NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

How Do We Use Satellite Data During Oil Spills?

This is a post by NOAA’s George Graettinger with Amy MacFadyen.

A view of the Deepwater Horizon oil spill from NASA's Terra Satellites.

A view of the Deepwater Horizon oil spill from NASA’s Terra Satellites on May 24, 2010. When oil slicks are visible in satellite images, it is because they have changed how the water reflects light, either by making the sun’s reflection brighter or by dampening the scattering of sunlight, which makes the oily area darker. (NASA)

Did you know satellites measure many properties of the Earth’s oceans from space? Remote sensing technology uses various types of sensors and cameras on satellites and aircraft to gather data about the natural world from a distance. These sensors provide information about winds, ocean currents and tides, sea surface height, and a lot more.

NOAA’s Office of Response and Restoration is taking advantage of all that data collection by collaborating with NOAA’s Satellite and Information Service to put this environmental intelligence to work during disasters such as oil spills and hurricanes. Remote sensing technology adds another tool to our toolbox as we assess and respond to the environmental impacts of these types of disasters.

In these cases, which tend to be larger or longer-term oil spills, NOAA Satellites analyzes earth and ocean data from a variety of sensors and provides us with data products such as images and maps. We’re then able to take that information from NOAA Satellites and apply it to purposes ranging from detecting oil slicks to determining how an oil spill might be impacting a species or shoreline.

Slick Technology

During an oil spill, observers trained to identify oil from the air go out in helicopters and planes to report an oil slick’s exact location, shape, size, color, and orientation at a given time. Analogous to this “remote sensing” done by the human eye, satellite sensors can help us define the extent of an oil slick on the ocean surface and create a target area where our aerial observers should start looking for oil.

In the case of a large oil spill over a sizable area such as the Gulf of Mexico, this is very important because we can’t afford the time to go out in helicopters and look everywhere or sometimes weather conditions may make it unsafe to do so.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA. (NOAA)

Satellite remote sensing typically provides the aerial footprint or outline of the surface oil (the surface oiling extent). However, oil slicks are patchy and vary in the thickness of the oil, which means having the outline of the slick is useful, but we still need our observers to give us more detailed information. That said, we’re starting to be able to use remote sensing to delineate not just the extent but also the thickest parts of the slicks.

Armed with information about where spilled oil may be thickest allows us to prioritize these areas for cleanup action. This “actionable oil” is in a condition that can be collected (via skimmers), dispersed, or burned as part of the cleanup process.

You can see how we mapped the surface oiling extent during the Deepwater Horizon spill based on data analyses from NOAA Satellites into our online response mapping program ERMA.

A Model for the Future

A common use of remotely sensed data in our work is with our oil spill models. Reports of a slick’s extent from both satellite sensors and aerial observers, who report additional information about constantly changing oil slicks, helps our oceanographers improve the forecasts of where the oil will be tomorrow.

Just as weather forecasters continually incorporate real-time observations into their models to improve accuracy, our oceanographers update oil spill trajectory models with the latest overflights and observations of the surface oiling extent (the area where oil is at a given moment). These forecasts offer critical information that the Coast Guard uses to prioritize spill response and cleanup activities.

A Sense of Impact

Oil at the water's surface in a boat wake.

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. One use was detecting the outline of oil slicks on the ocean surface. (NOAA)

Over the course of an oil spill, knowing the surface oiling extent and where that oil is going is important for identifying what natural resources are potentially in harm’s way and should be protected during the spill response.

In addition, the data analyses from remote sensing technology directly support our ability to determine how natural resources, whether salt marshes or dolphins, are exposed to spilled oil. Both where an oil slick is and how often it is there will affect the degree of potential harm suffered by sensitive species and habitats over time.

In recent years, we’ve been learning how to better use the remote sensing data collected by satellite and aircraft to look at how, where, and for how long coastal and marine life and habitats are impacted by oil spills and then relate this oil exposure to actual harm to these resources.

Large amounts of oil that stay in the same place for a long time have the potential to cause a lot more harm. For example, dolphins in a certain impacted area might breathe fumes from oil and ingest oil from food and water for weeks or months at a time. Without remotely sensed data, it would be nearly impossible to accomplish this task of tying the exact location and timing of oil exposure to environmental harm.

Remote Opportunities

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. For example, we used this technology to examine the large scale features of the circulation patterns in the Gulf of Mexico, such as the fast-moving Loop Current and associated eddies. The Loop Current is a warm ocean current that flows northward between Cuba and Mexico’s Yucatán Peninsula, moves north into the Gulf of Mexico, then loops east and south before exiting through the Florida Straits and ultimately joining the Gulf Stream.

During this oil spill, there were concerns that if the oil slick entered the Loop Current, it could be transported far beyond the Gulf to the Caribbean or up the U.S. East Coast (it did not). NOAA used information from satellite data to monitory closely the position of the slick with respect to the Loop Current throughout the Deepwater Horizon oil spill.

Our partnership with NOAA’s Satellite and Information Service has been a fruitful one, which we expect to grow even more in the future as technology develops further. In January, NOAA Satellites launched the Jason-3 satellite, which will continue to collect critical sea surface height data, adding to a satellite data record going back to 1992. One way these data will be used is in helping track the development of hurricanes, which in turn can cause oil spills.

We hope ongoing collaboration across NOAA will further prepare us for the future and whatever it holds.


Leave a comment

A Bird’s Eye View: Looking for Oil Spills from the Sky

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division, with input from David Wesley and Meg Imholt.

View over a pilot's shoulder out of a plane to ocean and islands.

View over the pilot’s shoulder on the first visit to the Chandeleur Islands in the Gulf of Mexico after Hurricane Katrina to see how much the shoreline had been altered. (NOAA)

During an oil spill, responders need to answer a number of questions in order to protect coastal resources: What happened? Where is the oil going? What will it hit? How will it cause harm?

Not all of these questions can be answered adequately from the ground or even from a boat. Often, experts take to the skies to answer these questions.

Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water. Our oceanographers make predictions about where a spill might go, but each spill presents a unique combination of weather conditions, ocean currents, and even oil chemistry that adds uncertainty due to natural variability. Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.

Trained aerial overflight experts serve as the “eyes” for the command post of spill responders. They report critical information like location, size, shape, color, and orientation of an oil slick. They can also make wildlife observations, monitor cleanup operations, and spot oceanographic features like convergence zones and eddies, which impact where oil might go. All of these details help inform decisions for appropriate cleanup strategies.

Easier Said Than Done

Finding and identifying oil from the air is tricky. Oil slicks move, which can make them hard to pin down. In addition, they may be difficult to classify from visual observation because different oils vary in appearance, and oil slick appearance is affected by weather conditions and how long the oil has been out on the water.

False positives add even another challenge. When viewed from the air, algal blooms, boat wakes, seagrass, and many other things can look like oil. Important clues, such as if heavy pollen or algal blooms are common in the area, help aerial observers make the determination between false positives and the real deal. If the determination cannot be made from air, however, it is worth investigating further.

During an overflight, it takes concentration to capture the right information. Many things can distract the observer from the main mission of spotting oil, including taking notes in a notebook, technology, and other people. Even an item meant to help, such as a camera or GPS, can lose value if more time is spent fiddling with it rather than taking observations. The important thing is to look out the window!

Safety is paramount on an overflight. An observer must always pay close attention to the pilot’s instructions for getting on and off the aircraft, and not speak over the pilot if they are talking on the radio. While it’s not a problem to ask, a pilot may not be able to do certain maneuvers an observer requests due to safety concerns.

The Experts—And Becoming One Yourself

The Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R) has overflight specialists ready for quick deployment to do this job. These specialists have extensive training and expertise in aerial overflights.

View of airplane wing, clouds, and water.

Looking out of an observer window on a Coast Guard C-130 airplane during the Hurricane Katrina pollution response. (NOAA)

When I joined OR&R in 2011, I learned from the best before doing real-life observations myself. One of the first things I did was take a Helicopter Emergency Egress course to make sure I could safely exit an aircraft that had made an emergency landing over water. Then I took the Science of Oil Spills course, where I learned more about observing oil from the air. In preparation for my first overflight I also had one-on-one conversations with our trained aerial observers. Since then, I have done aerial observations for oil spills including a sunken vessel in Washington’s Penn Cove, the Post-Tropical Cyclone Sandy pollution response, and the Texas City “Y” oil spill in Galveston Bay.

OR&R provides training opportunities for others who may need to do an overflight during a response. Throughout the year, OR&R offers Science of Oil Spill classes across the country. In March 2014, more than 50 oil spill responders learned about aerial observing, and many other spill response skills, at OR&R’s Science of Oil Spills class at NOAA’s Disaster Response Center in the Gulf of Mexico. For those interested in becoming an overflight specialist themselves, OR&R even offers a one-day, in-person course on the topic throughout the country a few times per year.

OR&R has also created the online module, “Introduction to Observing oil from Helicopters and Planes,” to make training even more accessible. We even have a job aid for aerial observation of oil, a reference booklet conveniently sized to take on an overflight!

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Post Hurricane Sandy, NOAA Aids Hazardous Spill Cleanup in New Jersey and New York

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy.

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy. (NOAA)

[UPDATED NOVEMBER 6, 2012] Hurricane Sandy’s extreme weather conditions—80 to 90 mph winds and sea levels more than 14 feet above normal—spread oil, hazardous materials, and debris across waterways and industrial port areas along the Mid Atlantic. NOAA’s Office of Response and Restoration is working with the U.S. Coast Guard and affected facilities to reduce the impacts of this pollution in coastal New York and New Jersey.

We have several Scientific Support Coordinators and information management specialists on scene at the incident command post on Staten Island, N.Y.

Since the pollution response began, we have been dispatching observers in helicopters with the Coast Guard to survey the resulting oil sheens on the water surface in Arthur Kill, N.J./N.Y. This is in support of the response to a significant spill at the Motiva Refinery in Sewaren, N.J., as well as for the cleanup and assessment of several small spills of diesel fuel, biodiesel, and various other petroleum products scattered throughout northern New Jersey’s refinery areas.

One of the challenges facing communities after a devastating weather event is information management. One tool we have developed for this purpose is ERMA, an online mapping tool which integrates and synthesizes various types of environmental, geographic, and operational data. This provides a central information hub for all individuals involved in an incident, improves communication and coordination among responders, and supplies resource managers with the information necessary to make faster and better informed decisions.

ERMA has now been adopted as the official common operational platform for the Hurricane Sandy pollution response, and we have sent additional GIS specialists to the command post.

Species and Habitats at Risk

The most sensitive habitats in the area are salt marshes, which are often highly productive and are important wildlife habitat and nursery areas for fish and shellfish. Though thin sheens contain little oil, wind and high water levels after the storm could push the diesel deep into the marsh, where it could persist and contaminate sediments. Because marshes are damaged easily during cleanup operations, spill response actions will have to take into account all of these considerations.

In addition, diesel spills can kill the many small invertebrates at the base of the food chain which live in tidal flats and salt marshes if they are exposed to a high enough concentration. Resident marsh fishes, which include bay anchovy, killifish, and silversides, are the fish most at risk because they are the least mobile and occupy shallow habitats. Many species of heron nest in the nearby inland marshes, some of the last remaining marshlands in Staten Island. Swimming and diving birds, such as Canada geese and cormorants, are also vulnerable to having their feathers coated by the floating oil, and all waterfowl have the potential to consume oil while feeding.

Based on the risks to species and habitats from both oil and cleanup, we weigh the science carefully before making spill response recommendations to the Coast Guard.

Tracking the Spilled Oil

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012.

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012. (U.S. Coast Guard)

Because no two oils are alike, we train aerial observers to evaluate the character and extent of oil spilled on the water. NOAA performs these aerial surveys, or overflights, of spilled oil like in Arthur Kill to determine the status of the oil’s source and to track where wind and waves are moving spilled oil while also weathering it. The movement of wind and waves, along with sunlight, works to break down oil into its chemical components. This changes the appearance, size, and location of oil, and in return, can change how animals and plants interact with the oil.

When spilled on water, diesel oil spreads very quickly to a thin film. However, diesel has high levels of toxic components which dissolve fairly readily into the water column, posing threats to the organisms living there. Biodiesel can coat animals that come into contact with it, but it breaks down up to four times more quickly than conventional diesel. At the same time, this biodegradation could cause potential fish kills by using up large amounts of oxygen in the water, especially in shallow areas.

Look for photos, maps, and updates on pollution-related response efforts at IncidentNews.

Check the Superstorm Sandy CrisisMap for aggregated information from NOAA, FEMA, and other sources on weather alerts and observations; storm surge and flood water data; aerial damage assessment imagery; and the locations of power outages, food and gas in New Jersey, and emergency shelters.


2 Comments

With Skiff Found off Maui, NOAA and Partners Confirm Hawaii’s Latest Reports of Japan Tsunami Marine Debris

Skiff covered in barnacles towed behind a boat.

After finding the 20-by-6-foot skiff covered in barnacles floating northeast of Maui, the crew of the F/V Zephyr towed it in and cleaned it up. This skiff is Hawaii’s second confirmed piece of marine debris connected to the 2011 Japan tsunami. (Peter Grillo, F/V Zephyr)

On the heels of Hawaii’s first confirmed report of Japan tsunami debris, NOAA and our partners are already examining the second confirmed item: a barnacled skiff which a fisherman found off the Hawaii coast—and which he wants to keep.

Using the skiff’s registration number, NOAA worked through the Japan Consulate in Hawaii to track down its owner, who expressed no interest in having it returned or in whom took possession of it.

The Zephyr, a longline fishing vessel, discovered the 20-by-6-foot skiff approximately 700 nautical miles northeast of Maui and reported it to the U.S. Coast Guard on September 29. After cleaning the aquatic species from its hull, the crew took it aboard and arrived with it in Honolulu Harbor the morning of October 5.

“We appreciate that this fisherman reached out to us and our partners at the Coast Guard and State of Hawaii to alert us of the skiff and determine appropriate measures to take,” said Carey Morishige, NOAA’s Marine Debris Program Pacific Islands regional coordinator. “Boaters are our eyes on the water and we need their help to be on the lookout for marine debris.”

State marine invasive species experts have already examined the skiff for signs of remaining aquatic life, especially those which may be invasive to Hawaii. Although no items connected to the 2011 Japan tsunami have shown above-normal radiation levels, out of an abundance of caution, state Department of Health officials also checked the boat for radiation.

Plastic bin being towed in to pier off Oahu.


NOAA’s Hawaii Undersea Research Laboratory tows in the 4-by-4-foot plastic bin which was the first confirmed item of Japan tsunami marine debris in Hawaii. It was spotted at sea off the eastern coast of Oahu, Hawaii, on September 18, 2012. (Hawaii Undersea Research Laboratory)

Just a few weeks ago, the first confirmed piece of Japan tsunami debris in Hawaii [PDF]—a blue seafood storage bin—showed up off the southeast coast of Oahu. The bin belonged to the Japanese seafood wholesaler Y.K. Suisan, Co., Ltd., whose offices were affected by the 2011 Japan tsunami.

On the morning of September 18, personnel from Makai Ocean Engineering pointed out the buoyant blue container, which is used to transport seafood, near a pier on the southeastern shore of Oahu, and NOAA’s Hawaii Undersea Research Laboratory fished the 4-by-4-foot box out of the water.

A closeup of the seafood storage bin from Japan found near Oahu and encrusted with marine life.

A close examination of the seafood storage bin from Japan found near Oahu revealed a variety of wildlife both inside (Hawaiian red-footed boobies) and out (gooseneck barnacles and two species of open-water crabs). (Hawaii Undersea Research Laboratory)

While the lower, submerged portion of the bin was covered in gooseneck barnacles and crabs common in the open sea, a NOAA marine invertebrate scientist joined state aquatic invasive species experts in examining and confirming that none of the organisms were invasive. When the Hawaii Undersea Research Laboratory towed in the bin, they also found five Hawaiian red-footed boobies inside; three of which were dead, though two successfully managed to fly off.

Because both the skiff and the seafood bin have unique identifying information, both items have been definitively traced back to Japan and confirmed as lost during the tsunami of March 2011. These items were confirmed with the assistance of the Japan Consulate in Honolulu and Government of Japan.

However, the assorted flotsam which Hawaii residents have reported recently is often nearly impossible to connect to the tsunami. It includes everything from unusual light bulbs and a hard hat to plastic containers and pieces of Styrofoam. Marine debris is an everyday problem, and items like these have been known to wash up on Hawaiian shores long before the 2011 tsunami.

While fishermen reportedly saw a floating concrete dock near the Main Hawaiian Islands, it has not been sighted again [PDF] since initial reports on September 19. In the meantime, NOAA has coordinated with the U.S. Coast Guard, State of Hawaii, and other agencies to prepare for its possible reappearance and support the state in its plan to deal with the dock before it makes landfall.

The 30-by-50-foot dock appears similar to one that washed ashore in Oregon last June, which, when it arrived encrusted in sea life, prompted concerns about the possibility of aquatic invasive species from Japan. If this latest dock reappeared and proved to be a match, it would be the second of three docks reported missing from Japan following the March 2011 tsunami.

However, despite aerial surveys by the U.S. Coast Guard and Hawaii’s Department of Land and Natural Resources to identify the dock’s location, no additional sightings have surfaced. NOAA’s Office of Response and Restoration oceanographers have used our GNOME model to forecast the dock’s possible movement using data on currents from the University of Hawaii’s Regional Ocean Modeling System (ROMS) and wind forecasts from NOAA’s National Weather Service. However, the accuracy of the model’s predictions is unknown due to the lack of observational data on where the dock was traveling over time. In addition, NOAA has prepared two satellite tracking buoys for Hawaii to use in case the dock is relocated.

Hawaii’s Department of Land and Natural Resources, the state’s lead agency for responding to possible Japan tsunami marine debris, is asking that boaters, fishers, and pilots keep an eye out for debris. If sighted, the agency says to call in reports immediately to 1.808.587.0400. The NOAA Marine Debris Program also is gathering sightings of potential Japan tsunami marine debris at DisasterDebris@noaa.gov.

Keep up with NOAA’s latest efforts surrounding the issue of Japan tsunami marine debris at http://marinedebris.noaa.gov/tsunamidebris/.


Leave a comment

Weeks Later, Responders Still Dealing with Pollution Left in Hurricane Isaac’s Wake

Three cleaned brown pelicans prior to being released at the wildlife rehabilitation center.

Three cleaned brown pelicans prior to being released at the wildlife rehabilitation center. (NOAA/Ed Levine)

Even though Hurricane Isaac blew off the weather radar several weeks ago, the pollution and destruction it left behind in the Gulf of Mexico still remain. After the hurricane’s initial landfall the week of August 28, the U.S. Coast Guard received reports of 158 oil spills and 171 hazardous material targets in the affected areas in Louisiana. Some two weeks later, the numbers are down to 13 open oil discharges and 57 hazardous material targets remaining.

At this time, NOAA’s Office of Response and Restoration has five support personnel, consisting of Scientific Support Coordinators and information management specialists, on scene in the New Orleans command post assisting response operations for these cleanups. The incidents ranged from very small (several gallons) to medium (60,000 gallons) sized releases of oil and a wide variety of chemicals.

Map of locations of oil and hazardous material spills in Louisiana resulting from Hurricane Isaac, as of Sept. 17, 2012.

Map of locations of oil and hazardous material spills in Louisiana resulting from Hurricane Isaac, as of Sept. 17, 2012. Click to enlarge. (NOAA)

NOAA has been involved in assessing shorelines possibly affected by these spills, conducting aerial surveys of coastal waters, making cleanup recommendations, and performing final assessments of oiled areas that have been cleaned up. In addition, our experts have been coordinating the federal and state agencies involved, mapping data, and managing response information in databases.

NOAA's Lieutenant (junior grade) Kyle Jellison describing the location of oil spill sites to the U.S. Coast Guard Situation Unit inside the Hurricane Isaac command post in New Orleans, La.

NOAA’s Lieutenant (junior grade) Kyle Jellison describing the location of oil spill sites to the U.S. Coast Guard Situation Unit inside the Hurricane Isaac command post in New Orleans, La. (NOAA/Ed Levine)

This work is in support of the unified command, which is made up of the U.S. Coast Guard and Louisiana Oil Spill Coordinator’s Office, along with several oil and chemical facilities identified as the originators of materials spilled during the hurricane.

Additionally, OR&R is collaborating with the U.S. Fish and Wildlife Service, NOAA National Marine Fisheries Service, NOAA National Weather Service, Louisiana Office of Historic Preservation, and the Louisiana Department of Wildlife and Fisheries’ Scenic Rivers program to address impacts to natural resources and to determine when cleanups are complete. NOAA anticipates being on scene another week.


Leave a comment

Oil Spills and the Holidays, Act II: Black Friday Takes a New Meaning

In the last post, Doug Helton talked about the M/V Kuroshima spill in Alaska. The next Thanksgiving story comes to us from Ed Levine, the NOAA Scientific Support Coordinator for Connecticut to Delaware.

After a wonderful family Thanksgiving seven years ago, what we in the response business refer to as the “Usual Notification”—a call in the middle of the night during a long holiday weekend—came true. At 9:30 p.m. on November 26, 2004, the (Black) Friday after Thanksgiving, the tanker Athos I was damaged while docking at the CITGO refinery on the Delaware River and began spilling its cargo of Venezuelan crude oil. By 2:00 a.m., I was requested to go on-scene and support the Coast Guard’s response in Philadelphia.

My sons and wife were used to this scrambling to pack and run out the door. Little did we know how complicated this response would be and how long it would last!

When I arrived, prior to first light, many details were still unknown or just unfolding. We knew the ship was leaking oil, it was leaning to one side, but it was secure at anchor. At that time we didn’t know how much oil was leaking, where it was going, how far it would spread, the cause of the damage, the environmental and economic impacts it would have, or the duration of the clean up.

Athos I

Tanker Athos I anchored in the Delaware River. Credit: Ed Levine, NOAA.

At daylight, the first helicopter surveys found some oil along the Pennsylvania shoreline, but the first reports were not too alarming. But I knew it was important to get some calibrated eyes on the spill, someone with experience spotting oil from the air. It’s not as easy as it sounds to conduct an aerial survey.

After a few hours in the command post, I had a chance to fly.

During my overflight (aerial survey), it was clear that the ship was still leaking. I observed oil many miles up river and in larger concentrations than previously reported. Upon returning to the command post, I told the Captain of the Port, “we need a bigger boat!” This was a major oil spill, and we were going to be here a long time cleaning it up.

Little did I know how right I was.

Oiled Diver

Commercial diver covered in oil after a bottom survey. Credit: U.S. Coast Guard.

The ship’s crew was eventually able to transfer cargo around the tanks to stop the outflow of oil, but over 240,000 gallons of heavy crude oil were released from the ship. The cleanup took a full year until all the shorelines were signed off as clean. A nuclear power plant even shut down for over a week. Vessel traffic into the port stopped for eight days until the mysterious object that the vessel struck could be located. Hundreds of birds were oiled. Hundreds of miles of shoreline in three states had to be inspected and the oiled areas cleaned up.

Winter operations became brutal, the river eventually froze over and operations ceased for a couple months. In the early weeks of the response, a boat overturned with five people on board. Luckily for them a NOAA ship was nearby and able to rescue all of them.

Shoreline clean up

Shoreline clean up, Tinicum Island, Delaware River. Credit: Ed Levine, NOAA.

The spilled oil was nearly neutrally buoyant in the brackish waters of the Delaware Estuary, meaning the oil was just as likely to sink as it was to float, complicating cleanup operations. Eventually, the shorelines were cleaned, and damages to natural resources were assessed and restored [leaves this blog].

Because of this accident, the response community has become more prepared and new legislation was passed (President Signs Oil Spill Legislation) [leaves this blog]. It was historic at the time, and I was glad I had given a little piece to the success of the response. It’s a thought that helps me be prepared for the next “Usual Notification” I will receive, whenever it comes.


1 Comment

Is It Oil?

Photo of leaking well in Bayou Perot.

Oil slicks of varying colors around leaking oil well in Bayou Perot, LA

Crude oils can range in color, from black to red to yellow.

When most people picture oil spills, they often think of a heavy continuous coating of oil on the sea or shoreline, and that may be a fair depiction, but after a few hours or days the oil can become patchy, become mixed with water, and change in color and consistency.

Even close to the source of the spill the colors can be quite variable depending on the thickness of the oil. Check out this spill I worked on a few years ago in Louisiana. A well is leaking and spraying yellowish oil, which is caught in a floating boom. As the oil collects in the boom it gets thicker and becomes orange. The thickest oil is black.

There are a lot of phenomena that may be mistaken for oil. Algae blooms, for example, can confuse even trained observers. I took these photos a couple summers ago at a marina near Seattle. This is naturally occurring algae but it looks a lot like reddish brown oil.

Here are photos showing different kinds of oil and some photos of things commonly confused with oil. How many did you get right? Let me know. If you are interested in more information, go to http://oceanservice.noaa.gov/facts/oil-algae.html.

Image: shows 11 photos that may or may not include oil.

Guess which of these photos indicate oil. Answers above.