NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

1976: A Winter of Ship Accidents

Ship broken in two in water.

The tanker Sansinena exploded in Los Angeles harbor on Dec. 17, 1976, spilling 1.3 million gallons of heavy oil. USCG

The winter of 1976-77 was a bad time for oil spills in the United States. I was still in middle school, but I remember doing a science report on oil spills. In a short time period there were multiple major oil spills, including these:

  • The tanker Argo Merchant ran aground on Dec. 15, 1976 and later broke apart off Nantucket Island, Massachusetts, spilling 7.6 million gallons of heavy fuel oil.
  • The tanker Sansinena exploded in Los Angeles Harbor, California, on Dec. 17, 1976, spilling 1.3 million gallons of heavy oil. Nine crew were killed and 46 people were injured.
  • Christmas Eve 1976 was not all quiet, when the tanker Oswego Peace spilled 5,000 gallons of bunker fuel into New London Harbor, Connecticut.
  • The tanker Olympic Games ran aground in the Delaware River, south of Philadelphia Pennsylvania, on Dec. 27, 1976, spilling 145,000 gallons of crude.

The rash of incidents continued into the New Year.

  • On Jan. 4, 1977, the tanker Universe Leader, loaded with 21 million gallons, ran aground in the Delaware River, New Jersey. It was refloated without a spill.
  • Also on Jan. 4, 1977, the tanker Grand Zenith, loaded with 8 million gallons of oil, was lost with all hands off the coast of New England. Only a few pieces of debris and an oil slick were found.
  • On Jan. 10, 1977, the tanker Chester A. Poling broke in half and sank off Gloucester, Massachusetts. It had just discharged its cargo and was only carrying ballast, but still spilled 14,000 gallons of diesel. One crew member was killed.

The large number of tanker accidents and loss of life alarmed the public and Congress. Hearings were quickly held in the District of Columbia in January, 1977. The hearing transcripts provide an insight into shipping and pollution concerns of the time. These concerns included the risk of spills from the still-under-construction Trans-Alaska Pipeline System that would open in a few months. The hearings concluded, but the rash of spills that winter did not.

  • On Jan. 17, 1977, the tanker Irene’s Challenger, loaded with 9.6 million gallons of crude oil, broke apart and sank near Midway Island in North Pacific Ocean. Three crew were lost.
  • On Feb. 2, 1977, the tank barge Ethel H spilled 480,000 gallons of crude oil into New York Harbor.
  • On Feb. 26, 1977, the tanker Hawaiian Patriot broke apart and sank off Hawaii, spilling 31 million gallons of crude oil. All but one of the crew were rescued. This little known incident is still considered the largest tanker spill in United States waters.

This winter marks the 40th anniversary of NOAA’s spill response program — a program that began, not surprisingly, in the wake of all of these incidents. In December, the Office of Response and Restorations (OR&R) will post a series of stories on NOAA’s leading role in oil spill response.


Leave a comment

Transportation of Crude Oil Along the West Coast

Boats on water

Oil spill cleanup demonstration at Clean Pacific 2015, Vancouver B.C. Credit Pacific States/B.C. Oil Spill Task Force.

By Sarah Brace

The Pacific States/B.C. Oil Spill Task Force has updated its West Coast crude oil transport map. The map depicts the routes of crude traveling by rail, tanker vessel, pipeline and barge across the western states and British Columbia. It also captures the locations of current and proposed facilities, refineries and terminals. The rapid growth in crude by rail transport has highlighted response and preparedness gaps along the rail line.

The task force also tracks the volumes of crude transported across the region. This data is collected on an annual basis and summarized in a report available to the public. The task force continues to track the volumes of crude movement annually to assist in oil spill prevention, preparedness and response across the West Coast.

Map drawing of crude oil routes.

Map of current rail routes, interstate
pipelines and barges transporting crude across the West Coast.

Recently, the task force partnered with NOAA’s Office of Response and Restoration to incorporate its oil spill data into NOAA’s Environmental Response Management Application (ERMA), an online mapping tool that integrates both static and real-time data, such as Environmental Sensitivity Index (ESI) maps, ship locations, weather, and ocean currents, in a centralized, easy-to-use format for environmental responders and decision makers.

Since 2002, the task force has been collecting data on oil spills in Washington, Oregon, California, and Hawaii, providing information on the size of spill, location, type of material and substrate (on land or water).

The Pacific States/British Columbia Oil Spill Task Force was formed in 1988 by the governor of Washington and premier of British Columbia, after the oil barge Nestucca collided with its tug along the Washington coast. The following year, the Exxon Valdez spill in Prince William Sound led to Alaska, California, and Oregon joining the Task Force. Hawaii became a member in 2001, creating a broad coalition of western Pacific states and British Columbia, united in their efforts to prevent and respond to oil spills across the West Coast.

Sarah Brace is the Executive Coordinator of the Task Force. She leads the Task Force projects, studies and outreach activities focused on spill prevention, preparedness and response across the western States of AK, CA, HI, OR and WA and British Columbia.


Leave a comment

In Some Situations, Ships Dump Oil on Purpose

Oil on water.

Port Sulphur, La. (Nov. 29)–An aerial view of a section of the Mississippi River containing a dense amount of the Nigerian ‘sweet’ crude oil spilled by the M/V Westchester Nov. 28, 2000. USCG photo by PA1 Jeff Hall

 

We generally think of oil being accidentally spilled, but there are situations when oil might be intentionally spilled.

Historically, ships at sea have sometimes intentionally dumped some of their cargo to save the ship and perhaps prevent a complete loss. However, this is a thorny area of maritime and environmental law, made even more complex by the engineering stresses on a foundering vessel and the political dynamics underlying a decision to intentionally dump oil.

On March 18, 1973, the tanker Zoe Colocotronis ran aground on a reef 3.5 miles off the southwest coast of Puerto Rico. The master unilaterally ordered cargo from the forward tank jettisoned to help get the vessel off the reef, and 1.5 million gallons of crude oil were intentionally released. The tanker was refloated with the remaining 6.3 million-gallon cargo, but the captain was later convicted for multiple violations.

When the Argo Merchant ran aground on Nantucket Shoals in 1976, jettisoning was suggested but rejected. The vessel eventually broke apart and the entire cargo was lost. In 1996, the U.S. National Academy of Sciences developed a lengthy report, “Purposeful Jettison of Petroleum Cargo,” to clarify when such a drastic measure might be the best way to prevent a larger spill.

Aircraft in distress may also sometimes intentionally jettison fuel to reduce landing weight. Even though the dumped fuel is thought to vaporize rapidly, this technique is rare, in part because of environmental concerns.

Dumping oil at sea hasn’t always been prohibited. In fact, steamships and lifeboats were required to carry equipment to slowly release oil (generally vegetable or fish oil) at sea during storms. The lifeboats carried by the Titanic fell under British Merchant Shipping Act of 1894 that required carriage of “oil for use in stormy weather.”

The USCG regulations also used to require that lifeboats be equipped with storm oil. What? How does spilling oil help you in a lifeboat?

One of the behaviors that makes oil hard to clean up — its ability to spread rapidly into thin layers — has the effect of reducing the wave height and breaking waves. This is also why spilled oil becomes a “slick”. Oil spilled on the water absorbs energy and dampens out the surface waves making the oil appear smoother or “slicker” than the surrounding water.

Drawing of a cone-shaped container with labels.

A commercial ship’s lifeboat sea anchor. From the U.S. Coast Guard Manual for Lifeboatmen, Able Seamen, and Qualified Members of the Engine Department. “Oil, storm. One gallon of vegetable, fish, or animal oil must be provided in a suitable metal container so constructed as to permit a controlled distribution of oil on the water, and so arranged that it can be attached to the sea anchor.”

This phenomenon has been studied for a long time. The U.S. Navy produced several reports on the topic back in the 1880s, but my favorite is the research conducted by Benjamin Franklin. Everyone knows about his famous kite flying during an electrical storm, but in the 1760s, he also did some intentional oil spill experiments. On a sea voyage to Europe he noted that the greasy discharge from a nearby ship’s galley had smoothed the water, and later did studies on lakes to test his theories (these lakes were in England, not his home state of Pennsylvania). His letters were later summarized in a journal report on the “stilling of waves.” Franklin reported that “not more than a tea spoonful produced an instant calm, over a space several yards square, which spread amazingly, and extended itself gradually till it reached the lee side, making all that quarter of the pond, perhaps half an acre, as smooth as a looking glass.”

U.S and international regulations no longer require equipping life boats with storm oil. The requirement was removed in 1983, the same year the United States Coast Guard replaced open lifeboats with the requirement to carry fully and partially enclosed lifeboats.

Photo with old type from a 1774 document.

 


Leave a comment

Restoring Marsh Habitat by Sharing Assessment Techniques

Group of four people stand in a marsh.

Training participants examine a one meter square quadrant transect (rod at bottom) to illustrate how new metrics could be applied for a northeast assessment. (NOAA)

There is no one-size-fits-all approach to environmental assessments for oil spills or hazardous waste events. We must therefore custom-tailor our technical approach for each pollution incident.

We first determine whether impacts to natural resources have occurred and whether it is appropriate to proceed with a Natural Resource Damage Assessment (NRDA). We collect time-sensitive data, evaluate available research and information about the type of injury, and determine what species and habitats are likely to have been affected. If we determine that habitats, wildlife or human uses have been harmed or could experience significant impacts, we often proceed with a full damage assessment.

This type of scientific assessment is particularly challenging in a marsh environment given potential injury due to both oil persistence and toxicity. For example, a home heating oil released by the North Cape barge in 1996 caused acute injury to lobsters, clams, fish, crabs, and mussels in, and adjacent to, the marshes of southern Rhode Island. The light oil was highly toxic, but quickly dissipated, thereby causing a lot of immediate injury, but less long-term problems. By contrast, a more chronic impact was the result of persistent fuel oil released by the Barge Bouchard 120 in the salt marshes of Massachusetts in 2003. That oil saturated 100 miles of shoreline, impacting tidal marshes, mudflats, beaches, and rocky shorelines. These evolving factors are why we constantly share best practices and lessons learned among our colleagues in the northeast and nationwide.

Members of the Northeast and Spatial Data Branch of NOAA’s Office of Response and Restoration and NOAA’s Restoration Center recently met at Spermaceti Cove, Sandy Hook, New Jersey, to participate in a hands-on workshop to improve our salt marsh damage assessment techniques and data compilation.

They were building on previous findings presented at a 2015 salt marsh assessment workshop in Massachusetts, that information learned there should be shared in other locales. Of note were the variety of vegetation and native invertebrates around the coastal United States that necessitate region-specific marsh field training.

Two people standing in shallow water holding a seining net.

Scientists seining salt marsh tidal channel collecting native small fish for injury determination. (NOAA)

To address the study of natural resource damages in a mid-north Atlantic salt marsh environ, this 2016 effort included the count of flora and fauna species within a 2 meter square quadrant along a designated transect (see photo) to provide a measure of diversity and species richness.  Also they used a seine, a lift net, and minnow traps to collect fish adjacent to the marsh for species identification and to measure body size and observe possible abnormalities, both external and internal.

Additionally, NOAA scientists discussed and demonstrated current best practices to perform our work regarding health and safety, sample custody, and data management.

In an actual future marsh injury assessment, the Trustees would develop a conceptual site model for guidance in testing the hypotheses, the specific study design, and the proper site and habitat injury measures.

Ken Finkelstein and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Bay Long Oil Spill in Louisiana

Woman looking out at water with boom floating in it.

Overseeing cleanup operations on Chenier Ronquille Island. (U.S. Coast Guard)

On September 5, 2016, a marsh excavator operated by Great Lakes Dredge and Dock Company tracked over pipeline while performing restoration activities in Bay Long, a sub-estuary of Barataria Bay, discharging approximately 5,300 gallons of crude oil into the Gulf of Mexico. The pipeline was shut in and is no longer leaking. The incident occurred at an active restoration site for the Deepwater Horizon oil spill. The cause of the incident is still under investigation.

NOAA’s Office of Response and Restoration has been providing scientific support including trajectories and fate of oil, resources at risk, information on tides and currents, and technical guidance towards the response. Other roles provided by NOAA are guidance on Shoreline Cleanup and Assessment Technique (SCAT), a systematic method for surveying an affected shoreline after an oil spill, as well as data management and updates through Environmental Response Management Application (ERMA®). OR&R’s Emergency Response Division has a team of six on site.

For more information, read the September 11, 2016 news release from the U.S. Coast Guard.


2 Comments

Mallows Bay by Kayak: A Tour of Maryland’s First National Marine Sanctuary and the First in Chesapeake Bay

Parts of wooden ships visible above the water line.

Mallows Bay fleet visible on the water in Mallows Bay. (NOAA)

On the Maryland side of the Potomac River, just east of Washington D.C. and west of Chesapeake Bay, the largest shipwreck fleet in the Western Hemisphere sits partially sunken and decomposing. Following World War I, hundreds of U.S. vessels were sent to Mallows Bay to be scrapped—and to this day, the remains of dozens can still be seen in the shallow waters.

The story of the ships at Mallows Bay begins when the U.S. entered World War I. In April 1917, the country had an adequate number of warships but a shortage of transport vessels, which led President Woodrow Wilson to approve the greatest shipbuilding program in history, with an order for a thousand 300-foot wooden steamships to be built in only 18 months!

Germany would surrender on November 11, 1918.  At this time, the government had already approved funding and paid for 731 of these wooden transport vessels. Despite the war being over, the ship building continued. By September 1919, contractors had delivered 264 steamships to the government but only 195 had crossed the Atlantic Ocean. By this time, the war had ended and the U. S. had no use for the ships.

Four old vessels in water listing.

Wooden ships owned by Western Marine & Salvage tied together in 1925, likely on the Potomac or at Mallows Bay. (Library of Congress: National Photo Company Collection)

In September of 1922, 233 vessels (representing the bulk of the fleet) were sold for $750,000 to the Western Marine and Salvage Company. This was a remarkable price, considering the cost of constructing just one ship had been $1,000,000. The company towed the fleet to an authorized mooring area near Widewater, Virginia to recover the scrap metal.

Poster showing an eagle, ships, and "send the eagle's answer--more ships."

U.S. government poster from World War I time period.

As described by John H. Lienhard in The Wooden Ships of Mallows Bay (University of Houston, College of Engineering):  “By late 1919, 264 wooden steamers were in operation. Most had crossed the Atlantic, but they were slow and leaky. They’d been made obsolete by the new Diesel engines. The idea was to strip them of hardware, burn them down to the waterline, haul them off to a nearby marsh, then burn what was left. Once more it all went wrong—civic protests, problems with blocked shipping lanes, and finally the Great Depression.”

As World War II approached, the threat of war saw the price for scrap metal skyrocket. The U.S. government allocated $200,000 to Bethlehem Steel in the early 1940s to recover over 20,000 tons of iron thought to still be in the wrecks of Mallows Bay. The effort turned out to be cost ineffective. By 1943, Bethlehem Steel terminated the program with little iron recovered and over 100 ship hulks languishing in the bay. So there the vessels sat, rotting away for decades.

In March of 1993, the State of Maryland awarded a grant to a group of researchers to study the effects of these derelict vessels on the environment, and to inventory what vessels remained for historical and archaeological purposes. Over the next two years, the researchers identified 88 wooden ships left over from the original program. Researchers also discovered that the bay was used by Western Marine for more than just these wooden steamships; twelve barges were discovered, as well as a Revolutionary War-era longboat, several 18th century schooners, miscellaneous workboats, and even automobile ferries like the S.S. Accomac. The researchers also discovered that the vessels had created a unique ecosystem in the Bay that supported numerous fish and birds species.

In 2014, Mallows Bay, including the derelict vessels, was placed on the National Register of Historic Places as the Mallows Bay-Widewater Historical and Archaeological District. A community partnership committee was formed to draft the national marine sanctuary nomination when the nomination process was revitalized. The Mallows Bay nomination included support from nearly 150 organizations, agencies, and private citizens. The nomination to have the bay designated as the first National Marine Sanctuary in 20 years was announced by President Obama in 2015.

On July 19, 2016, the U.S. Coast Guard’s Sector Maryland North Capitol Region hosted a kayak tour of Mallows Bay in anticipation of its Sanctuary designation. Dr. Susan Langley, the State of Maryland’s Historical Preservation Officer, led the tour. Prior to the start of the tour, Dr. Langley provided an overview of the history of Mallows Bay and explained its unique features and ecological importance.

The primary purpose of the event was to give the U.S. Coast Guard and NOAA staff an opportunity to see firsthand how sensitive the environment is, and the risk a potential oil spill could pose to the site. For example, how and where would booms be deployed, where is there access to this site, where could a staging area be established, what would the response priorities be, and how could wildlife be protected?

Brendan Bray and Sammy (Paul) Orlando of NOAA’s Office of National Marine Sanctuaries and Frank Csulak from the Office of Response and Restoration accompanied the Coast Guard and Dr. Langley on the tour. According to Csulak, “Being able to see these derelict vessels up close and actually touch them was impressive. In addition to the vessels, we enjoyed viewing the large diversity of wildlife, including adult and juvenile American Bald Eagles, herons, egrets, hawks, osprey, turtles, snakes, fish, crabs and submerged aquatic vegetation. Who would have thought such a unique ecological area was just a few river miles downstream of the hustle and bustle of Washington, D.C.? Hopefully, there will never be an oil spill that would impact Mallows Bay, but as a result of our tour, the U.S. Coast Guard and NOAA are better prepared to respond to such an event.”

ruins of aship above the surface of the water with a kayak passing by.

NOAA’s Frank Csulak and LT David Ruhlig from USCG Sector Maryland North Capitol Region (NCR) kayak near one of the Mallows Bay vessels. (NOAA)

Frank Csulak is a NOAA Scientific Support Coordinator with the Office of Response and Restoration. Based in New Jersey, he is the primary scientific adviser to the U.S. Coast Guard for oil and chemical spill planning and response in the Mid-Atlantic region, covering New York, New Jersey, Pennsylvania, Delaware, Maryland, Virginia, West Virginia, and North Carolina.

 


2 Comments

Abandoned Vessels of Florida’s Forgotten Coast

This is a post by NOAA Scientific Support Coordinator Adam Davis of the Office of Response and Restoration.

Derelict vessel with osprey nest on top of broken mast.

Along Florida’s Forgotten Coast, a pair of osprey had built a nest on an abandoned vessel. The U.S. Coast Guard called in NOAA for assistance as they were trying to remove fuel from that boat with minimal impact to wildlife. (NOAA)

There is a stretch of the Florida Panhandle east of the more heavily developed beach destinations of Destin and Panama City that some refer to as the “Forgotten Coast.” This area has vast tracts of pine forest including large stands of longleaf pine and savanna, towering dunes and nearly undeveloped barrier islands, seemingly endless coastal marsh, and miles and miles of winding shoreline along its expansive bays and coastal rivers.

It is no coincidence that much of the area is undeveloped; reserves, wildlife refuges, and other federal and state protected lands and waters occupy a large percentage of the area.

However, this flattened landscape of wild greens and blues is occasionally punctuated by the unnatural texture of human influence of a certain type: rusting hulls, broken masts, boats half-submerged in the muddy waters. It was one of these abandoned and decaying vessels that brought me to Florida’s Forgotten Coast.

Birds-Eye View of a Problem

The U.S. Coast Guard as well as state and local agencies and organizations have been working to address potential pollution threats from a number of abandoned and derelict boats sprinkled throughout this region. Vessels like these often still have oils and other hazardous materials on board, which can leak into the surrounding waters, posing a threat to public and environmental health and safety.

Half-sunken boat surrounded by oil containment boom.

Even a small release of marine fuel in sensitive environmental areas like this can have significant negative environmental consequences. Many abandoned vessels still have fuel and other hazardous materials on board. (NOAA)

As a Scientific Support Coordinator for NOAA’s Office of Response and Restoration, I provide assistance to the Coast Guard in their pollution response efforts. This support often involves analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment.

In this case, the Coast Guard called me with an unusual complication in their efforts: A pair of osprey had taken up residence on one of these abandoned vessels. Their nest of sticks was perched atop the ship’s mast, now bent at a precarious 45 degree angle. The Coast Guard needed to know what kind of impacts might result from assessing the vessel’s pollution potential and what might be involved in potentially moving the osprey nest, or the vessel, if needed.

As a federal agency, the Coast Guard must adhere to federal statutes that protect wildlife, such as the Endangered Species Act and the Migratory Bird Treaty Act. Essentially, these statutes require the Coast Guard (or other person or organization) to consider what effect their actions might have on protected species, in this case, osprey.

This is where we Scientific Support Coordinators often can provide some assistance.  A large part of our support in this area involves coordinating with the “trustee” agencies responsible for the stewardship of the relevant natural resources.

My challenge is evaluating the scientific and technical aspects of the planned action (disturbing the chicks and their parents or possibly moving the osprey nest in order to remove the vessel), weighing possible effects of those actions against threats posed by no action, and communicating all of that in an intelligible way to trustees, stakeholders, and the agency undertaking the action in question.

Fortunately, the pollution assessment and removal in the case of the osprey-inhabited vessel proved very straightforward and the abandoned vessels project got off to a good start.

Abandoned But Not Forgotten

Aerial view of abandoned vessels with osprey nest on mast, located in Florida waterway.

NOAA’s Adam Davis helped the U.S. Coast Guard with a project spanning more than 230 miles of Florida coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. (NOAA)

Over the course of eight weeks, I was fortunate to contribute in a number of ways to this project. For example, I joined several aerial overflights of the coast from Panama City to St. Marks, Florida, and participated in numerous boat rides throughout the Apalachicola Bay watershed to identify, assess, and craft strategies for pollution removal from abandoned vessels.

Ultimately, the project spanned more than 230 miles of coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. Most of the fuel was removed from vessels located in highly sensitive and valuable habitats, such as those located along the Jackson and Brother’s Rivers.

Portions of both of these rivers are located within the Apalachicola National Estuarine Research Reserve and are designated as critical habitat for Gulf sturgeon, a federally threatened species of fish that, like salmon, migrates between rivers and the ocean.

Even a small release of marine fuel in areas like this can have significant negative environmental consequences. Impacts can be even more severe if they occur during a time when species are most vulnerable, such as when actively spawning, breeding, or nesting.  In addition, spills in these otherwise pristine, protected areas can have negative consequences for important commercial and recreational activities that rely upon the health of the ecosystem as a whole.

People on boats on a Florida coastal river.

When NOAA supports the Coast Guard with abandoned vessels work, our efforts often involve analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment. These Coast Guard boats are equipped to remove fuel from abandoned vessels. (NOAA)

While we’d like to be able to remove the entire vessels every time, which can be navigation hazards and create marine debris, funding options are often limited for abandoned vessels. However, the Oil Pollution Act of 1990 enables us to remove the hazardous materials on board and reduce that environmental threat.

I find working in the field directly alongside my Coast Guard colleagues to be invaluable. Inevitably, I come away from these experiences having learned a bit more and increased my appreciation for the uniqueness of both the people and the place. Hopefully, that makes me even better prepared to work with them in the future—and in the beautiful and remote wilds of the Forgotten Coast.

NOAA's Adam Davis, left, on a Coast Guard boat removing oil from a derelict vessel.Adam Davis serves as NOAA Scientific Support Coordinator for U.S. Coast Guard District 8 and NOAA’s Gulf of Mexico Disaster Response Center. He graduated from the University of Alabama at Birmingham before entering the United States Army where he served as a nuclear, biological, and chemical operations specialist. Upon completing his tour in the Army, Adam returned home and completed a second degree in environmental science at the University of West Florida. He comes with a strong background in federal emergency and disaster response and has worked on a wide range of contaminant and environmental issues. He considers himself very fortunate to be a part of NOAA and a resident of the Gulf Coast, where he and his family enjoy the great food, culture, and natural beauty of the coast.