NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Safe Boating and Prevention of Small Oil Spills

Marina with recreational boats. Image credit: NOAA.

Recreational boaters and other small vessel operators can help protect marine life with a few simple precautions aimed at preventing oil from getting into the water. Image credit: NOAA

What does wearing a life jacket have in common with preventing oil spills? Wearing life jackets can save people’s lives; preventing small oil spills helps protect marine life.

National Safe Boating Week is May 22-26. As part of the campaign launch, the National Safe Boating Council, in partnership with the U.S. Coast Guard, is encouraging people to wear life jackets to work on May 19. The Coast Guard estimates that over 80 percent of the lives lost to drowning could have been preventing by wearing life jackets.

In addition to protecting themselves and their passengers, recreational boaters and other small vessel operators can help protect marine life with a few simple precautions aimed at preventing oil from getting into the water.

Though each one is small in volume, oil spills from small vessels add up. In Washington State, when you multiply this volume by the thousands of fishing and recreational boats on the water, they make up the largest source of oil pollution in Puget Sound, according to Washington Sea Grant.

“Small oils spills, whether a cup, a gallon or just a few drops, add up to a huge water quality problem; it is death by a thousand tiny cuts. Over time, it all adds up,” said Aaron Barnett, boating specialist at Washington Sea Grant.

Small Spills Prevention Checklist

It’s not difficult to prevent small-vessel oil spills, Washington Sea Grant has put together a checklist for simple maintenance and fueling tips.

Vessel maintenance

  • Tighten bolts on your engine to prevent oil leaks. Bolts can shake loose with engine use.
  • Replace cracked or worn hydraulic lines and fittings before they fail. Lines can wear out from sun and heat exposure or abrasion.
  • Outfit your engine with an oil tray or drip pan. You don’t need anything fancy or expensive; a cookie sheet or paint tray will do the trick.
  • Create your own bilge sock out of oil absorbent pads to prevent oily water discharge. Here’s a helpful how-to guide from Coast Guard Auxiliary Instructor Mike Brough.

At the pump

  • Avoid overflows while refueling by knowing the capacity of your tank and leaving some room for fuel expansion.
  • Shut off your bilge pump while refueling – don’t forget to turn it back on when done.
  • Use an absorbent pad or a fuel collar to catch drips. Always keep a stash handy.

Even following these tips, accidents can still happen. When they do it’s important that boaters manage them effectively. Spills should immediately be contained and cleaned up with absorbent pads or boomed to prevent their spread. Notify the Coast Guard and your state spill response office, per federal law, and let the marina or fuel dock staff know about the incident, so they can assist.

To report an oil spill call the U.S. Coast Guard National Response Center 800-424-8802.


Leave a comment

NOAA Adding Polar Projections to Arctic ERMA Mapping Tool

Two Steller sea lions. Image credit: NOAA.

Mapping where Steller sea lions gather out of the water is one of the layers that can be added to a map in Arctic ERMA. Image credit: NOAA

The Arctic is one of the most remote regions on the planet but that may change as the sea ice continues to shrink, allowing for more ships, tourism, fishing, and possible oil exploration in the region. More activity also brings the possibility of oil spills and other environmental disasters.

NOAA’s Arctic online environmental mapping tool, called Arctic ERMA, now has polar projection base maps. The new projection maps give a less distorted view than the standard Mercator flat-map perspective. On a flat map, distances near the pole look greater than they really are.

“The polar view/projection takes the distortion into account, and thus the measurement and view are more accurate,” according to Amy Merten, chief of the Spatial Data Branch of the Office of Response and Restoration and chair of the Arctic Council’s working group on emergency prevention, preparedness, and response.

For emergency responders trying to estimate how far an oil spill may be from landfall, the new polar projections are important for preparing response plans. Additionally, the polar projections improve the ability to look at all of the Arctic countries at once, helping with international perspectives and communications, Merten added.

Acrtic ERMA’s polar projections make it easier to look at all of the countries and their respective data in a more realistic view, and in the same frame.  For example, in a Mercator map, you can move to Norway on the map but then you cannot see Barrow, Alaska and Vardo, Norway at the same time. With the new polar projections, an emergency responder can see equipment caches in both areas and compare them, as well as plan for moving equipment from one location to another with better accuracy and understanding.

There are more than 500 data layers that can be mapped in Arctic ERMA, including:

Arctic ERMA officially launched in 2009 and is one of eight regional ERMA online mapping tools. The mapping tools integrate both static and real-time data, such as ship locations, weather, and ocean currents, in a centralized, interactive map for environmental disaster response managers. NOAA and the University of New Hampshire developed ERMA with the U.S. Coast Guard, U.S. Environmental Protection Agency, and the Department of Interior. Artic ERMA’s polar projection maps were funded by the Department of the Interior’s Bureau of Safety and Environmental Enforcement.

Arctic polar projection mao. Image credit: NOAA.

Polar projection map in Arctic ERMA. The ability to choose several polar projections will improve data and mapping accuracy and will increase communications and data sharing with other Arctic nations. Image credit: NOAA


Leave a comment

Clean up spilled oil at all costs? Not always

This week, NOAA’s Office of Response and Restoration is looking at some common myths and misconceptions surrounding oil spills, chemical releases, and marine debris.

Man holding hose spraying water on oiled rocks.

Cleanup worker spraying oiled rocks with high pressure hoses following the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska. (NOAA)

The images of an oil spill—brown water, blackened beaches, wildlife slicked and sticky—can create such an emotional response that it  leads to the myth that oil is so hazardous it’s worth any and all environmental trade-offs to get it cleaned up.

The outcry to rid oil from the rocky shoreline of Prince William Sound, Alaska, after the 1989 Exxon Valdez spill led to the use of high-pressure, hot-water washing. While the technique is successful at removing stranded oil, we now know it can damage plants and animals in the treated area directly and indirectly, short-term and long-term.

Activities to clean up oiled coastal salt marshes after the 2010 Deepwater Horizon spill, like flushing with water or raking to remove oil, delayed marsh recovery and exacerbated the loss of oysters, though it was not always possible to separate effects of oiling from effects of response actions.

Lessons learned from decades of responding to oil spills have shown that a haste to clean up a spill may cause additional damage. Part of the job of National Oceanic and Atmospheric Administration emergency responders is to step back and objectively evaluate the situation.

The perception of potential environmental harm that a spill may cause may be worse than reality, making it critical for responders to communicate a science-based analysis of a spill’s possible harm with affected parties and organizations, according to Jerry Galt, physical oceanographer and pioneer in oil and chemical spill response and modeling.

Gathering accurate information on what natural resources are in the spill area and forecasting where the oil is likely to go, based on currents and weather conditions, will give a realistic picture of the situation, Galt said.

In an effort to improve spill response methods, NOAA Office of Response and Restoration is continually improving the accuracy of its trajectory models and other response tools. In addition, hundreds of emergency responders attend Science of Oil Spills and Science of Chemical Releases classes to learn the latest in spill response planning and analysis.

Spills are always a serious matter, but the coordinated efforts of multiple federal, state and local responders work to minimize the injury during the event, and then work to mitigate the effects after the spill. While images from news footage can paint a picture of huge and permanent devastation, the reality on the ground can be less dire.


Leave a comment

Restoration: The Other Part of Spill Response

This week, NOAA’s Office of Response and Restoration is looking at some common myths and misconceptions surrounding oil spills, chemical releases, and marine debris.

Grass and water at sunset with bridge in background.

From landfill to vibrant tidal marsh, the wetland restoration at Lincoln Park in Jersey City, New Jersey, was funded from multiple oil spill settlements and the American Recovery and Reinvestment Act. This project restored a significant area of coastal wetlands in New York-New Jersey harbor’s Arthur Kill ecosystem. (NOAA)

Typically, during an oil spill or chemical release, media images show emergency responders dressed in protective gear, skimming oil off the ocean’s surface or combing coastal beaches for oiled animals.

As dramatic as they are, those images can leave the impression that cleaning up after a spill is the end of the story. Often the National Oceanic and Atmospheric Administration continues working on spills years after response efforts have ended, determining how to restore the environment.

OK, it’s not really a myth we’re busting here, maybe a misconception. Let’s chat about the less visible task of long term restoration after an oil spill.

When a spill happens, there are two tasks for those who caused the spill, clean up the spilled oil or chemical released, and restore the environment.

That first responsibility, cleaning up the mess, is the subject of those media photos. It’s the immediate actions taken to scoop up the oil, clear the beaches, and rescue wildlife. It was not long after the Exxon Valdez spill that a television commercial appeared featuring a liquid dish soap used to wash birds covered in oil. That commercial has become so identified with oil spills, it’s practically the first thing that comes to mind when people start talking about oil spills.

Now, what happens when I ask you to picture long-term restoration after an oil spill? What do you see? Having a hard time picturing it? That’s because restoring the environment takes time, often years. Restoration doesn’t lend itself to immediate imagery.

It may not be the subject of a soap commercial, or be very visible to the public, but it’s the second half of the story after the emergency crews are gone.

So what does restoring the environment after a spill look like? Well it can start with scientists taking samples of an oiled fish and conclude with the construction of new wetlands. The Damage Assessment, Remediation, and Restoration Program restores natural resources injured during an oil spill, release of hazardous materials, or vessel grounding to fully compensate the public for losses.

To ensure that fish, wildlife, and critical habitats like beaches, wetlands and corals impacted by a spill are restored a specific process is followed that includes:

  • Assess the Injury: Quantify injuries to the environment, including lost recreational uses, by conducting scientific and economic studies
  • Plan the Restoration: Develop a restoration plan that identifies projects and outlines the best methods to restore the impacted environment
  • Hold Polluters Accountable: Ensure that responsible parties pay the costs of assessing injuries and restoring the environment
  • Restore the Environment: Implement projects to restore habitats and resources to the condition they would have been in had the pollution not occurred

NOAA’s job is to not only to restore the environment, but to also evaluate and restore the experience the public lost during an oil spill, like fishing or swimming at the beach. For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or, there may be fewer or no recreational fishers on a nearby pier. In order to compensate the public for these lost days of enjoying the outdoors NOAA and partners may build restoration projects that improve recreational access to waterways, install boat launches, fishing piers, and hiking trails.

During all this work, it’s important to keep the public informed and to ask for comments and ideas on how an injured area should be restored. Several restoration projects are currently open for public review and comment, read more here.


2 Comments

Zoos and Aquariums Training for Oil Spill Emergency Response

Bird covered in oil on beach.

An oiled loon on Horseneck Beach from the 2003 Bouchard Barge 120 oil spill. (NOAA)

When an oil spill occurs and photos of injured birds and other wildlife start circulating, there is often an immediate desire to want to help impacted animals.

One group that feels that desire strongly are the people who work at the nation’s accredited zoos and aquariums. For instance, during the 2010 Deepwater Horizon oil spill, the Association of Zoos and Aquariums (AZA) was one of the largest organizations to mobilize volunteers in the Gulf of Mexico. Lessons learned from the Deepwater Horizon experience, both good and bad, led the association to launch a large-scale training program to certify members in hazardous response training.

“By participating in a credentialed training program, it provides that extra expertise to our zoo and aquarium professionals that will enable AZA members to become more coordinated and more involved when future environmental disasters arise in their community and throughout the nation,” said Steve Olson, AZA’s vice president of federal relations. “AZA members are uniquely qualified to assist in an oil spill animal response and recovery. They bring a wealth of animal care experience that is unmatched. Not only do they have a passion for helping animals, they bring the practical handling, husbandry and medical experience that would make them invaluable to any response agency. “

The AZA spill response training, taught by the Alaska SeaLife Center in Seward, Alaska and the University of California Davis Oiled Wildlife Care Network, includes certification in Hazardous Waste Operations and Emergency Response established by the Occupational Safety and Health Administration with specific standards for worker safety. NOAA’s Office of Response and Restoration also recently presented information on oil spill response at one of AZA’s training sessions at the Detroit Zoo.

Moody Gardens in Galveston, Texas, is one of the AZA accredited members, which has hosted oil spill response training in the past two years.  “As one of the first trainees I feel very strongly that we have the ability, and now the training, to make a difference,” said Diane Olsen, assistant curator at Moody Gardens.

To date, the AZA training program has credentialed over 90 AZA member professionals from over 50 accredited institutions. Those zoo and aquarium professionals are located throughout the country allowing for rapid local or national deployment if a spill occurs.

 


3 Comments

Science of Oil Spills Training: Apply for Summer 2017

Two men talking shoreline in background.

Science of Oil Spills classes help new and mid-level spill responders better understand the scientific principles underlying oil’s fate, behavior, and movement, and how that relates to various aspects of cleanup. The classes also inform responders of considerations to minimize environmental harm and promote recovery during an oil spill. (NOAA)

NOAA‘s Office of Response and Restoration (OR&R), a leader in providing scientific information in response to marine pollution, has scheduled a summer Science of Oil Spills (SOS) class in Seattle, Washington, June 19-23, 2017.

OR&R will accept applications for the Seattle class until Friday, April 7, 2017. We will notify applicants regarding their application status no later than Friday, April 14, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

SOS training covers:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Little Sand Island Back in Business for Burn Testing

Black smoke coming from controlled fire on island.

Initial testing of burn pan at Joint Maritime Test Facility located in Mobile on Little Sand island, November 2015. NOAA

By NOAA Scientific Support Coordinator Adam Davis

Recently, I had the privilege of joining folks from the United States Coast Guard (USCG) Research and Development Center as well as researchers from Bureau of Safety and Environmental Enforcement (BSEE) for a portion of a test burn conducted on Little Sand Island located at the mouth of the Mobile River in Alabama. Having participated in a successful in situ—controlled burn—at the Delta Wildlife Refuge back in June of 2014 with my colleagues from NOAA’s Emergency Response Division, I was eager to learn more about what research is being conducted in the field and jumped at the opportunity to see some of this testing being performed in my backyard, so to speak.

A little background on Little Sand Island

The Joint Maritime Test Facility (JMTF) in Mobile, Alabama, is a partnership between the Coast Guard Research and Development Center and the U.S. Navy’s Naval Research Laboratories. It is the only national federal testing facility for maritime fire protection research and includes the ex-USS Shadwell. Little Sand Island also has a refurbished test tank for large-scale oil burn testing and research.

Damaged during Hurricane Katrina in 2005, the facility figured prominently in past burn research and was recently resurrected with funding from Bureau of Safety and Environmental Enforcement (BSEE). The initial series of burn testing at the facility in the late ‘90s led to many advances in burn science, including the establishment of standards on fire resistant booms. Renewed interest of in situ burning (ISB) research has resulted in part from lessons learned from the Deepwater Horizon oil spill in 2010.

In situ burning was employed extensively during the spill and many viewed its role as critical in the overall spill response. Approximately 400 safe and effective controlled burns were conducted during the Deepwater Horizon spill, removing an estimated 220,000 to 310,000 barrels (29,700 to 41,800 tons) of oil from the water. According to the Oil Budget Calculator report provided to the National Incident Command in November 2010, approximately 50,000 to 70,000 barrels were burned in one day alone.

‘You don’t need a weather man to know which way the wind blows’

But it certainly helps if you want to know which way it is going to blow tomorrow when you are planning a burn. One of the key requirements for burning at the Little Sand Island facility is to ensure that smoke from the burn does not carry over the urban western side of the river, or north over the interstate where it could obscure visibility for motorists.

When the newly refurbished facility had its first test burn in November 2015, having support from the National Weather Service in Mobile during the planning and operational phases was important in determining when conditions on the island were favorable for burning.

Another benefit of planning a burn at a test facility is that other support conducted during an actual burn can also be planned. That was exactly the approach in November as members of the USCG Gulf Strike Team used the opportunity to deploy Special Monitoring of Applied Response Technologies, air monitoring equipment, at the facility. Although not a primary objective of the testing, we were able to use the opportunity to deploy the Strike Team as part of a practical exercise. Having the opportunity to plan and deploy the equipment in a realistic field setting and assessing actual results from a burn of a known quantity of oil was very beneficial both for the Strike Team and folks from the facility.

Two men on dock with island in background.

USCG Gulf Strike Team deploying air monitoring equipment, November 2016. Little Sand Island in the background. NOAA

Latest research on the horizon

Now that the facility burn pan has had the ‘tires kicked’ so to speak and is ready for use, a number of research projects are planned and underway. USCG Research and Development is currently working with BSEE on two additional ISB research projects which will be conducted in part on Little Sand Island. The most recent testing included initial evaluation of an aggregate compound made from pine saw dust and a fatty acid binding agent. This material is designed to help burn oil in layer thickness ranges that are otherwise too thin to sustain a burn. Additional testing at the facility is scheduled for this spring. Hopefully, I will have the opportunity to join in as the testing continues.

 

 

NOAA's Adam Davis, left, on a Coast Guard boat removing oil from a derelict vessel.Adam Davis serves as NOAA Scientific Support Coordinator for U.S. Coast Guard District 8 and NOAA’s Gulf of Mexico Disaster Response Center. He graduated from the University of Alabama at Birmingham before entering the United States Army where he served as a nuclear, biological, and chemical operations specialist. Upon completing his tour in the Army, Adam returned home and completed a second degree in environmental science at the University of West Florida. He comes with a strong background in federal emergency and disaster response and has worked on a wide range of contaminant and environmental issues. He considers himself very fortunate to be a part of NOAA and a resident of the Gulf Coast, where he and his family enjoy the great food, culture, and natural beauty of the coast.