NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

NOAA Supporting Spill Response in the Green Canyon Oil Reserve Area of the Gulf of Mexico

Vessels skim oil from the surface of the Gulf of Mexico.

Vessels conduct skimming operations, May 14, 2016, in response to an estimated 88,200 gallons of crude oil discharged from a segment of flow line at the Glider Field approximately 90 miles south of Timbalier Island, Louisiana. As of May 15, the vessels have removed a combined total of more than 51,000 gallons of oily-water mixture since the discharge on May 12, 2016. (U.S. Coast Guard)

NOAA’s Office of Response and Restoration is supporting the U.S. Coast Guard response to an oil spill in the Green Canyon oil reserve area in the Gulf of Mexico. We are providing oil spill trajectory analysis and information on natural resources potentially at risk from the oil. The NOAA Scientific Support Coordinator has been on-scene.

The spill occurred at approximately 11:00 a.m. on May 12, 2016 when 2,100 barrels (88,200 gallons) of oil was discharged from a Shell subsea well-head flow line at the Glider Field. Since then, the source has been secured and the pipeline is no longer leaking. The U.S. Coast Guard reports that the spill happened approximately 90 miles south of Timbalier Island, Louisiana.

We are providing scientific support, including consulting with natural resource trustees and environmental compliance requirements, identifying natural resources at risk, coordinating overflight reports, modeling the spill’s trajectory, and coordinating spatial data needs, such as displaying response data in a “common operational picture.” The reported oil trajectory is in a westerly direction with no expected shoreline impact at this time.

For more details, refer to the May 15 U.S. Coast Guard press release or the May 15 Shell Gulf of Mexico Response press release.


Leave a comment

How Does NOAA Model Oil Spills?

Dark oil drifts near the populated shores of Berkeley and Emerville, California.

After the cargo ship M/V Cosco Busan struck the San Francisco-Oakland Bay Bridge in 2007, NOAA oceanographers modeled how wind, waves, tides, and weather would carry the ship’s fuel oil across San Francisco Bay. Here, dark oil drifts near the shores of Berkeley and Emerville, California, on November 9, 2007. (NOAA)

One foggy morning in 2007, a cargo ship was gliding across the gray waters of San Francisco Bay when it ran into trouble, quite literally. This ship, the M/V Cosco Busan, struck the Bay Bridge, tearing a hundred-foot-long gash in its hull and releasing 53,000 gallons of thick, sticky fuel oil into the bay.

When such an oil spill, or even the threat of a spill, happens in coastal waters, the U.S. Coast Guard asks the oceanographers at NOAA’s Office of Response and Restoration for an oil spill trajectory.

Watch as NOAA’s Ocean Service breaks down what an oil spill trajectory is in a one-minute video, giving a peek at how we model the oil’s path during a spill.

Using a specialized NOAA computer model, called GNOME, our oceanographers forecast the movement of spilled oil on the water surface. With the help of data for winds, tides, weather, and ocean currents, they model where the oil is most likely to travel and how quickly it may come ashore or threaten vulnerable coastal resources, such as endangered seabirds or a busy shipping lane.

During the Deepwater Horizon oil spill, we produced dozens of oil spill trajectory maps, starting on April 21 and ending August 23, 2010, when aerial surveys and satellite analyses eventually showed no recoverable oil in the spill area. You can download the trajectory maps from that spill.

Swirls of oil on the surface of San Francisco Bay west of the Golden Gate Bridge.

Specially trained observers fly over oil spills to gather information that is fed back into NOAA’s trajectory model to improve the next forecast of where the oil is going. (NOAA)

Learn more about how we model and respond to oil spills:

Attempting to Answer One Question Over and Over Again: Where Will the Oil Go?

“Over the duration of a typical spill, we’ll revise and reissue our forecast maps on a daily basis. These maps include our best prediction of where the oil might go and the regions of highest oil coverage, as well as what is known as a “confidence boundary.” This is a line encircling not just our best predictions for oil coverage but also a broader area on the map reflecting the full possible range in our forecasts [PDF].

Our oceanographers include this confidence boundary on the forecast maps to indicate that there is a chance that oil could be located anywhere inside its borders, depending on actual conditions for wind, weather, and currents.”

A Bird’s Eye View: Looking for Oil Spills from the Sky

“Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water … Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.”

Five Key Questions NOAA Scientists Ask During Oil Spills

“Responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.”


Leave a comment

For the First Time in Decades, Scientists Examine How Oil Spills Might Affect Baleen Whales

A North Atlantic right whale's mouth is visible at the ocean surface.

NOAA scientists and partners recently collaborated to examine how oil and dispersants might affect the function of baleen in humpback, bowhead, and right whales (pictured). Hundreds of baleen plates hang from these whales’ top jaws and allow them to filter food from the water. (Credit: Georgia Department of Natural Resources, Permit 15488)

Several days of unseasonably warm weather in late September had Gary Shigenaka starting to wonder how much longer he and his colleagues would be welcome at Ohmsett, a national oil spill research facility in New Jersey.

They were working with whale baleen, and although the gum tissue anchoring their baleen samples had been preserved with formalin, the balmy fall weather was taking a toll. As a result, things were starting to smell a little rank.

Fortunately, cooler weather rounded out that first week of experiments, and the group, of course, was invited back again. Over the course of three week-long trials in September, December, and January, they were trying to tease out the potential impacts of oil and dispersants on whale baleen.

As a marine biologist with NOAA’s Office of Response and Restoration, Shigenaka’s job is to consider how oil spills might threaten marine life and advise the U.S. Coast Guard on this issue during a spill response.

But the last time scientists had examined how oil might affect whale baleen was in a handful of studies back in the 1980s. This research took place before the 1989 Exxon Valdez and 2010 Deepwater Horizon oil spills and predated numerous advances in scientific technique, technology, and understanding.

Thanks to a recent opportunity provided by the U.S. Bureau of Safety and Environmental Enforcement, which runs the Ohmsett facility, Shigenaka and a team of scientists, engineers, and oil spill experts have been able to revisit this question in the facility’s 2.6 million gallon saltwater tank.

The diverse team that made this study possible hails not just from NOAA but also Alaska’s North Slope Borough Department of Wildlife Management (Dr. Todd Sformo), Woods Hole Oceanographic Institution (Dr. Michael Moore and Tom Lanagan), Hampden-Sydney College (Dr. Alexander Werth), and Oil Spill Response Limited (Paul Schuler). In addition, NOAA’s Marine Mammal Health and Stranding Response Program provided substantial support for the project, including funding and regulatory expertise, and was coordinated by Dr. Teri Rowles.

Getting a Mouthful

To understand why this group is focused on baleen and how an oil spill might affect this particular part of a whale, you first need to understand what baleen is and how a whale uses it. Similar to fingernails and hooves, baleen is composed of the protein keratin, along with a few calcium salts, giving it a tough but pliable character.

A hand holds a ruler next to oiled baleen hanging from a clamp next to a man.

Made of the flexible substance keratin, baleen plates have tangles of “fringe hair” that act as nets to strain marine life from mouthfuls of ocean water. This study examined how oil and dispersants might affect the performance of baleen. (NOAA)

Twelve species of whales, including humpback and bowhead, have hundreds of long plates of baleen hanging from the top jaw, lined up like the teeth on a comb, which they use to filter feed. A whale’s tongue rubs against its baleen plates, fraying their inner edges and creating tangles of “fringe hair” that act like nets to catch tiny sea creatures as the whale strains massive gulps of ocean water back out through the baleen plates.

Baleen does vary somewhat between species of whales. Some might have longer or shorter baleen plates, for example, depending on what the whale eats. Bowhead whales, which are Arctic plankton-eaters, can have plates up to 13 feet long.

This study was, at least in part, inspired by scientists wondering what would happen to a bowhead whale if a mouthful of water brought not just lunch but also crude oil from an ill-fated tanker traversing its Arctic waters.

Would oil pass through a whale’s hundreds of baleen plates and coat their mats of fringe hairs? Would that oil make it more difficult for the whale to push huge volumes of water through the oily baleen, causing the whale to use more energy as it tried? Does that result change whether the oil is freshly spilled, or weathered with age, or dispersed with chemicals? Would dispersant make it easier for oil to reach a whale’s gut?

Using more energy to get food would mean the whales then would need to eat even more food to make up for the energy difference, creating a tiring cycle that could tax these gargantuan marine mammals.

Testing this hypothesis has been the objective of Shigenaka’s team. While it might sound simple, almost nothing about the project has been straightforward.

Challenges as Big as a Whale

One of the first challenges was tackled by the engineers at Woods Hole Oceanographic Institution. They were tasked with turning the mechanical features of Ohmsett’s giant saltwater tank into, essentially, a baleen whale’s mouth.

Woods Hole fabricated a special clamp and then worked with the Ohmsett engineering staff to attach it to a corresponding mount on the mechanical bridges that move back and forth over the giant tank. The clamp gripped the sections of baleen and allowed them to be held at different angles as they moved through the water. In addition, this custom clamp had a load cell, which was connected to a computer on the bridge. As the bridge moved the clamp and baleen at different speeds and angles through the water, the team could measure change in drag on the baleen via the load cell.

With the mechanical portion set up, the Ohmsett staff released oil into the test tank on the surface of the water, and the team watched expectantly how the bridges moved the baleen through the thin oil slick. It turned out to be a pretty inefficient way to get oil on baleen. “How might a whale deal with oil on the surface of the water?” asked Shigenaka. “If it’s feeding, it might scoop up a mouthful of water and oil and run it through the baleen.” But how could they simulate that experience?

They tried using paintbrushes to apply crude oil to the baleen, but that seemed to alter the character of the baleen too much, matting down the fringe hairs. After discussions with the Ohmsett engineering staff, the research team finally settled on dipping the baleen into a pool of floating oil that was contained by a floating ring. This set-up allowed a relatively heavy amount of oil to contact baleen in the water and would help the scientists calibrate their expectations about potential impacts.

Testing the Waters

Four black plumes of dispersed oil are released underwater onto long plates of baleen moving behind the applicator.

After mixing chemical dispersant with oil, the research team released plumes of it underwater in Ohmsett’s test tank as baleen samples moved through the water behind the applicator. Researchers also tested the effects of dispersant alone on baleen function. (NOAA)

In all, Shigenaka and his teammates ran 127 different trials across this experiment. They measured the drag values for baleen in a variety of combinations: through saltwater alone, with fresh oil, with weathered oil, with dispersed oil (pre-mixed and released underwater through a custom array designed and built by Ohmsett staff), and with chemical dispersant alone. They tested during temperate weather as well as lower temperature conditions, which clearly thickened the consistency of the oil. They conducted the tests using baleen from three different species of whales: bowhead, humpback, and right whale.

Following all the required regulations and with the proper permits, the bowhead baleen was donated by subsistence whalers from Barrow, Alaska. The baleen from other species came from whales that had stranded on beaches from locations outside of Alaska.

In addition to testing the potential changes in drag on the baleen, the team of researchers used an electric razor to shave off baleen fringe hairs as samples for chemical analysis to determine whether the oil or dispersant had any effects on baleen at the molecular level. They also determined how much oil, dispersed oil, and dispersant were retained on the baleen fringe hairs after the trials.

At this point, the team is analyzing the data from the experimental trials and plans to submit the results for publication in a scientific journal. NOAA is also beginning to create a guidance document on oil and cetaceans (whales and dolphins), which will incorporate the conclusions of this research.

While the scientific community has learned a lot about the apparent effects of oil on dolphins in the wake of the 2010 Deepwater Horizon oil spill, there is very little information on large whales. The body of research on oil’s effects on baleen from the 1980s concluded that there were few and transient effects, but whether that conclusion holds up today remains to be seen.

“This is another piece of the puzzle,” said Shigenaka. “If we can distill response-relevant guidance that helps to mediate spill impacts to whales, then we will have been successful.”

Work was conducted under NOAA’s National Marine Fisheries Service Permits 17350 and 18786.


Leave a comment

How Much Oil Is on That Ship?

The massive container ship Benjamin Franklin pulls into the Port of Seattle.

The container ship Benjamin Franklin, the largest cargo ship to visit the United States, arrives in Elliott Bay at the Port of Seattle on February 29, 2016. Credit: Don Wilson/Port of Seattle

Like many people with an interest in the maritime industry, I’ve been following the story of the huge container ship Benjamin Franklin that recently visited Seattle’s port.

The news stories about it were full of superlatives. It was the largest cargo vessel to visit the United States, measuring 1,310 feet in length, or longer than the height of two Space Needles.

This massive ship can carry 18,000 shipping containers, known in the business as 20-foot equivalent units or TEUs. That is more than double the cargo of most container ships calling on the Port of Seattle. Loaded on a train (and most of them will be) those containers would stretch more than 68 miles, or the distance from Tacoma, Washington, to Everett.

Considering this ship’s massive size made me wonder how much fuel is on board. After some research, I found out: about 4.5 million gallons. That makes it just a bit bigger than my sailboat which holds only 20 gallons of fuel.

Understanding the potential volumes of oil (either as fuel or cargo) carried on ships is a major consideration in spill response planning.

All tank vessels (tankers and barges) and all non-tank vessels (freighters, cruise ships, etc.) larger than 400 gross tons have to have vessel response plans. Key metrics in those plans include listing the maximum amount of oil that could be spilled (known as the worst case discharge) and the maximum most probable discharge, which, for non-tank vessels, is generally defined as 10% of the vessel’s total fuel capacity.

What about other types of vessels? How much oil in the form of fuel or cargo do they typically carry?

Here are some approximate numbers, many of which are pulled from this Washington State Department of Ecology report [PDF]:

  • Small speedboat (12–20 feet): 6–20 gallons
  • Sailing yacht (33–45 feet) : 30–120 gallons
  • Motor yacht (40–60 feet) : 200–1,200 gallons
  • Large tanker truck: 5,000–10,000 gallons
  • Small tugboat (30–60 feet): 1,500–25,000 gallons
  • Petroleum rail car: 30,000 gallons
  • Boeing 747 airplane: 50,000–60,000 gallons
  • Ocean-going tugboat (90–150 feet): 90,000–190,000 gallons
  • Puget Sound jumbo ferry (440 feet): 130,000 gallons
  • Microsoft co-founder Paul Allen’s yacht M/V Octopus (416 feet): 224,000 gallons
  • Bulk carrier of commodities such as grain or coal (500–700 feet): 400,000–800,000 gallons
  • Large cruise ship (900–1,100 feet): 1–2 million gallons
  • Inland tank barge (200–300 feet): 400,000–1.2 million gallons
  • Panamax container ship that passes through the Panama Canal (960 feet): 1.5–2 million gallons
  • Container ship Benjamin Franklin (1,310 feet): 4.5 million gallons
  • Ocean-going tank barge (550–750 feet): 7 million–14 million gallons
  • T/V Exxon Valdez and similar large oil tankers (987 feet): 55 million gallons

Thanks to developing technologies, such “mega-vessels” as the Benjamin Franklin appear to be on the rise, a trend we’re watching along with the International Tanker Owners Pollution Federation and University of Washington.

How will these larger ships carrying more oil affect the risk of oil spills and how should NOAA prepare for these changes? Stay tuned.


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”


2 Comments

Helping a 7-year-old Oceanographer Study Oil Spills in Washington’s Waters

A young boy drops wooden yellow cards off the side of a boat into water.

Dropping the first round of drift cards off a boat in Washington’s San Juan Islands, a kindergartner kicked off his experiment to study oil spills. (Used with permission of Alek)

One spring day in 2014, a shy young boy sidled up to the booth I was standing at during an open house hosted at NOAA’s Seattle campus. His blond head just peaking over the table, this then-six-year-old, Alek, accompanied by his mom and younger sister, proceeded to ask how NOAA’s oil spill trajectory model, GNOME, works.

This was definitely not the question I was expecting from a child his age.

After he set an overflowing binder onto the table, Alek showed me the printed-out web pages describing our oil spill model and said he wanted to learn how to run the model himself. He was apparently planning a science project that would involve releasing “drift cards,” small biodegradable pieces of wood marked with identifying information, into Washington’s Salish Sea to simulate where spilled oil might travel along this heavily trafficked route for oil tankers.

Luckily, Chris Barker, one of our oceanographers who run this scientific model, was nearby and I introduced them.

But that wasn’t my last interaction with this precocious, young oceanographer-in-training. Alek later asked me to serve on his science advisory committee (something I wish my middle school science fair projects had the benefit of having). I was in the company of representatives from the University of Washington, Washington State Department of Ecology, and local environmental and marine organizations.

Over the next year or so, I would direct his occasional questions about oil spills, oceanography, and modeling to the scientists in NOAA’s Office of Response and Restoration.

Demystifying the Science of Oil Spills

A hand-drawn map of oil tankers traveling from Alaska to Washington, a thank-you note on a post-it, and a hand-written card asking for donations.

Alek did a lot of work learning about how oil tankers travel from Alaska to Washington waters and about the threat of oil spills. He even fund-raised to cover the cost of materials for his drift cards. (NOAA)

According to the Washington Department of Ecology, the waters of the Salish Sea saw more than 7,000 journeys by oil tankers traveling to and from six oil refineries along its coast in 2013. Alek’s project was focused on Rosario Strait, a narrow eastern route around Washington’s San Juan Islands in the Salish Sea. There, he would release 400 biodegradable drift cards into the marine waters, at both incoming and outgoing tides, and then track their movements over the next four months.

The scientific questions he was asking in the course of his project—such as where spilled oil would travel and how it might affect the environment—mirror the types of questions our scientists and oil spill experts ask and try to answer when we advise the U.S. Coast Guard during oil spills along the coast.

As Alek learned, multiple factors influence the path spilled oil might take on the ocean, such as the oil type, weather (especially winds), tides, currents, and the temperature and salinity of the water. He attempted to take some of these factors into account as he made his predictions about where his drift cards would end up after he released them and how they would get there.

As with other drift card studies, Alek relied on people finding and reporting his drift cards when they turned up along the coast. Each drift card was stamped with information about the study and information about how to report it.

NOAA has performed several drift card studies in areas such as Hawaii, California, and Florida. One such study took place after the December 1976 grounding of the M/V Argo Merchant near Nantucket Island, Massachusetts, and we later had some of those drift cards found as far away as Ireland and France.

A Learning Experience

A young boy in a life jacket holding a yellow wooden card and sitting on the edge of a boat.

Alek released 400 biodegradable drift cards near Washington’s San Juan Islands in the Salish Sea, at both incoming and outgoing tides, and tracked their movements to simulate an oil spill. (Used with permission of Alek)

Of course, any scientist, young or old, comes across a number of challenges and questions in the pursuit of knowledge. For Alek, that ranged from fundraising for supplies and partnering with an organization with a boat to examining tide tables to decide when and where to release the drift cards and learning how to use Google Earth to map and measure the drift cards’ paths.

Only a couple weeks after releasing them, Alek began to see reports of his drift cards turning up in the San Juan Islands and even Vancouver Island, Canada, with kayakers finding quite a few of them.

As Alek started to analyze his data, we tried to help him avoid overestimating the area of water and length of coastline potentially affected by the simulated oil spill. Once released, oil tends to spread out on the water surface and would end up in patches on the shoreline as well.

Another issue our oceanographer Amy MacFadyen pointed out to Alek was that “over time the oil is removed from the surface of the ocean (some evaporates, some is mixed into the water column, etc.). So, the sites that it took a long time for the drift cards to reach would likely see less impacts as the oil would be much more spread out and there would be less of it.”

During his project, Alek was particularly interested in examining the potential impacts of an oil spill on his favorite marine organism, the Southern Resident killer whales (orcas) that live year-round in the Salish Sea but which are endangered. He used publicly available information about their movements to estimate where the killer whales might have intersected the simulated oil (the drift cards) across the Salish Sea.

Originally, Alek had hoped to estimate how many killer whales might have died as a result of a hypothetical oil spill in this area, but determining the impacts—both deadly and otherwise—of oil on marine mammals is a complicated matter. As a result, we advised him that there is too much uncertainty and not enough data for him to venture a guess. Instead, he settled on showing the number of killer whales that might be at risk of swimming through areas of simulated oil—and hence the killer whales that could be at risk of being affected by oil.

Ocean Scientist in Training

Google Earth view of the differing paths Alek's two drift card releases traveled around Washington's San Juan Islands and Canada's Vancouver Island.

A Google Earth view of the differing paths Alek’s two drift card releases traveled around Washington’s San Juan Islands and Canada’s Vancouver Island. Red represents the paths of drift cards released on an outgoing tide and yellow, the paths of cards released on an incoming tide. (Used with permission of Alek)

“I’d like to congratulate him on a successful drift card experiment,” said MacFadyen. “His results clearly show some of the features of the ocean circulation in this region.”

In a touching note in his final report, Alek dedicated his study to several great ocean scientists and explorers who came before him, namely, Sylvia Earle, Jacques Cousteau, William Beebe, and Rachel Carson. He was also enthusiastic in his appreciation of our help: “Thank you very very much for all of your help! I love what you do at NOAA. Maybe someday I will be a NOAA scientist!”

If you’re interested in learning more about Alek’s study and his results, you can visit his website www.oilspillscience.org, where you also can view a video summary of his project.


Leave a comment

Science of Oil Spills Training: Apply for Summer 2016

Group of Coast Guard members sit and stand at a table.

These trainings help new and mid-level spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a summer Science of Oil Spills (SOS) class in Seattle, Washington, June 6-10, 2016.

Currently, we are accepting applications for three SOS classes for these locations and dates:

  • Mobile, Alabama, the week of March 28, 2016
  • Ann Arbor, Michigan, the week of May 16, 2016
  • Seattle, Washington, the week of June 6, 2016

We will accept applications for these classes as follows:

  • For the Mobile class, the application period will be open until Friday, January 22. We will notify accepted participants by email no later than Friday, February 5.
  • For the Ann Arbor class, the application period will be open until Friday, March 11. We will notify accepted participants by email no later than Friday, March 25.
  • For the Seattle class, the application period will be open until Friday, April 1. We will notify accepted participants by email no later than Friday, April 15.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.

Follow

Get every new post delivered to your Inbox.

Join 685 other followers