NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

For the First Time in Decades, Scientists Examine How Oil Spills Might Affect Baleen Whales

A North Atlantic right whale's mouth is visible at the ocean surface.

NOAA scientists and partners recently collaborated to examine how oil and dispersants might affect the function of baleen in humpback, bowhead, and right whales (pictured). Hundreds of baleen plates hang from these whales’ top jaws and allow them to filter food from the water. (Credit: Georgia Department of Natural Resources, Permit 15488)

Several days of unseasonably warm weather in late September had Gary Shigenaka starting to wonder how much longer he and his colleagues would be welcome at Ohmsett, a national oil spill research facility in New Jersey.

They were working with whale baleen, and although the gum tissue anchoring their baleen samples had been preserved with formalin, the balmy fall weather was taking a toll. As a result, things were starting to smell a little rank.

Fortunately, cooler weather rounded out that first week of experiments, and the group, of course, was invited back again. Over the course of three week-long trials in September, December, and January, they were trying to tease out the potential impacts of oil and dispersants on whale baleen.

As a marine biologist with NOAA’s Office of Response and Restoration, Shigenaka’s job is to consider how oil spills might threaten marine life and advise the U.S. Coast Guard on this issue during a spill response.

But the last time scientists had examined how oil might affect whale baleen was in a handful of studies back in the 1980s. This research took place before the 1989 Exxon Valdez and 2010 Deepwater Horizon oil spills and predated numerous advances in scientific technique, technology, and understanding.

Thanks to a recent opportunity provided by the U.S. Bureau of Safety and Environmental Enforcement, which runs the Ohmsett facility, Shigenaka and a team of scientists, engineers, and oil spill experts have been able to revisit this question in the facility’s 2.6 million gallon saltwater tank.

The diverse team that made this study possible hails not just from NOAA but also Alaska’s North Slope Borough Department of Wildlife Management (Dr. Todd Sformo), Woods Hole Oceanographic Institution (Dr. Michael Moore and Tom Lanagan), Hampden-Sydney College (Dr. Alexander Werth), and Oil Spill Response Limited (Paul Schuler). In addition, NOAA’s Marine Mammal Health and Stranding Response Program provided substantial support for the project, including funding and regulatory expertise, and was coordinated by Dr. Teri Rowles.

Getting a Mouthful

To understand why this group is focused on baleen and how an oil spill might affect this particular part of a whale, you first need to understand what baleen is and how a whale uses it. Similar to fingernails and hooves, baleen is composed of the protein keratin, along with a few calcium salts, giving it a tough but pliable character.

A hand holds a ruler next to oiled baleen hanging from a clamp next to a man.

Made of the flexible substance keratin, baleen plates have tangles of “fringe hair” that act as nets to strain marine life from mouthfuls of ocean water. This study examined how oil and dispersants might affect the performance of baleen. (NOAA)

Twelve species of whales, including humpback and bowhead, have hundreds of long plates of baleen hanging from the top jaw, lined up like the teeth on a comb, which they use to filter feed. A whale’s tongue rubs against its baleen plates, fraying their inner edges and creating tangles of “fringe hair” that act like nets to catch tiny sea creatures as the whale strains massive gulps of ocean water back out through the baleen plates.

Baleen does vary somewhat between species of whales. Some might have longer or shorter baleen plates, for example, depending on what the whale eats. Bowhead whales, which are Arctic plankton-eaters, can have plates up to 13 feet long.

This study was, at least in part, inspired by scientists wondering what would happen to a bowhead whale if a mouthful of water brought not just lunch but also crude oil from an ill-fated tanker traversing its Arctic waters.

Would oil pass through a whale’s hundreds of baleen plates and coat their mats of fringe hairs? Would that oil make it more difficult for the whale to push huge volumes of water through the oily baleen, causing the whale to use more energy as it tried? Does that result change whether the oil is freshly spilled, or weathered with age, or dispersed with chemicals? Would dispersant make it easier for oil to reach a whale’s gut?

Using more energy to get food would mean the whales then would need to eat even more food to make up for the energy difference, creating a tiring cycle that could tax these gargantuan marine mammals.

Testing this hypothesis has been the objective of Shigenaka’s team. While it might sound simple, almost nothing about the project has been straightforward.

Challenges as Big as a Whale

One of the first challenges was tackled by the engineers at Woods Hole Oceanographic Institution. They were tasked with turning the mechanical features of Ohmsett’s giant saltwater tank into, essentially, a baleen whale’s mouth.

Woods Hole fabricated a special clamp and then worked with the Ohmsett engineering staff to attach it to a corresponding mount on the mechanical bridges that move back and forth over the giant tank. The clamp gripped the sections of baleen and allowed them to be held at different angles as they moved through the water. In addition, this custom clamp had a load cell, which was connected to a computer on the bridge. As the bridge moved the clamp and baleen at different speeds and angles through the water, the team could measure change in drag on the baleen via the load cell.

With the mechanical portion set up, the Ohmsett staff released oil into the test tank on the surface of the water, and the team watched expectantly how the bridges moved the baleen through the thin oil slick. It turned out to be a pretty inefficient way to get oil on baleen. “How might a whale deal with oil on the surface of the water?” asked Shigenaka. “If it’s feeding, it might scoop up a mouthful of water and oil and run it through the baleen.” But how could they simulate that experience?

They tried using paintbrushes to apply crude oil to the baleen, but that seemed to alter the character of the baleen too much, matting down the fringe hairs. After discussions with the Ohmsett engineering staff, the research team finally settled on dipping the baleen into a pool of floating oil that was contained by a floating ring. This set-up allowed a relatively heavy amount of oil to contact baleen in the water and would help the scientists calibrate their expectations about potential impacts.

Testing the Waters

Four black plumes of dispersed oil are released underwater onto long plates of baleen moving behind the applicator.

After mixing chemical dispersant with oil, the research team released plumes of it underwater in Ohmsett’s test tank as baleen samples moved through the water behind the applicator. Researchers also tested the effects of dispersant alone on baleen function. (NOAA)

In all, Shigenaka and his teammates ran 127 different trials across this experiment. They measured the drag values for baleen in a variety of combinations: through saltwater alone, with fresh oil, with weathered oil, with dispersed oil (pre-mixed and released underwater through a custom array designed and built by Ohmsett staff), and with chemical dispersant alone. They tested during temperate weather as well as lower temperature conditions, which clearly thickened the consistency of the oil. They conducted the tests using baleen from three different species of whales: bowhead, humpback, and right whale.

Following all the required regulations and with the proper permits, the bowhead baleen was donated by subsistence whalers from Barrow, Alaska. The baleen from other species came from whales that had stranded on beaches from locations outside of Alaska.

In addition to testing the potential changes in drag on the baleen, the team of researchers used an electric razor to shave off baleen fringe hairs as samples for chemical analysis to determine whether the oil or dispersant had any effects on baleen at the molecular level. They also determined how much oil, dispersed oil, and dispersant were retained on the baleen fringe hairs after the trials.

At this point, the team is analyzing the data from the experimental trials and plans to submit the results for publication in a scientific journal. NOAA is also beginning to create a guidance document on oil and cetaceans (whales and dolphins), which will incorporate the conclusions of this research.

While the scientific community has learned a lot about the apparent effects of oil on dolphins in the wake of the 2010 Deepwater Horizon oil spill, there is very little information on large whales. The body of research on oil’s effects on baleen from the 1980s concluded that there were few and transient effects, but whether that conclusion holds up today remains to be seen.

“This is another piece of the puzzle,” said Shigenaka. “If we can distill response-relevant guidance that helps to mediate spill impacts to whales, then we will have been successful.”

Work was conducted under NOAA’s National Marine Fisheries Service Permits 17350 and 18786.


Leave a comment

How Much Oil Is on That Ship?

The massive container ship Benjamin Franklin pulls into the Port of Seattle.

The container ship Benjamin Franklin, the largest cargo ship to visit the United States, arrives in Elliott Bay at the Port of Seattle on February 29, 2016. Credit: Don Wilson/Port of Seattle

Like many people with an interest in the maritime industry, I’ve been following the story of the huge container ship Benjamin Franklin that recently visited Seattle’s port.

The news stories about it were full of superlatives. It was the largest cargo vessel to visit the United States, measuring 1,310 feet in length, or longer than the height of two Space Needles.

This massive ship can carry 18,000 shipping containers, known in the business as 20-foot equivalent units or TEUs. That is more than double the cargo of most container ships calling on the Port of Seattle. Loaded on a train (and most of them will be) those containers would stretch more than 68 miles, or the distance from Tacoma, Washington, to Everett.

Considering this ship’s massive size made me wonder how much fuel is on board. After some research, I found out: about 4.5 million gallons. That makes it just a bit bigger than my sailboat which holds only 20 gallons of fuel.

Understanding the potential volumes of oil (either as fuel or cargo) carried on ships is a major consideration in spill response planning.

All tank vessels (tankers and barges) and all non-tank vessels (freighters, cruise ships, etc.) larger than 400 gross tons have to have vessel response plans. Key metrics in those plans include listing the maximum amount of oil that could be spilled (known as the worst case discharge) and the maximum most probable discharge, which, for non-tank vessels, is generally defined as 10% of the vessel’s total fuel capacity.

What about other types of vessels? How much oil in the form of fuel or cargo do they typically carry?

Here are some approximate numbers, many of which are pulled from this Washington State Department of Ecology report [PDF]:

  • Small speedboat (12–20 feet): 6–20 gallons
  • Sailing yacht (33–45 feet) : 30–120 gallons
  • Motor yacht (40–60 feet) : 200–1,200 gallons
  • Large tanker truck: 5,000–10,000 gallons
  • Small tugboat (30–60 feet): 1,500–25,000 gallons
  • Petroleum rail car: 30,000 gallons
  • Boeing 747 airplane: 50,000–60,000 gallons
  • Ocean-going tugboat (90–150 feet): 90,000–190,000 gallons
  • Puget Sound jumbo ferry (440 feet): 130,000 gallons
  • Microsoft co-founder Paul Allen’s yacht M/V Octopus (416 feet): 224,000 gallons
  • Bulk carrier of commodities such as grain or coal (500–700 feet): 400,000–800,000 gallons
  • Large cruise ship (900–1,100 feet): 1–2 million gallons
  • Inland tank barge (200–300 feet): 400,000–1.2 million gallons
  • Panamax container ship that passes through the Panama Canal (960 feet): 1.5–2 million gallons
  • Container ship Benjamin Franklin (1,310 feet): 4.5 million gallons
  • Ocean-going tank barge (550–750 feet): 7 million–14 million gallons
  • T/V Exxon Valdez and similar large oil tankers (987 feet): 55 million gallons

Thanks to developing technologies, such “mega-vessels” as the Benjamin Franklin appear to be on the rise, a trend we’re watching along with the International Tanker Owners Pollution Federation and University of Washington.

How will these larger ships carrying more oil affect the risk of oil spills and how should NOAA prepare for these changes? Stay tuned.


8 Comments

NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate

Shoal grass seagrass on a sandy ocean floor.

Seagrass beds serve as important habitat for a variety of marine life, and understanding their growth patterns better can help fisheries management and restoration efforts. (NOAA)

Amy Uhrin was sensing a challenge ahead of her. As a NOAA scientist working on her PhD, she was studying the way seagrasses grow in different patterns along the coast, and she knew that these underwater plants don’t always create lush, unbroken lawns beneath the water’s surface.

Where she was working, off the North Carolina coast near the Outer Banks, things like the churning motion of waves and the speed of tides can cause seagrass beds to grow in patchy formations. Clusters of bigger patches of seagrass here, some clusters of smaller patches over there. Round patches here, elongated patches over there.

Uhrin wanted to be able to look at aerial images showing large swaths of seagrass habitat and measure how much was actually seagrass, rather than bare sand on the bottom of the estuary. Unfortunately, traditional methods for doing this were tedious and tended to produce rather rough estimates. These involved viewing high-resolution aerial photographs, taken from fixed-wing planes, on a computer monitor and having a person digitally draw lines around the approximate edges of seagrass beds.

While that can be fairly accurate for continuous seagrass beds, it becomes more problematic for areas with lots of small patches of seagrass included inside a single boundary. For the patchy seagrass beds Uhrin was interested in, these visual methods tended to overestimate the actual area of seagrass by 70% to more than 1,500%. There had to be a better way.

Seeing the Light

Patches of seagrass beds of different sizes visible from the air.

Due to local environmental conditions, some coastal areas are more likely to produce patchy patterns in seagrass, rather than large beds with continuous cover. (NOAA)

At the time, Uhrin was taking a class on remote sensing technology, which uses airborne—or, in the case of satellites, space-borne—sensors to gather information about the Earth’s surface (including information about oil spills). She knew that the imagery gathered from satellites (i.e. Landsat) is usually not at a fine enough resolution to view the details of the seagrass beds she was studying. Each pixel on Landsat images is 30 meters by 30 meters, while the aerial photography gathered from low-flying planes often delivered resolution of less than a meter (a little over three feet).

Uhrin wondered if she could apply to the aerial photographs some of the semi-automated classification tools from imagery visualization and analysis programs which are typically used with satellite imagery. She decided to give it a try.

First, she obtained aerial photographs taken of six sites in the shallow coastal waters of North Carolina’s Albemarle-Pamlico Estuary System. Using a GIS program, she drew boundaries (called “polygons”) around groups of seagrass patches to the best of her ability but in the usual fashion, which includes a lot of unvegetated seabed interspersed among seagrass patches.

Six aerial photographs of seagrass habitat off the North Carolina coast, with yellow boundary lines drawn around general areas of seagrass habitat.

Aerial photographs show varying patterns of seagrass growth at six study sites off the North Carolina coast. The yellow line shows the digitally drawn boundaries around seagrass and how much of that area is unvegetated for patchy seagrass habitat. (North Carolina Department of Transportation)

Next, Uhrin isolated those polygons of seagrass beds and deleted everything else in each image except the polygon. This created a smaller, easier-to-scan area for the imagery visualization program to analyze. Then, she “trained” the program to recognize what was seagrass vs. sand, based on spectral information available in the aerial photographs.

Though limited compared to what is available from satellite sensors, aerial photographs contain red, blue, and green wavelengths of light in the visible spectrum. Because plants absorb red and blue light and reflect green light (giving them their characteristic green appearance), Uhrin could train the computer program to classify as seagrass the patches where green light was reflected.

Classify in the Sky

Amy Uhrin stands in shallow water documenting data about seagrass inside a square frame of PVC pipe.

NOAA scientist Amy Uhrin found a more accurate and efficient approach to measuring how much area was actually seagrass, rather than bare sand, in aerial images of coastal North Carolina. (NOAA)

To Uhrin’s excitement, the technique worked well, allowing her to accurately identify and map smaller patches of seagrass and export those maps to another computer program where she could precisely measure the distance between patches and determine the size, number, and orientation of seagrass patches in a given area.

“This now allows you to calculate how much of the polygon is actually seagrass vegetation,” said Uhrin, “which is good for fisheries management.” The young of many commercially important species, such as blue crabs, clams, and flounder, live in seagrass beds and actively use the plants. Young scallops, for example, cling to the blades of seagrass before sliding off and burrowing into the sediment as adults.

In addition, being able to better characterize the patterns of seagrass habitat could come in handy during coastal restoration planning and assessment. Due to local environmental conditions, some areas are more likely to produce patchy patterns in seagrass. As a result, efforts to restore seagrass habitat should aim for restoring not just cover but also the original spatial arrangement of the beds.

And, as Uhrin noted, having this information can “help address seagrass resilience in future climate change scenarios and altered hurricane regimes, as patchy seagrass areas are known to be more susceptible to storms than continuous meadows.”

The results of this study, which was done in concert with a colleague at the University of Wisconsin-Madison, have been published in the journal Estuarine, Coastal and Shelf Science.


Leave a comment

Redrawing the Coast After Sandy: First Round of Updated Environmental Sensitivity Data Released for Atlantic States

Contsruction equipment moves sand to rebuild a New Jersey beach in front of houses damaged during Hurricane Sandy.

In Brick, New Jersey, construction crews rebuild the beaches in front of homes damaged by Hurricane Sandy. This huge storm actually changed the shape of shorelines up and down the East Coast. (Federal Emergency Management Agency/FEMA)

This is a post by the Office of Response and Restoration’s Jill Petersen.

In 2012 Hurricane Sandy brought devastating winds and flooding to the Atlantic coast. In some parts of New Jersey, flood waters reached nearly 9 feet. Up and down the East Coast, this massive storm actually reshaped the shoreline.

As a result, we’ve been working to update our Environmental Sensitivity Index (ESI) maps to reflect the new state of Atlantic shorelines. These maps and data give oil spill planners and responders a quick snapshot of a shoreline’s vulnerability to spilled oil.

This week, we released the digital data, for use within a Geographic Information System (GIS), for the first regions updated after Hurricane Sandy. Passed the January following Sandy, the Disaster Relief Appropriations Act of 2013 provided funds to update ESI maps for eleven Atlantic coast states, ranging from Maine to South Carolina. For this project, we grouped the states into seven regions.

The GIS data for the regions released this week cover South Carolina and portions of New York and New Jersey, including the Hudson River, south Long Island, and the New York–New Jersey metropolitan area. For these two regions, we mapped more than 300 oil-sensitive species and classified over 17,000 miles of shoreline according to their sensitivity to spilled oil.

Updated GIS data and PDF maps for the remaining regions affected by Sandy will be available in the coming months.

Time for a Change

The magnitude of the overall effort has been unprecedented, and provided us with the opportunity to revisit what was mapped and how, and to update the technology used, particularly as it relates to the map production.

Our first Environmental Sensitivity Index maps were produced in the early 1980s and, since that time, the entire U.S. coast has been mapped at least once. To be most useful, these data should be updated every 5–7 years to reflect changes in shoreline and species distributions that may occur due to a variety of things, including human intervention, climate change, or, as in this case, major coastal storms.

In addition to ranking the sensitivity of different shorelines (including wetlands and tidal flats), these data and maps also show the locations of oil-sensitive animals, plants, and habitats, along with various human features that could either be impacted by oil, such as a marina, or be useful in a spill response scenario, such as access points along a beach.

New Shores, New Features

A street sign is buried under huge piles of sand in front of a beach community.

In the wake of Sandy, we’ve been updating our Environmental Sensitivity Index maps and data and adding new features, such as storm surge inundation data. Hurricane Sandy’s flooding left significant impacts on coastal communities in eleven Atlantic states. (Federal Emergency Management Agency/FEMA)

To gather suggestions for improving our ESI maps and data, we sent out user surveys, conducted interviews, and pored over historical documentation. We evaluated all suggestions while keeping the primary users—spill planners and responders—at the forefront. In the end, several major changes were adopted, and these improvements will be included in all future ESI maps and data.

Extended coverage was one of the most requested enhancements. Previous data coverage was focused primarily on the shoreline and nearshore—perhaps 2–3 miles offshore and generally less than 1 mile inland. The post-Sandy maps and data extend 12 nautical miles offshore and 5 miles inland.

This extension enables us to include data such as deep water species and migratory routes, as well as species occurring in wetlands and human-focused features found further inland. With these extra features, we were able to incorporate additional hazards to the coastal environment. One example was the addition of storm surge inundation data, provided by NOAA’s National Hurricane Center, which provide flood levels for storms classified from Category 1 to Category 5.

We also added more jurisdictional boundaries, EPA Risk Management Facilities (the EPA-regulated facilities that pose the most significant risk to life or human health), repeated measurement sites (water quality, tide gauges, Mussel Watch sites, etc.), historic wrecks, and locations of coastal invasive species. These supplement the already comprehensive human-use features that were traditionally mapped, such as access points, fishing areas, historical sites, and managed areas.

The biological data in our maps continue to represent where species occur, along with supporting information such as concentration, seasonal variability, life stage and breeding information, and the data source. During an oil spill, knowing the data source (e.g., the U.S. Fish and Wildlife Service) is especially important so that responders can reach out for any new information that could impact their approach to the spill response.

A new feature added to the biological data tables alerts users as to why a particular species’ occurrence may warrant more attention than another, providing context such as whether the animals are roosting or migrating. As always, we make note of state and federal threatened, endangered, or listed species.

Next up

Stay tuned for the digital data and PDF maps for additional Sandy-affected regions. While the updated PDF maps will have a slightly different look and feel than prior ones, the symbology and map links will be very familiar to long-time users.

In the meantime, we had already been working on updating ESI maps for two regions outside those funded by the Disaster Relief Appropriations Act. These regions, the outer coast of Washington and Oregon and the state of Georgia, have benefited from the general improvements brought about by this process. As of this week, you can now access the latest GIS data for these regions as well.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.


Leave a comment

How Do We Use Satellite Data During Oil Spills?

This is a post by NOAA’s George Graettinger with Amy MacFadyen.

A view of the Deepwater Horizon oil spill from NASA's Terra Satellites.

A view of the Deepwater Horizon oil spill from NASA’s Terra Satellites on May 24, 2010. When oil slicks are visible in satellite images, it is because they have changed how the water reflects light, either by making the sun’s reflection brighter or by dampening the scattering of sunlight, which makes the oily area darker. (NASA)

Did you know satellites measure many properties of the Earth’s oceans from space? Remote sensing technology uses various types of sensors and cameras on satellites and aircraft to gather data about the natural world from a distance. These sensors provide information about winds, ocean currents and tides, sea surface height, and a lot more.

NOAA’s Office of Response and Restoration is taking advantage of all that data collection by collaborating with NOAA’s Satellite and Information Service to put this environmental intelligence to work during disasters such as oil spills and hurricanes. Remote sensing technology adds another tool to our toolbox as we assess and respond to the environmental impacts of these types of disasters.

In these cases, which tend to be larger or longer-term oil spills, NOAA Satellites analyzes earth and ocean data from a variety of sensors and provides us with data products such as images and maps. We’re then able to take that information from NOAA Satellites and apply it to purposes ranging from detecting oil slicks to determining how an oil spill might be impacting a species or shoreline.

Slick Technology

During an oil spill, observers trained to identify oil from the air go out in helicopters and planes to report an oil slick’s exact location, shape, size, color, and orientation at a given time. Analogous to this “remote sensing” done by the human eye, satellite sensors can help us define the extent of an oil slick on the ocean surface and create a target area where our aerial observers should start looking for oil.

In the case of a large oil spill over a sizable area such as the Gulf of Mexico, this is very important because we can’t afford the time to go out in helicopters and look everywhere or sometimes weather conditions may make it unsafe to do so.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA. (NOAA)

Satellite remote sensing typically provides the aerial footprint or outline of the surface oil (the surface oiling extent). However, oil slicks are patchy and vary in the thickness of the oil, which means having the outline of the slick is useful, but we still need our observers to give us more detailed information. That said, we’re starting to be able to use remote sensing to delineate not just the extent but also the thickest parts of the slicks.

Armed with information about where spilled oil may be thickest allows us to prioritize these areas for cleanup action. This “actionable oil” is in a condition that can be collected (via skimmers), dispersed, or burned as part of the cleanup process.

You can see how we mapped the surface oiling extent during the Deepwater Horizon spill based on data analyses from NOAA Satellites into our online response mapping program ERMA.

A Model for the Future

A common use of remotely sensed data in our work is with our oil spill models. Reports of a slick’s extent from both satellite sensors and aerial observers, who report additional information about constantly changing oil slicks, helps our oceanographers improve the forecasts of where the oil will be tomorrow.

Just as weather forecasters continually incorporate real-time observations into their models to improve accuracy, our oceanographers update oil spill trajectory models with the latest overflights and observations of the surface oiling extent (the area where oil is at a given moment). These forecasts offer critical information that the Coast Guard uses to prioritize spill response and cleanup activities.

A Sense of Impact

Oil at the water's surface in a boat wake.

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. One use was detecting the outline of oil slicks on the ocean surface. (NOAA)

Over the course of an oil spill, knowing the surface oiling extent and where that oil is going is important for identifying what natural resources are potentially in harm’s way and should be protected during the spill response.

In addition, the data analyses from remote sensing technology directly support our ability to determine how natural resources, whether salt marshes or dolphins, are exposed to spilled oil. Both where an oil slick is and how often it is there will affect the degree of potential harm suffered by sensitive species and habitats over time.

In recent years, we’ve been learning how to better use the remote sensing data collected by satellite and aircraft to look at how, where, and for how long coastal and marine life and habitats are impacted by oil spills and then relate this oil exposure to actual harm to these resources.

Large amounts of oil that stay in the same place for a long time have the potential to cause a lot more harm. For example, dolphins in a certain impacted area might breathe fumes from oil and ingest oil from food and water for weeks or months at a time. Without remotely sensed data, it would be nearly impossible to accomplish this task of tying the exact location and timing of oil exposure to environmental harm.

Remote Opportunities

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. For example, we used this technology to examine the large scale features of the circulation patterns in the Gulf of Mexico, such as the fast-moving Loop Current and associated eddies. The Loop Current is a warm ocean current that flows northward between Cuba and Mexico’s Yucatán Peninsula, moves north into the Gulf of Mexico, then loops east and south before exiting through the Florida Straits and ultimately joining the Gulf Stream.

During this oil spill, there were concerns that if the oil slick entered the Loop Current, it could be transported far beyond the Gulf to the Caribbean or up the U.S. East Coast (it did not). NOAA used information from satellite data to monitory closely the position of the slick with respect to the Loop Current throughout the Deepwater Horizon oil spill.

Our partnership with NOAA’s Satellite and Information Service has been a fruitful one, which we expect to grow even more in the future as technology develops further. In January, NOAA Satellites launched the Jason-3 satellite, which will continue to collect critical sea surface height data, adding to a satellite data record going back to 1992. One way these data will be used is in helping track the development of hurricanes, which in turn can cause oil spills.

We hope ongoing collaboration across NOAA will further prepare us for the future and whatever it holds.


3 Comments

How Do You Keep Killer Whales Away From an Oil Spill?

This is a guest post by Lynne Barre of NOAA Fisheries.

Two killer whales (orcas) breach in front a boat.

NOAA developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly to keep these endangered animals away from a spill. (NOAA)

I sleep better at night knowing that we have a plan in place to keep endangered Southern Resident killer whales away from an oil spill. Preventing oil spills is key, but since killer whales, also known as orcas, spend much of their time in the busy waters around Seattle, the San Juan Islands, and Vancouver, British Columbia, there is always a chance a spill could happen.

The Southern Residents are a small and social population of killer whales, so an oil spill could have major impacts on the entire population if they were in the wrong place at the wrong time.

We’ve learned from past experience with the 1989 Exxon Valdez oil spill that killer whales and other marine mammals don’t avoid oiled areas on their own and exposure to oil likely can affect their populations. New information on impacts from the 2010 Deepwater Horizon oil spill on bottlenose dolphins (a close relative of killer whales) gives us a better idea of how oil exposure can affect the health and reproduction of marine mammals.

Oil spills are a significant threat to the Southern Resident population, which totals less than 90 animals, and the 2008 recovery plan [PDF] calls for a response plan to protect them. We brought experts together in 2007 to help us identify tools and techniques to deter killer whales from oil and develop a response plan so that we’d be prepared in case a major oil spill does happen.

The Sound of Readiness

Killer whales are acoustic animals. They use sound to communicate with each other and find food through echolocation, a type of biosonar. Because sound is so important, using loud or annoying sounds is one way that we can try to keep the whales away from an area contaminated with oil. We brainstormed a variety of ideas based on experience with killer whales and other animals and evaluated a long list of ideas, including sounds, as well as more experimental approaches, such as underwater lights, air bubble curtains, and hoses.

After receiving lots of input and carefully evaluating each option, we developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly if the whales are headed straight toward a spill. Helicopter hazing, banging pipes (oikomi pipes), and underwater firecrackers are on the short list of options. Here’s a little more about each approach:

  • Helicopters are often available to do surveillance of oil and look for animals when a spill occurs. By moving at certain altitudes toward the whales, a helicopter creates sound and disturbs the water’s surface, which can motivate or “haze” whales to move away from oiled areas.
  • Banging pipes, called oikomi pipes, are metal pipes about eight feet long which are lowered into the water and struck with a hammer to make a loud noise. These pipes have been used to drive or herd marine mammals. For killer whales, pipes were successfully used to help move several whales that were trapped in a freshwater lake in Alaska.
  • Underwater firecrackers can also be used to deter whales. These small explosives are called “seal bombs” because they were developed and can be used to keep seals and sea lions away [PDF] from fishing gear. These small charges were used in the 1960s and 1970s to help capture killer whales for public display in aquaria. Now we are using historical knowledge of the whales’ behavior during those captures to support conservation of the whales.

In addition, our plan includes strict safety instructions about how close to get and how to implement these deterrents in order to prevent injury of oil spill responders and the whales. In the case of an actual spill, the wildlife branch within the Incident Command (the official response team dealing with the spill, usually led by the Coast Guard) would direct qualified responders to implement the different techniques based on specific information about the oil and whales.

Planning in Practice

Several killer whales break the surface of Washington's Puget Sound.

Killer whales use sound to communicate with each other and find food through echolocation. That’s why NOAA’s plan for keeping these acoustic animals away from oil spills involves using sound as a deterrent. (NOAA)

After incorporating the killer whale response plan into our overall Northwest Area Contingency Plan for oil spills, I felt better but knew we still had some work to do.

Since finalizing the plan in 2009, we’ve been focused on securing equipment, learning more about the techniques, and practicing them during oil spill drills. Working with the U.S. Coast Guard and local hydrophone networks (which record underwater sound), we’ve flown helicopters over underwater microphones to record sound levels at different distances and altitudes.

With our partners at the Washington Department of Fish and Wildlife and the Island Oil Spill Association, we built several sets of banging pipes and have them strategically staged around Puget Sound. In 2013 we conducted a drill with our partners and several researchers to test banging pipes in the San Juan Islands. It takes practice to line up several small boats, coordinate the movement of the boats, and synchronize banging a set of the pipes to create a continuous wall of sound that will discourage whales from getting close to oil. We learned a few critical lessons to update our implementation plans and to incorporate into plans for future drills.

A large oil spill in Southern Resident killer whale habitat would be a nightmare. I’m so glad we have partners focused on preventing and preparing for oil spills, and it is good to know we have a plan to keep an oil spill from becoming a catastrophe for endangered killer whales. That knowledge helps me rest easier and focus on good news like the boom in killer whale calves born to mothers in Washington’s Puget Sound.

You can find more information on our killer whale response plan and our recovery program for Southern Resident killer whales.

Lynne Barre in front of icy waters and snowy cliffs.Lynne Barre is a Branch Chief for the Protected Resources Division of NOAA Fisheries West Coast Region. She is the Recovery Coordinator for Southern Resident killer whales and works on marine mammal and endangered species conservation and recovery.


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”

Follow

Get every new post delivered to your Inbox.

Join 689 other followers