NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

High Water and Sunken Oil on the Great Mississippi

Man in orange uniform inspecting wrecked barge.

U.S. Coast Guard conducting initial damage survey of barge from the UTV Amy Frances. Credit: U.S. Coast Guard

If you can’t see spilled oil, how do you find it and clean it up?

That’s the situation emergency responders faced in two oil spills on the Mississippi River that challenged their understanding of how to approach evaluating oil spill conditions.

The first incident was Sept. 3, 2015 when two tow barges collided on the Lower Mississippi River near Columbus, Kentucky. The second was Jan. 21, 2016 when a barge towed by the UTV Amy Frances struck the Natchez Bridge on the Lower Mississippi River. The Lower Mississippi is the most traveled and commercially important portion of the river’s system.

In both instances, the U.S. Coast Guard requested assistance from the National Oceanic and Atmospheric Administration. NOAA’s Office of Response and Restoration has scientific support coordinators stationed throughout the country to respond to spill emergencies.

The two incidents also spilled slurry oil—a byproduct of the oil refining process, which is denser than water and so, sinks instead of floating on the water’s surface. Despite understanding the scientific attributes of the oil, the responders needed to know where it was and how it would react to the river’s high water conditions.

“Just because you know the physical properties doesn’t tell you it will stay in one piece or get torn to bits and scattered all over the river bottom,” said Adam Davis, NOAA scientific support coordinator in the Gulf of Mexico who responded to both spills. “What we didn’t know was how it would interact with the river bottom and whether the best practice assessment tools would work given the river conditions at the time.”

In other words, would the oil sink and go straight to the bottom as one coherent mass or, would the currents tear it into pieces and take it downstream over a larger area? Or, would the oil be rapidly buried and evade the ability to locate and recover it?

Damaged barge.

A view of the damaged barge Apex 3508, whose tug boat collided with another on Sept. 2, 2015, causing an oil spill on the Mississippi River near Columbus, Kentucky. The rest of the oil on board the barge was removed. Credit: U.S. Coast Guard

Locating sunken oil in a large, dynamic river like the Lower Mississippi can be daunting. Fortunately, In the case of the Apex 3508 barge collision in Kentucky, the response team was able to use sophisticated side scan sonar and multibeam sonar to locate the oil and map the river bottom. Additionally, a novel dredging technique using an environmental clamshell-dredging device proved effective in recovery.

By the time of the Natchez Bridge incident, the river had moved from its low water condition typical of late summer to the extreme high water associated with seasonal spring flooding. Measurements showed the river raged from 8-13 knots (9-14 miles per hour) and was discharging about 1.8 million cubic feet of water per second. The response team again used side scan and multibeam sonar, but in this instance more to understand how the high flow conditions would affect what was going on along the river bottom. The multibeam imagery showed 30-50 foot tall sand waves were moving along the river bottom at a rate of about 30 feet in about two hours.

“Given the immense amount of sediment being transported rapidly downstream as evidenced by the multibeam imagery, we immediately knew that any oil that had found its way to the bottom near mid channel had been rapidly buried by the next massive sand wave and was unlikely to be recovered any time soon,” Davis said.

When the river is moving swiftly, the safest place for a damaged barge that can’t be transported to a fixed facility is often along the riverbank. The problem with a leaking barge pushed in along a flooded riverbank is that it is hard and often dangerous to assess the leakage. This was certainly the case in the Natchez incident.

“We knew the side scan and multibeam tools simply wouldn’t work well up close to the barge, Davis said. “There was just too much interference caused by the barge and the flooded trees along the bank to be able to see what was going on.”

The typical snare drag or probing for oil would not work in the high water conditions either. The equipment would snag on debris and vegetation below the water’s surface, and operating a vessel in a flooded tree line was unsafe.

“In order to probe we needed an object that could be easily and quickly fabricated from items on-hand,” Davis said. “The right tool didn’t exist, the solution called for a little ingenuity and quick action.”

Pole with oil dripping from the end onto a white pad.

The makeshift “cotton swab” tool created to collect oil samples from the submerged trees along the flooded riverbank during the response to the Amy Frances incident. Credit: NOAA

With the barge pushed in to the bank, securely tied off, and under the control of the tow, it offered a stable and safe enough platform for the response team to take a long pole with its ends wrapped in sorbent material and probe along the shore side. The new tool looked like a giant cotton swab and proved effective in quickly confirming the presence of sunken oil along the bank.

“Often I find that people are quite surprised that oil spill response strategies can be pretty low-tech sometimes and still be effective,” Davis said. “In the ‘NCIS’ age of ‘isn’t there a high tech gadget that can just easily fix your complex and dynamic problem’? Sometimes it is hard to convey that to people.”

Despite standards for evaluating oil spills, every spill has its unique challenges that require a deep understanding of science and an ability to think creatively.


Leave a comment

Showcasing Our Partnership with Coast Guard on Instagram

Ship's upper deck with rainbow.

A NOAA research team journeyed to the icy Arctic north of Alaska in 2014 on board the USCG Cutter Healy. A rain shower through Unimak Pass in the Aleutian Islands provided a rainbow, visible from an Arctic survey boat accompanying the Healy. (Credit NOAA)

This week the National Oceanic and Atmospheric Administration Office of Response and Restoration will be taking over U.S. Coast Guard’s Instagram to showcase our long partnership.

Coming up at the end of this week, March 24, is the anniversary of Exxon Valdez – one of the largest oils spills in the nation’s history. However, our history actually goes back prior to Exxon Valdez to the grounding of the tanker Argo Merchant in 1976.

During the week, we’ll post photos of our work with the Coast Guard from our beginning to the present spotlighting our  work together in the Arctic, during hurricanes, Deepwater Horizon, and other incidents.

Head on over to USCG Instagram and view how we partner to keep the nation’s coasts and waterways safe for maritime commerce, recreational activities, and wildlife.

Read these recent articles about our partnership:

5 Ways the Coast Guard and NOAA Partner

Below Zero: Partnership between the Coast Guard and NOAA


Leave a comment

5 Ways the Coast Guard and NOAA Partner

Large ship on reef with small boat beside it.

On September 18, 2003, M/V Kent Reliant grounded at the entrance to San Juan Harbor, Puerto Rico. USCG and NOAA’s Office of Response and Restoration responded to the incident. (NOAA)

How do the Coast Guard and National Oceanic and Atmospheric Administration work together? There are many ways the two government organizations partner to keep the nation’s coasts and waterways safe for maritime commerce, recreational activities, and wildlife. Here are five:

1. It all began with surveyors and smugglers

Actually, it was an effort to suppress smuggling and collect tariffs that prompted President George Washington to create the Coast Guard Revenue Cutter Service in 1790, launching what would become the U.S. Coast Guard known today. It was President Jefferson’s approval of the surveying of the nation’s coasts in 1807 to promote “lives of our seamen, the interest of our merchants and the benefits to revenue,” that created the nation’s first science agency, which evolved into NOAA.

2. Coast Guard responds to spills; we supply the scientific support

The Coast Guard has the primary responsibility for managing oil and chemical spill clean-up activities. NOAA Office of Response and Restoration provides the science-based expertise and support needed to make informed decisions during emergency responses. Scientific Support Coordinators provide response information for each incident that spill’s characteristics, working closely with the Coast Guard’s federal On-Scene Coordinator. The scientific coordinator can offer models that forecast the movement and behavior of spilled oil, evaluation of the risk to resources, and suggest appropriate clean-up actions.

3. Coast Guard and NOAA Marine Debris Program keep waters clear for navigation

The Coast Guard sits on the Interagency Marine Debris Coordinating Committee, of which NOAA is the chair. The committee is a multi-agency body responsible for streamlining the federal government’s efforts to address marine debris. In some circumstances, the Coast Guard helps to locate reported marine debris or address larger items that are hazardous to navigation. For instance, in certain circumstances, the Coast Guard may destroy or sink a hazard to navigation at sea, as was the case with a Japanese vessel in the Gulf of Alaska in March 2011.

4. NOAA and Coast Guard train for oil spills in the Arctic

As Arctic ice contracts, shipping within and across the Arctic, oil and gas exploration, and tourism likely will increase, as will fishing, if fisheries continue migrating north to cooler waters. With more oil-powered activity in the Arctic and potentially out-of-date nautical charts, the region has an increased risk of oil spills. Although the Arctic may have “ice-free” summers, it will remain a difficult place to respond to spills, still facing conditions such as low visibility, mobilized icebergs, and extreme cold. The Office of Response and Restoration typically participates in oil spill response exercises with the Coast Guard.

5. It’s not just spills we partner on, sometimes it’s about birds

The Coast Guard as well as state and local agencies and organizations have been working to address potential pollution threats from a number of abandoned and derelict boats in the Florida. Vessels like these often still have oils and other hazardous materials on board, which can leak into the surrounding waters, posing a threat to public and environmental health and safety. In 2016, the Coast Guard called Scientific Support Coordinator Adam Davis with an unusual complication in their efforts: A pair of osprey had taken up residence on one of these abandoned vessels. The Coast Guard needed to know what kind of impacts might result from assessing the vessel’s pollution potential and what might be involved in potentially moving the osprey nest, or the vessel, if needed. Davis was able to assist in keeping the project moving forward and the vessel was eventually removed from the Florida Panhandle.


Leave a comment

Rescuing Oiled Birds, Leave it to the Experts

This week, NOAA’s Office of Response and Restoration is looking at some common myths and misconceptions surrounding oil spills, chemical releases, and marine debris.

Yellow gloved hands holding bird's head with suds.

Oiled Northern Gannet is cleaned at the Theodore Oiled Wildlife Rehabilitation Center (FWS)

By Allison O’Brien, Department of the Interior

Birds, especially those that spend most of their time on the water, are vulnerable to the effects of oiling. Oil can clog feathers and cause them to mat, separate, or lose their natural waterproofing. Birds coated with oil may not be able to fly, may get sick from accidentally ingesting oil while trying to clean their feathers, or may drown from reduced buoyancy.

Many people love birds, and it’s normal to want to help during an oil spill – especially when you’re seeing photos of impacted birds on the news – but it’s a myth that just a bit of dish soap can restore an oiled bird to health. So, before you hit the beach with your scrub brush and your handy-dandy dish soap, read these answers to some frequently asked questions on how to help oiled birds.

What should I do if I see an oiled bird? 

If there is an established oiled wildlife reporting hotline available, then please, call it as soon as possible. If not, then call your local U.S. Fish and Wildlife Office.

 The bird seemed to be in distress, wouldn’t it be faster for me and my dog to chase it down and transport it in my trunk?

No – birds are wild animals. It’s important to let a trained professional with the appropriate safety gear (think safety goggles, gloves, etc.) handle bird removal. Plus, depending on the species, a permit may be needed to touch or handle it.

I’m actually less concerned with own my safety than with helping this bird. Is there a problem with the dog chase and trunk transport method?

Picture this: You reach into your fridge for a snack and, when you pull out your arm, it’s covered in a gooey, smelly substance. The next thing you know, aliens chase you, grab you, and take you away in the trunk of their spaceship. How would you feel? Confused?  Terrified? Exactly. Please, let a trained professional handle the bird rescue.

Two people hosing a bird in a sink.

An oiled gannet being cleaned at the Theodore Oiled Wildlife Rehabilitation Center. (FWS)

I saw an oiled bird, but I think it’s dead. Is it still worth calling it in?

Yes, other animals may see that bird as an easy meal and become ill from eating it, so it’s important the oiled bird to be removed by trained workers.

It seems like it would be faster for me to just grab the dead, oiled bird and bring it in – can I do that?

No, not only is a permit needed to handle the carcass, it is considered legal evidence and needs to be handled properly, and an appropriate chain of custody needs to be maintained.

Are there ever opportunities to volunteer to help clean birds?

Yes – Under some circumstances, the response officials may issue a public service announcement to request pre-trained volunteer assistance. A bird rehabilitation center is like a hospital emergency room, so please understand that it’s critical for any volunteers to have the appropriate training.

Is it true that liquid dish soap is used to clean oiled birds?

Yes it is. Specifically, Dawn dish soap (not antibacterial) has been approved for use in cleaning oiled birds.

Allison O’Brien is the Department of the Interior’s Regional Environmental Officer for the Pacific Northwest Region, covering Oregon, Washington, and Idaho. For more information, please visit https://www.doi.gov/oepc/regional-offices/portland.  


Leave a comment

Effects of the Deepwater Horizon Oil Spill on Sea Turtles and Marine Mammals

 

Dolphins on water surface.

Studies showed dolphins were impacted by the Deepwater Horizon oil spill. (NOAA)

The 2010 Deepwater Horizon oil spill resulted in significant environmental harm over a large area of the Gulf of Mexico and adjacent shorelines, and affected numerous species including endangered and threatened sea turtles and protected marine mammals. These populations will require significant restoration efforts to offset impacts from the spill.

A special issue of Endangered Species Research published Jan. 31, 2017, features 20 scientific articles summarizing the impacts of the oil spill on marine mammals and sea turtles.

The scientific studies, conducted by National Oceanic and Atmospheric Administration authors and partners, document the unprecedented mortality rate and long-term environmental impacts of the oil’s exposure and presents a synthesis of more than five years’ worth of data collection, analysis, and interpretation. Findings from these research studies, in addition to other studies on other parts of the ecosystem, formed the basis of the natural resources damage assessment settlement with BP for up to $8.8 billion.

All of the data associated with the settlement is available publicly in the Data Integration Visualization Exploration and Reporting database, but the Endangered Species Research special issue is the first time this information on sea turtles and marine mammals has been compiled together in peer-reviewed scientific publications. Find out more about Deepwater Horizon here.

 

 


Leave a comment

10 Common Words with Uncommon Meanings in Spill Response

A ship run aground on coral reef in Puerto Rico is surrounded by protective oil boom.

A ship run aground on coral reef in Puerto Rico is surrounded by protective oil boom. Credit: U.S. Fish and Wildlife Service.

Despite an effort to use plain language, government agencies often use jargon that only makes sense to insiders. Here is list of common words that can become head-scratchers when used in the context of spill response.

Boom

Not the loud deep resonating sound described in a dictionary. In oil response booms are floating, physical barriers to oil, made of plastic, metal, or other materials, which slow the spread of oil and keep it contained. Read more on the history of booms in spill response here.

Crude

A vulgar comment? Nope. in this case the spill response definition fits more into the traditional understanding of the word, something in a raw or unrefined state. Crude oil is unrefined petroleum, usually liquid, consisting of a mixture of hydrocarbons. Crude oil may be refined into any of hundreds of components, such as commercial gasoline, kerosene, heating oils, diesel oils, lubricating oils, waxes, and asphalts. Read more on crude and other oil types here.

Hazing

Usually defined as a rigorous initiation process into an organization of some sort, in spill response hazing is about exclusion, “hazing” methods are used to keep whales out of harm’s way. Read more about hazing methods here.

Mousse

The first thing that pops into the mind when someone uses the word mousse is that silky pudding-like dessert, or a product to sculpt unruly hair. In spill response, mousse is a term to describe a water-in-oil emulsion that resembles chocolate mousse in color and texture. These emulsions are often very stable, and often have a pudding-like consistency. Typically, a mousse forms when relatively fresh oil is exposed to strong wave action. Mousse colors can range from orange or tan to dark brown. A mousse may contain up to 75 percent water, and may have a volume up to four times that of the original oil. Learn how to make an oil and water mousse here.

Pancakes

Nope, not the breakfast food. In this case pancakes refer to isolated, roughly circular patches of spilled oil ranging in size from a few feet across to hundreds of yards (or meters) in diameter. These oil patches can form tarballs sometimes found along sandy beaches. Read more on tarballs here.

Pom-poms

Similar to the equipment used by many a cheer-squad member, pom-poms in spill response are used to absorb oil for removal. Made of synthetic fibers, pom-poms are used individually or tied on long ropes and used to catch oil as it leaches from beaches and rocky areas. Strings of pom-poms are effective in collecting oil in rock or difficult to reach areas where the tide rises and falls. Read about how pom-poms were used to cleanup an oil spill here.

SOS

Save our ship? How about Science of Oil Spills. Every year the Emergency Response Division educates emergency spill responders increasing their understanding of oil spill science. Read about SOS classes here.

Slick

Typically defined as something done in a smooth way, a slick is the common term used to describe a film of oil (usually less than 2 microns thick) on the water surface. Oil spilled on water absorbs energy and dampens out surface waves, making the oil appear smoother—or slicker—than the surrounding water. Read about oil slicks and sea turtles here.

Streamer

Those paper ribbons hanging from the ceiling at a party, right? Wrong. In spill response a streamer, also called fingers or ribbons, are narrow lines of oil, mousse, or sheen on the water surface, surrounded on both sides by clean water. Streamers result from the combined effects of wind, currents, and/or natural convergence zones. Often, heavier concentrations of mousse or sheen will be present in the center of a streamer, with progressively lighter sheen along the edges. Read about techniques for cleaning up streamers in oil spills here.

Weathering

OK, in this instance, the meaning used in spill response is similar to the general definition. In oil response weathering is the physical and chemical characteristics of oil interacting with the physical and biochemical features of the habitat where a spill occurs. These factors determine how the oil will behave and ultimately what will happen to it. Read more about weathering here.

 


Leave a comment

Argo Merchant: A Woods Hole Scientist’s Personal Perspective

Large ship on the ocean.

WHOI RV Oceanus carried scientists to the 1976 Argo Merchant oil spill. Courtesy of the Image Gallery Archive of WHOI

By John W. Farrington

The scientific community at Woods Hole Oceanographic Institution (WHOI) responded to the oil spill from tanker Argo Merchant on Dec. 15, 1976, out of a sense of public responsibility to assist in minimizing adverse effects on Georges Bank and nearby coastal regions. This was driven by a heightened awareness among scientists and the general public of humankind’s abuse of the environment. The first Earth Day had occurred six years earlier in 1970.

In addition, WHOI wanted to learn more about oil spills in the marine environment. It is important to view the scientific response to this oil spill within a broad framework of other ongoing activities. The United States government, through the Department of the Interior’s Bureau of land Management (BLM), had just initiated a Baselines Study Program in the U. S. Outer Continental Shelf areas in anticipation of potential leasing, exploration and development activities, including the Georges Bank area.

Because of these activities and ongoing concerns about oil tanker and barge accidental spills, the United States Coast Guard and NOAA had developed a contingency plan for assessment responses that included other federal agencies. They also reached out widely to academic scientists and others in the region with possible experience and resources to bring to spill studies.

Several researchers at WHOI, led by Max Blumer, Howard Sanders, and John Teal, had been studying the fate and effects of two No. 2 fuel oil spills in Buzzards Bay, Massachusetts — one in 1969 and another in 1974. I joined these efforts as a postdoc in Blumer’s laboratory in 1971 after conducting research on chronic oil pollution in Narragansett Bay with my advisor, Professor James G. Quinn in the Graduate School of Oceanography (GSO) at the University of Rhode Island (URI). WHOI researchers, along with colleagues at the United States Geological Survey and National Marine Fisheries Service, had been studying the Georges Bank region for years. ERCO, a consulting company funded by the BLM, was spinning up measurements of petroleum hydrocarbons in the Georges Bank ecosystem led by Paul Boehm, a recent graduate of Professor Quinn’s laboratory.

Thus, when phone calls came in from the NOAA folks in the first days after the spill, there were meetings of the aforementioned groups, already familiar with each other’s capabilities, planning what should, and could, be done from a research response. The Coast Guard and NOAA were on the front lines of the spill, innovating frequently for unanticipated situations and keeping all research groups informed of conditions at the scene.

The WHOI vessel R/V Oceanus was on a research cruise in the nearby North Atlantic. The WHOI leadership recalled the vessel and it sailed for the area near the spill site on Monday, Dec. 20. Sedimentologist  John Milliman was the chief scientist and wrote about the cruise in 1977 in OCEANUS magazine. The mix of scientists on board (see Fig. 1) included NOAA physical oceanographer Jerry Galt. Our local Massachusetts State Representative Richard Kendall came with us, proving a valued liaison with state government.

After only a few samples were obtained, a winter storm struck and forced us back to Woods Hole early on Dec. 21. The Oceanus sailed on a second cruise Dec. 28-29, 1976 (see Fig. 2 for the list of scientists on board). Thereafter, R/V Oceanus’ sister ship, R/V Endeavor — new and just delivered to GSO-URI— took over the task for academic research cruises. In short, fortunately the wind and water circulation pushed much of the spilled oil away from nearby coastal areas and away from Georges Bank, thereby minimizing adverse effects in the region.

A debt of gratitude is owed by all to the Coast Guard and NOAA personnel responding to the Argo Merchant spill. They devoted many hours during the December 1976-January 1977 holiday season to this pioneering effort which informed future oil spill responses.

 

John W. Farrington is Dean emeritus at the Woods Hole Oceanographic Institution.

This is the sixth in a series of six stories examining the oil spill in 1976 of tanker Argo Merchant that resulted in the creation of the Office of Response and Restoration.

Typed letter authroizing research vessel to the Argo Merchant spill.

Fig. 1. Authorization letter from the Woods Hole Oceanographic Institution director for the Dec. 20, 1976 cruise to the Argo Merchant spill with the ships roster of scientists. Credit: WHOI

Fig. 2. Authorization letter from the Woods Hole Oceanographic Institution director for the Dec. 28, 1976 cruise to the Argo Merchant spill with the ships roster of scientists. Credit: WHOI

Fig. 2. Authorization letter from the Woods Hole Oceanographic Institution director for the Dec. 28, 1976 cruise to the Argo Merchant spill with the ships roster of scientists. Credit: WHOI