a decade that juvenile abalone have been “outplanted,” or transplanted from nursery facilities, to the wild in southern California. This ongoing project is a partnership between NOAA, The Bay Foundation, Redondo SEA Lab, The Nature Conservancy, and the California Department of Fish and Wildlife.

Spawned and reared at The SEA Lab in Redondo Beach, California, all of the juvenile abalone were between two and four years old and were between a quarter inch and 3 inches in size. Biologists painstakingly tagged each abalone with tiny identifying tags several weeks prior to their release into the wild.

Leading up to outplanting day, microbiologists from the California Department of Fish and Wildlife had to run rigorous tests on a sample of the juvenile abalone to certify them as disease-free before they were placed into the ocean. Several days before transferring them, biologists placed the abalone in PVC tubes with netting on either end for easy transport.

“This was just a pilot outplanting with many more larger-scale efforts to come in the near future,” stated David Witting from NOAA’s Restoration Center. “We wanted to go through all of the steps necessary to successfully outplant abalone so that it would be second nature next time.”

Marine biologists from The Bay Foundation, along with Witting and other NOAA biologists, will be going out over the next six to twelve months to monitor the abalone—checking for survival rates and movement of the abalone. “We expect to find some abalone that didn’t survive the transfer to the wild but probably a good number of them will move into the cracks and crevices of rocky reef outcroppings immediately,” according to Witting.

Why Abalone?

PVC tube filled with green abalone lodged into the rocky seafloor.

After testing and refining the techniques to boost the population of green abalone in the wild, scientists then will apply them to help endangered white and black abalone species recover. (NOAA)

All seven abalone species found along the U.S. West Coast have declined and some have all but disappeared. White and black abalone, in particular, are listed as endangered through the Endangered Species Act (ESA). Three abalone species (green, pinto, and pink) are listed as Species of Concern by NOAA Fisheries, a designation meant to protect the populations from declining further and which could result in an ESA listing. The two remaining abalone species, reds and flats, are protected and managed by states along the U.S. West Coast.

Historically, the main cause of abalone’s demise was a combination of overfishing and disease. Today, many other threats, such as poaching, climate change, oil spills, and habitat degradation, contribute to the decline of abalone and could impact the health of future populations.

The recent green abalone outplanting was one of the many steps needed to advance the recovery of all abalone species. Methods for rearing and outplanting are first being tested using green abalone because this species is more abundant in the wild. Once the methods are refined, they then will be employed to recover endangered white and black abalone—both species which are currently living on the brink of extinction.

What the Future Holds

A small green abalone eats red algae stuck to a plastic rack.

A young green abalone, reared in a lab in southern California, grazes on red algae. Raising these sea snails in a lab requires a lot of resources, prompting scientists to explore other approaches for boosting wild abalone populations. (Credit: Brenda Rees, with permission)

In particular, biologists are hoping to refine a technique they are coining “deck-spawning” as a way to outplant abalone in the future. Maintaining abalone broodstock and rearing them in a lab requires a lot of resources, funding, and time. This monumental effort has spurred biologists to develop an initially successful, alternate approach, which involves inducing mature, wild abalone to spawn on the deck of a boat.

The scientists then take the viable abalone larvae that develop and release them in a habitat where the young abalone are likely to settle and thrive. Immediately after spawning, the parent abalone can then be returned to the wild where they can continue to be a component of the functioning ocean ecosystem.

The green abalone outplanting project is part of a broader effort to restore abalone but is also playing an important role in work being led by The Bay Foundation with NOAA’s Montrose Settlements Restoration Program to restore southern California’s kelp forests. In southern California, fish habitat has been harmed by decades of toxic pollution dumped into the marine environment. After clearing areas that would be prime kelp habitat if not for the unnaturally high densities of sick and stressed sea urchins, NOAA, The Bay Foundation, and our partners have seen kelp bounce back once given relief from those overly hungry urchins.

While abalone also eat seaweed, including kelp, they are a natural competitor of urchins in this environment and will help keep urchin populations in check, ultimately allowing a healthy kelp forest community to return.

Watch as divers transport the young abalone using PVC tubes and release them on the rocky seafloor off California’s coast:

Gabrielle Dorr

Gabrielle Dorr.

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California, where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.

Leave a comment

This Is How We Help Make the Ocean a Better Place for Coral

Large corals on the seafloor.

The ocean on its own is an amazing place. Which is why we humans like to explore it, from its warm, sandy beaches to its dark, mysterious depths. But when humans are involved, things can and often do go wrong.

That’s where we come in. Our corner of NOAA helps figure out what impacts have happened and what restoration is needed to make up for them when humans create a mess of the ocean, from oil spills to ship groundings.

In honor of World Ocean Day, here are a few ways we at NOAA make the ocean a better place for corals when ships accidentally turn them into undersea roadkill.

First, we literally vacuum up broken coral and rubble from the seafloor after ships run into and get stuck on coral reefs. The ships end up crushing corals’ calcium carbonate homes, often carpeting the seafloor with rubble that needs to be removed for three reasons.

  1. To prevent it from smashing into healthy coral nearby.
  2. To clear space for re-attaching coral during restoration.
  3. To allow for tiny, free-floating coral babies to settle in the cleared area and start growing.

Check it out:A SCUBA diver using a suction tube to vacuum coral rubble from the seafloor during coral restoration after the VogeTrader ship grounding.Sometimes, however, the broken bits get stuck in the suction tube, and you have to give it a good shake to get things moving. SCUBA divers shaking a suction tube to clear it on the seafloor.Next, we save as many dislodged and knocked over corals as we can. In this case, popping them into a giant underwater basket that a boat pulls to the final restoration site.

SCUBA diver placing coral piece into a large wire basket on the seafloor during coral restoration after the VogeTrader ship grounding.Sometimes we use “coral nurseries” to regrow corals to replace the ones that were damaged. This is what that can look like:

Staghorn coral fragments hanging on an underwater tree structure of PVC pipes.Then, we cement healthy corals to the seafloor, but first we have to prepare the area, which includes scrubbing a spot for the cement and coral to stick to.

SCUBA diver scrubbing a spot on the seafloor for the cement and coral to stick to.(And if that doesn’t work very well, we’ll bring out a power washer to get the job done.)

SCUBA diver using a power washer to clear a spot on the seafloor for the cement and coral to stick to during coral restoration after the VogeTrader ship grounding.Finally, we’re ready for the bucket of cement and the healthy coral.

SCUBA diver turning over a bucket of cement on the seafloor during coral restoration after the VogeTrader ship grounding.

Instead of cement, we may also use epoxy, nails, or cable ties to secure corals to the ocean floor.

After all that work, the seafloor goes from looking like this:

View of seafloor devoid of coral before restoration.To this:

View of seafloor covered with healthy young coral and fish after restoration due to the VogeTrader grounding.

Ta-da! Good as new, or at least, on its way back to being good-as-new.

When that’s not enough to make up for all the harm done to coral reefs hit by ships, we look for other restoration projects to help corals in the area, like this project to vacuum invasive algae off of coral reefs in Oahu.

Watch how this device, dubbed the “Super Sucker,” works to efficiently remove the yellow-brown algae that is smothering the corals:

Or, as another example of a coral restoration project, we set sail each year to the remote Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands to pull more than 50 tons of giant, abandoned fishing nets off of the pristine coral reefs.

In 2014, that included removing an 11 ton “monster net” from a reef:

For the most part, the coral restoration you’ve seen here was completed by NOAA and our partners, beginning in October 2013 and wrapping up in April 2014.

These corals were damaged off the Hawaiian island of Oahu in February of 2010 when the cargo ship M/V VogeTrader ran aground and was later removed from a coral reef in Kalaeloa/Barber’s Point Harbor.

Leave a comment

Follow Along as NOAA Clears the Waters of the Northwestern Hawaiian Islands

Two people pull nets from the ocean into a small boat.

Two members of the NOAA dive team remove derelict fishing gear from a reef at Midway Atoll during the 2013 marine debris removal cruise. (NOAA)

Turquoise waters, vibrant coral reefs, white sand beaches—this is often what we think of when we think about far-off islands in the Pacific Ocean. But even the furthest reaches of wilderness, such as the tropical reefs, islands, and atolls of the Papahānaumokuākea Marine National Monument, which are hundreds of miles from the main Hawaiian archipelago, can be polluted by human influence. In these shallow waters, roughly 52 tons of plastic fishing nets wash up on coral reefs and shorelines each year.

For nearly two decades, NOAA has been leading an annual mission to clean up these old nets that can smother corals and entangle marine life, including endangered Hawaiian monk seals. This year, the NOAA Marine Debris Program has two staff—Dianna Parker and Kyle Koyanagi—joining the NOAA Pacific Islands Fisheries Science Center scientists and divers on board the NOAA Ship Oscar Elton Sette to document this effort.

A man pulls a net out of the ocean into a small boat.

Chief scientist Mark Manuel hauls derelict nets over the side of a small boat at Maro Reef during the 2014 expedition. (NOAA)

You can follow their journey to remove nets from five areas in the marine monument:

You can keep track of all things related to this expedition on the NOAA Marine Debris Program website.

Leave a comment

Oil Seeps, Shipwrecks, and Surfers Ride the Waves in California

This is a post by Jordan Stout, the Office of Response and Restoration’s Scientific Support Coordinator based in Alameda, Calif.

Tarball on the beach with a ruler.

A tarball which washed up near California’s Half Moon Bay in mid-February 2014. (Credit: Beach Watch volunteers with the Farallones Marine Sanctuary Association)

What do natural oil seeps, shipwrecks, and surfers have in common? The quick answer: tarballs and oceanography. The long answer: Let me tell you a story …

A rash of tarballs, which are thick, sticky, and small pieces of partially broken-down oil, washed ashore at Half Moon Bay, Calif., south of San Francisco back in mid-February. This isn’t an unusual occurrence this time of year, but several of us involved in spill response still received phone calls about them, so some of us checked things out.

Winds and ocean currents are the primary movers of floating oil. A quick look at conditions around that time indicated that floating stuff (like oil) would have generally been moving northwards up the coast. Off of Monterey Bay, there had been prolonged winds out of the south several times since December, including just prior to the tarballs’ arrival. Coastal currents at the time also showed the ocean’s surface waters moving generally up the coast. Then, just hours before their arrival, winds switched direction and started coming out of the west-northwest, pushing the tarballs ashore.

Seeps and Shipwrecks

It’s common winter conditions like that, combined with the many natural oil seeps of southern California, that often result in tarballs naturally coming ashore in central and northern California. Like I said, wintertime tarballs are not unheard of in this area and people weren’t terribly concerned. Even so, some of the tarballs were relatively “fresh” and heavy weather and seas had rolled through during a storm the previous weekend. This got some people thinking about the shipwreck S/S Jacob Luckenbach, a freighter which sank near San Francisco in 1953 and began leaking oil since at least 1992.

When salvage divers were removing oil from the Luckenbach back in 2002, they reported feeling surges along the bottom under some wave conditions. The wreck is 468 feet long, lying in about 175 feet of water and is roughly 20 miles northwest of Half Moon Bay. Could this or another nearby wreck have been jostled by the previous weekend’s storm and produced some of the tarballs now coming ashore?

Making Waves

Discussions with the oceanographers in NOAA’s Office of Response and Restoration provided me with some key kernels of wisdom about what might have happened. First, the height of a wave influences the degree of effects beneath the ocean surface, but the wave length determines how deep those effects go. So, big waves with long wavelengths have greater influence at greater depths than smaller waves with shorter wavelengths.

Graphic describing and showing wave length, height, frequency, and period.

Credit: NOAA’s Ocean Service

Second, waves in deep water cause effects at depths half their length. This means that a wave with a length of 100 meters can be felt to a depth of 50 meters. That was great stuff, I thought. But the data buoys off of California, if they collect any wave data at all, only collect wave height and period (the time it takes a wave to move from one high or low point to the next) but not wave length. So, now what?

As it turns out, our office’s excellent oceanographers also have a rule of thumb for calculating wave length from this information: a wave with a 10-second period has a wave length of about 100 meters in deep water. So, that same 10-second wave would be felt at 50 meters, which is similar to the depth of the shipwreck Jacob Luckenbach (54 meters or 175 feet).

Looking at nearby data buoys, significant wave heights during the previous weekend’s storm topped out at 2.8 meters (about 9 feet) with a 9-second period. So, the sunken Luckenbach may have actually “felt” the storm a little bit, but probably not enough to cause a spill of any oil remaining on board it.

Riding Waves

Even so, just two weeks before the tarballs came ashore, waves in the area were much, much bigger. The biggest waves the area had seen so far in 2014, in fact: more than 4 meters (13 feet) high, with a 24-second period. If the Luckenbach had been jostled by any waves at all in 2014, you would think it would have been from those waves in late January, and yet there were no reports of tarballs (fresh or otherwise) even though winds were blowing towards shore for about a week afterwards. This leads me to conclude that the recent increase in tarballs came from somewhere other than a nearby shipwreck.

Where do surfers fit in all this? That day in late January when the shipwreck S/S Jacob Luckenbach was being knocked around by the biggest waves of 2014 was the day of the Mavericks Invitational surf contest in Half Moon Bay. People came from all over to ride those big waves—and it was amazing!

Jordan StoutJordan Stout currently serves as the NOAA Scientific Support Coordinator in California where he provides scientific and technical support to the U.S. Coast Guard and Environmental Protection Agency in preparing for and responding to oil spills and hazardous material releases. He has been involved in supporting many significant incidents and responses in California and throughout the nation.


Where Are the Pacific Garbage Patches Located?

Microplastics in sand.

Microplastics, small plastics less than 5 millimeters long, are an increasingly common type of marine debris found in the water column (including the “garbage patches”) and on shorelines around the world. Based on research to date, most commonly used plastics do not fully degrade in the ocean and instead break down into smaller and smaller pieces. (NOAA Marine Debris Program)

The Pacific Ocean is massive. It’s the world’s largest and deepest ocean, and if you gathered up all of the Earth’s continents, these land masses would fit into the Pacific basin with a space the size of Africa to spare.

While the Pacific Ocean holds more than half of the planet’s free water, it also unfortunately holds a lot of the planet’s garbage (much of it plastic). But that trash isn’t spread evenly across the Pacific Ocean; a great deal of it ends up suspended in what are commonly referred to as “garbage patches.”

A combination of oceanic and atmospheric forces causes trash, free-floating sea life (for example, algae, plankton, and seaweed), and a variety of other things to collect in concentrations in certain parts of the ocean. In the Pacific Ocean, there are actually a few “Pacific garbage patches” of varying sizes as well as other locations where marine debris is known to accumulate.

The Eastern Pacific Garbage Patch (aka “Great Pacific Garbage Patch”)

In most cases when people talk about the “Great Pacific Garbage Patch,” they are referring to the Eastern Pacific garbage patch. This is located in a constantly moving and changing swirl of water roughly midway between Hawaii and California, in an atmospheric area known as the North Pacific Subtropical High.

NOAA National Weather Service meteorologist Ted Buehner describes the North Pacific High as involving “a broad area of sinking air resulting in higher atmospheric pressure, drier warmer temperatures and generally fair weather (as a result of the sinking air).”

This high pressure area remains in a semi-permanent state, affecting the movement of the ocean below. “Winds with high pressure tend to be light(er) and blow clockwise in the northern hemisphere out over the open ocean,” according to Buehner.

As a result, plastic and other debris floating at sea tend to get swept into the calm inner area of the North Pacific High, where the debris becomes trapped by oceanic and atmospheric forces and builds up at higher concentrations than surrounding waters. Over time, this has earned the area the nickname “garbage patch”—although the exact content, size, and location of the associated marine debris accumulations are still difficult to pin down.

Map of ocean currents, features, and areas of marine debris accumulation (including

This map is an oversimplification of ocean currents, features, and areas of marine debris accumulation (including “garbage patches”) in the Pacific Ocean. There are numerous factors that affect the location, size, and strength of all of these features throughout the year, including seasonality and El Nino/La Nina. (NOAA Marine Debris Program)

The Western Pacific Garbage Patch

On the opposite side of the Pacific Ocean, there is another so-called “garbage patch,” or area of marine debris buildup, off the southeast coast of Japan. This is the lesser known and studied, Western Pacific garbage patch. Southeast of the Kuroshio Extension (ocean current), researchers believe that this garbage patch is a small “recirculation gyre,” an area of clockwise-rotating water, much like an ocean eddy (Howell et al., 2012).

North Pacific Subtropical Convergence Zone

While not called a “garbage patch,” the North Pacific Subtropical Convergence Zone is another place in the Pacific Ocean where researchers have documented concentrations of marine debris. A combination of oceanic and atmospheric forces create this convergence zone, which is positioned north of the Hawaiian Islands but moves seasonally and dips even farther south toward Hawaii during El Niño years (Morishige et al., 2007, Pichel et al., 2007). The North Pacific Convergence Zone is an area where many open-water marine species live, feed, or migrate and where debris has been known to accumulate (Young et al. 2009). Hawaii’s islands and atolls end up catching a notable amount of marine debris as a result of this zone dipping southward closer to the archipelago (Donohue et al. 2001, Pichel et al., 2007).

But the Pacific Ocean isn’t the only ocean with marine debris troubles. Trash from humans is found in every ocean, from the Arctic (Bergmann and Klages, 2012) to the Antarctic (Eriksson et al., 2013), and similar oceanic processes form high-concentration areas where debris gathers in the Atlantic Ocean and elsewhere.

You can help keep trash from becoming marine debris by:

Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, also contributed to this post.

Literature Cited

Bergmann, M. and M. Klages. 2012. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64: 2734-2741.

Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin, 42 (12): 1301-1312.

Eriksson, C., H. Burton, S. Fitch, M. Schulz, and J. van den Hoff. 2013. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Marine Pollution Bulletin, 66: 199-208.

Howell, E., S. Bograd, C. Morishige, M. Seki, and J. Polovina. 2012. On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65: 16-22.

Morishige, C., M. Donohue, E. Flint, C. Swenson, and C. Woolaway. 2007. Factors affecting marine debris deposition at French Frigate Shoals, Northwestern Hawaiian Islands Marine National Monument, 1990-2002. Marine Pollution Bulletin, 54: 1162-1169.

Pichel, W.G., J.H. Churnside, T.S. Veenstra, D.G. Foley, K.S. Friedman, R.E. Brainard, J.B. Nicoll, Q. Zheng and P. Clement-Colon. 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone [PDF]. Marine Pollution Bulletin, 54: 1207-1211.

Young L. C., C. Vanderlip, D. C. Duffy, V. Afanasyev, and S. A. Shaffer. 2009. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE 4 (10).


Get every new post delivered to your Inbox.

Join 631 other followers