NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”


1 Comment

What Do We Know Today About Microbeads and Microplastics in the Ocean?

Plastic microbeads visible in toothpaste on a toothbrush.

Microbeads are tiny pieces of polyethylene plastic added to health and beauty products, such as some cleansers and toothpastes. They can pass through wastewater treatment processes and end up in the ocean and Great Lakes, posing a potential threat to aquatic life. (NOAA)

Almost four years ago, I was surprised to find out about the presence of plastic microbeads in cosmetic products, such as exfoliating face cleansers and some types of toothpaste.

The problem with these tiny pieces of polyethylene plastic is that once they are washed down the drain, they escape being filtered by wastewater treatment processes, allowing them to enter the ocean and Great Lakes where they could absorb toxic chemicals in the environment and be ingested by animal life.

Microbeads are actually not a recent problem; according to the United Nations Environment Programme (UNEP), plastic microbeads first appeared in personal care products about fifty years ago, with plastics increasingly replacing natural ingredients with the same purpose in these products. But even in 2012, this issue was still relatively unknown, with an abundance of products containing plastic microbeads on the market and not a lot of awareness on the part of consumers.

Microbeads, Macro-attention

For several years, the NOAA Marine Debris Program has been working with researchers that are investigating issues relating to microbeads in our marine environment. In recent years, the issue has received a fair amount of attention in the media and elsewhere.

As a result of increasing overall awareness of the problem, many companies that use microbeads in their products have been phasing them out voluntarily. On December 28, 2015, President Obama signed the Microbead-Free Waters Act of 2015 [PDF], banning plastic microbeads in cosmetics and personal care products.

The law was met with a lot of support, including from the Personal Care Products Council, an industry group who commented during the act’s approval process, which said:

“Solid, plastic microbeads are used in personal care cleansing products because of their safe and effective exfoliating properties. Research by independent scientists and nongovernmental organizations show that microbeads from all types of industrial uses are miniscule contributors to marine plastic debris; cosmetic microbeads are a tiny fraction of that. At the same time, our member companies take very seriously their role as environmental stewards of their products. As a result, companies have voluntarily committed to replace solid plastic microbeads. We look forward to this important bipartisan legislation making its way to President Obama’s desk and being signed into law.”

Under the Microscope

Tiny bits of microplastics litter a sandy patch of beach.

Microplastics, which include microbeads, are less than 5 millimeters long (roughly the size of a sesame seed). Most microplastic in the ocean actually ends up there after breaking down from bigger pieces of plastic on beaches. (NOAA)

After I originally learned about microbeads in cosmetic products, I discussed the issue with Dr. Joel Baker, Port of Tacoma Chair in Environmental Science at the University of Washington Tacoma and the Science Director of the Center for Urban Waters.

At the time, he was leading a project for the NOAA Marine Debris Program focused on detecting microplastics in the marine environment. Microplastics, which include microbeads, are minute pieces of plastic less than 5 millimeters long, or about the size of a sesame seed. More recently, he has conducted a study, “Quantification of Marine Microplastics in the Surface Waters of the Gulf of Alaska,” that examined the quantity and distribution of microplastics at specific locations in Alaskan waters over time.

Following the signing of the Microbead-Free Waters Act of 2015, I checked back in with Dr. Baker to get his thoughts on the issue now. Four years ago, he had told me, “While we don’t yet understand the impacts of microplastics to aquatic organisms, we do know that releasing persistent materials into the ocean will result in ever-increasing concentrations of marine debris.”

Speaking to him now, while Dr. Baker sees the attention given to microbeads in health and beauty products over the last few years as a good way to raise awareness about plastics in the ocean, he cautions that there still is not enough known about the damage that these extremely small particles cause. He further points out that while certainly not insignificant, they represent a very small percentage of total microplastic debris in the ocean.

We need more research to be able to measure accurately the presence of smaller microplastics, including microbeads, in the ocean. While Dr. Baker and his colleagues have developed a manual on laboratory methods for extracting microplastics from water samples, the methods do not yet detect the smallest particles such as the microbeads that exist in some health and beauty products.

Breaking Down the Issues

In addition, Dr. Baker pointed out to me that microbeads are not the largest source of marine plastic or even microplastics. “Most plastic in the ocean is from beach plastics that break down and improper disposal of trash,” he said. Cosmetic microbeads are much smaller, and are considered primary microplastics [PDF], as opposed to secondary microplastics, which are the result of larger pieces of plastic breaking down into smaller pieces.

While Dr. Baker found encouraging the news that we’ll be stopping one of the many ways plastic reaches the ocean, he emphasized there are plenty more that will require a lot of effort. He suggested that more attention needs to be paid to the abundance of plastic bags that end up in the ocean, which he feels represents a larger part of the plastic marine debris problem.

The NOAA Marine Debris Program strives to learn more about the impacts of marine microplastics. In addition to Dr. Baker’s work, the program currently is supporting microplastic research projects that include, but aren’t limited to, measuring microplastics in the marine environment; the presence of microplastics in different geographical regions, such as the coastal mid-Atlantic region and national park beaches; examining juvenile fishes to determine if they are ingesting microplastic; and the effects of microplastics in aquatic food chains.

For more information on these issues, you also can refer to a UNEP 2014 update on plastic debris in the ocean [PDF].


1 Comment

Working to Reverse the Legacy of Lead in New Jersey’s Raritan Bay

Person standing at a fenced-off beach closed to the public.

Some of the beach front at Old Bridge Waterfront Park in New Jersey’s Raritan Bay Slag Superfund site is closed to fishing, swimming, and sunbathing due to lead contamination leaching from metal slag used in the construction of a seawall and to fortify a jetty. (NOAA)

Once lined with reeds, oysters, and resort towns, New Jersey’s Raritan Bay, like many other bodies of water, today is feeling the effects of industrial transformation begun decades ago.

Around 1925, the National Lead Company became the largest lead company in the United States. The company is perhaps best known for their white-lead paints, sold under the Dutch Boy label. One of its many facilities was located in Perth Amboy, a town on the western edge of Raritan Bay, where it operated a lead smelter that generated wastes containing lead and other hazardous substances.

A Toxic Toll

Illustration of a little boy painting used in Dutch Boy paints logo.

This image was adopted by the National Lead Company in 1913 for its Dutch Boy paints. A version of it still is in use today. (New York Public Library Digital Collections/Public domain)

During the late 1960s and early 1970s, slag from National Lead’s lead smelter in Perth Amboy was used as building material to construct a seawall along the southern shoreline of Raritan Bay, several miles to the south of the facility.

Slag is a stony waste by-product of smelting or refining processes containing various metals. Slag, battery casings, and demolition debris were used to fill in some areas of a nearby marsh and littered the marsh and beaches along the bay.

In September 1972, the New Jersey Department of Environmental Protection received a tip that the slag being placed along Raritan Bay at the Laurence Harbor beachfront contained lead.

Over time, contamination from the slag and other wastes began leaching into the water, soil, and sediments of Raritan Bay, which is home to a variety of aquatic life, including flounder, clams, and horseshoe crabs, but evidence of the pollution only became available decades later.

Cleaner Futures

By 2007 the New Jersey Department of Environmental Protection had confirmed high levels of lead and other metals in soils of Old Bridge Waterfront Park on Raritan Bay’s south shore. State and local officials put up temporary fencing and warning signs and notified the public about health concerns stemming from the lead in the seawall.

The following year, New Jersey asked the U.S. Environmental Protection Agency (EPA) to consider cleaning up contaminated areas along the seawall because of the elevated levels of metals. By November 2009, the EPA confirmed the contamination and declared this polluted area in and near Old Bridge Waterfront Park a Superfund site (called Raritan Bay Slag Superfund site). They installed signs and fencing at a creek, marsh, and some beaches to restrict access and protect public health.

In May 2013 EPA selected a cleanup strategy, known as a “remedy,” to address risks to the public and environment from the pollution, and in January 2014 they ordered NL Industries, which in 1971 had changed its name from the National Lead Company, to conduct a $79 million cleanup along Raritan Bay.

Cleanup will involve digging up and dredging the slag, battery casings, associated waste, and sediment and soils where lead exceeds 400 parts per million. An EPA news release from January 2014 emphasizes the concern over lead:

“Lead is a toxic metal that is especially dangerous to children because their growing bodies can absorb more of it than adults. Lead in children can result in I.Q. deficiencies, reading and learning disabilities, reduced attention spans, hyperactivity and other behavioral disorders. The order requires the removal of lead-contaminated material and its replacement with clean material in order to reduce the risk to those who use the beach, particularly children.”

Identifying Impacts

Public health hazard sign about lead contamination on a beach and jetty.

A jetty and surrounding coastal area on Raritan Bay is contaminated with lead and other hazardous materials from slag originating at the National Lead Company’s Perth Amboy, New Jersey, facility. (NOAA)

After the Raritan Bay Slag site became a Superfund site in late 2009, NOAA’s Office of Response and Restoration worked with the EPA to determine the nature, extent, and effects of the contamination. Under a Natural Resource Damage Assessment, NOAA’s Damage Assessment, Remediation, and Restoration Program and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, have been assessing and quantifying the likely impacts to the natural resources and the public’s use of those resources that may have occurred due to the contamination along Raritan Bay.

As part of this work, we are identifying opportunities for restoration projects that will compensate for the environmental harm as well as for people’s inability to use the affected natural resources, for example, due to beach closures and restricted access to fishing.

“The south shore of Raritan Bay is an important ecological, recreational, and economic resource for the New York-New Jersey Harbor metropolitan area,” said NOAA Regional Resource Coordinator Lisa Rosman. “Cleanup and restoration are key to improving conditions and allowing public access to this valuable resource.”

Watch for future updates on progress toward restoration on Raritan Bay.


2 Comments

Helping a 7-year-old Oceanographer Study Oil Spills in Washington’s Waters

A young boy drops wooden yellow cards off the side of a boat into water.

Dropping the first round of drift cards off a boat in Washington’s San Juan Islands, a kindergartner kicked off his experiment to study oil spills. (Used with permission of Alek)

One spring day in 2014, a shy young boy sidled up to the booth I was standing at during an open house hosted at NOAA’s Seattle campus. His blond head just peaking over the table, this then-six-year-old, Alek, accompanied by his mom and younger sister, proceeded to ask how NOAA’s oil spill trajectory model, GNOME, works.

This was definitely not the question I was expecting from a child his age.

After he set an overflowing binder onto the table, Alek showed me the printed-out web pages describing our oil spill model and said he wanted to learn how to run the model himself. He was apparently planning a science project that would involve releasing “drift cards,” small biodegradable pieces of wood marked with identifying information, into Washington’s Salish Sea to simulate where spilled oil might travel along this heavily trafficked route for oil tankers.

Luckily, Chris Barker, one of our oceanographers who run this scientific model, was nearby and I introduced them.

But that wasn’t my last interaction with this precocious, young oceanographer-in-training. Alek later asked me to serve on his science advisory committee (something I wish my middle school science fair projects had the benefit of having). I was in the company of representatives from the University of Washington, Washington State Department of Ecology, and local environmental and marine organizations.

Over the next year or so, I would direct his occasional questions about oil spills, oceanography, and modeling to the scientists in NOAA’s Office of Response and Restoration.

Demystifying the Science of Oil Spills

A hand-drawn map of oil tankers traveling from Alaska to Washington, a thank-you note on a post-it, and a hand-written card asking for donations.

Alek did a lot of work learning about how oil tankers travel from Alaska to Washington waters and about the threat of oil spills. He even fund-raised to cover the cost of materials for his drift cards. (NOAA)

According to the Washington Department of Ecology, the waters of the Salish Sea saw more than 7,000 journeys by oil tankers traveling to and from six oil refineries along its coast in 2013. Alek’s project was focused on Rosario Strait, a narrow eastern route around Washington’s San Juan Islands in the Salish Sea. There, he would release 400 biodegradable drift cards into the marine waters, at both incoming and outgoing tides, and then track their movements over the next four months.

The scientific questions he was asking in the course of his project—such as where spilled oil would travel and how it might affect the environment—mirror the types of questions our scientists and oil spill experts ask and try to answer when we advise the U.S. Coast Guard during oil spills along the coast.

As Alek learned, multiple factors influence the path spilled oil might take on the ocean, such as the oil type, weather (especially winds), tides, currents, and the temperature and salinity of the water. He attempted to take some of these factors into account as he made his predictions about where his drift cards would end up after he released them and how they would get there.

As with other drift card studies, Alek relied on people finding and reporting his drift cards when they turned up along the coast. Each drift card was stamped with information about the study and information about how to report it.

NOAA has performed several drift card studies in areas such as Hawaii, California, and Florida. One such study took place after the December 1976 grounding of the M/V Argo Merchant near Nantucket Island, Massachusetts, and we later had some of those drift cards found as far away as Ireland and France.

A Learning Experience

A young boy in a life jacket holding a yellow wooden card and sitting on the edge of a boat.

Alek released 400 biodegradable drift cards near Washington’s San Juan Islands in the Salish Sea, at both incoming and outgoing tides, and tracked their movements to simulate an oil spill. (Used with permission of Alek)

Of course, any scientist, young or old, comes across a number of challenges and questions in the pursuit of knowledge. For Alek, that ranged from fundraising for supplies and partnering with an organization with a boat to examining tide tables to decide when and where to release the drift cards and learning how to use Google Earth to map and measure the drift cards’ paths.

Only a couple weeks after releasing them, Alek began to see reports of his drift cards turning up in the San Juan Islands and even Vancouver Island, Canada, with kayakers finding quite a few of them.

As Alek started to analyze his data, we tried to help him avoid overestimating the area of water and length of coastline potentially affected by the simulated oil spill. Once released, oil tends to spread out on the water surface and would end up in patches on the shoreline as well.

Another issue our oceanographer Amy MacFadyen pointed out to Alek was that “over time the oil is removed from the surface of the ocean (some evaporates, some is mixed into the water column, etc.). So, the sites that it took a long time for the drift cards to reach would likely see less impacts as the oil would be much more spread out and there would be less of it.”

During his project, Alek was particularly interested in examining the potential impacts of an oil spill on his favorite marine organism, the Southern Resident killer whales (orcas) that live year-round in the Salish Sea but which are endangered. He used publicly available information about their movements to estimate where the killer whales might have intersected the simulated oil (the drift cards) across the Salish Sea.

Originally, Alek had hoped to estimate how many killer whales might have died as a result of a hypothetical oil spill in this area, but determining the impacts—both deadly and otherwise—of oil on marine mammals is a complicated matter. As a result, we advised him that there is too much uncertainty and not enough data for him to venture a guess. Instead, he settled on showing the number of killer whales that might be at risk of swimming through areas of simulated oil—and hence the killer whales that could be at risk of being affected by oil.

Ocean Scientist in Training

Google Earth view of the differing paths Alek's two drift card releases traveled around Washington's San Juan Islands and Canada's Vancouver Island.

A Google Earth view of the differing paths Alek’s two drift card releases traveled around Washington’s San Juan Islands and Canada’s Vancouver Island. Red represents the paths of drift cards released on an outgoing tide and yellow, the paths of cards released on an incoming tide. (Used with permission of Alek)

“I’d like to congratulate him on a successful drift card experiment,” said MacFadyen. “His results clearly show some of the features of the ocean circulation in this region.”

In a touching note in his final report, Alek dedicated his study to several great ocean scientists and explorers who came before him, namely, Sylvia Earle, Jacques Cousteau, William Beebe, and Rachel Carson. He was also enthusiastic in his appreciation of our help: “Thank you very very much for all of your help! I love what you do at NOAA. Maybe someday I will be a NOAA scientist!”

If you’re interested in learning more about Alek’s study and his results, you can visit his website www.oilspillscience.org, where you also can view a video summary of his project.


Leave a comment

Science of Oil Spills Training: Apply for Summer 2016

Group of Coast Guard members sit and stand at a table.

These trainings help new and mid-level spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a summer Science of Oil Spills (SOS) class in Seattle, Washington, June 6-10, 2016.

Currently, we are accepting applications for three SOS classes for these locations and dates:

  • Mobile, Alabama, the week of March 28, 2016
  • Ann Arbor, Michigan, the week of May 16, 2016
  • Seattle, Washington, the week of June 6, 2016

We will accept applications for these classes as follows:

  • For the Mobile class, the application period will be open until Friday, January 22. We will notify accepted participants by email no later than Friday, February 5.
  • For the Ann Arbor class, the application period will be open until Friday, March 11. We will notify accepted participants by email no later than Friday, March 25.
  • For the Seattle class, the application period will be open until Friday, April 1. We will notify accepted participants by email no later than Friday, April 15.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

What’s It Like Saving Endangered Baby Sea Turtles in Costa Rica?

This is a post by the Office of Response and Restoration’s Valerie Chu.

Three newly hatched Olive Ridley sea turtles crawl across sand.

Newly hatched Olive Ridley sea turtles make their way toward the ocean. (Used with permission of Julie Watanuki)

I was standing on a sandy Costa Rican beach in the dark of night when I received a hard lesson in the challenges of saving an endangered species. It was my first night volunteering during a seven-day stint on a sea turtle conservation project with the Asociación de Voluntarios para el Servicio en Áreas Protegidas (ASVO) in Montezuma, Costa Rica.

I was charged with protecting sea turtle nests in the ASVO hatchery from poachers and hungry wildlife. On the night of my very first shift, I discovered something terrible had happened. A net covering one of the sea turtle nests had been taken off, and when I looked inside, I found the remains of eight dead baby turtles with just their heads bitten off. When I looked in the back of the hatchery, I noticed that some eggs also had been dug up and eaten.

It was heartbreaking, but furthered my resolve to protect these vulnerable turtles.

Later that night, I discovered who the culprits were—two raccoons. Throughout my shift, the two raccoons would sneak back and I would scare them away each time. Fortunately, the raccoons did not come back in the following days. I was grateful I could play a small part in giving young sea turtles a head start in a long and dangerous journey.

Thinking (and Acting) Globally

Rows of nets cover sandy sea turtle nests, surrounded by fencing.

Volunteers with ASVO place sea turtle eggs collected from Costa Rican beaches into a hatchery with nets covering the nests to protect them from poachers, predators, and other threats. The eggs hatch less than two months later. (Used with permission of Valerie Chu)

Ever since I graduated from the University of Washington in 2012, I’ve wanted to make a positive impact on the dwindling populations of endangered species around the world. I started by volunteering to help orphaned and injured wildlife at the PAWS Wildlife Center near Seattle, Washington (where I recently volunteered during a vegetable oil spill).

As I’ve worked with these animals, my desire of making a global impact on wildlife conservation has increased more and more. In December 2015, I finally got my chance to do it when I traveled to Costa Rica to volunteer with ASVO.

ASVO’s primary goal is to promote active conservation in protected areas, beaches, and rural communities of Costa Rica. They have a volunteer program in around 20 different areas of the country, staffed by some 2,300 volunteers, comprising both local and international volunteers from around the world.

Turtle Time

I was working with Olive Ridley sea turtles, a vulnerable species likely to become endangered in the foreseeable future. Their main threats to survival are direct harvest of adults and eggs, incidental capture in commercial fisheries, loss of nesting habitat, and predators.

During nesting season in Costa Rica, people with ASVO patrol the beaches for female turtles laying their eggs and then gather the eggs and place them at a hatchery. This way, the eggs are protected from poachers, predators, and other threats, both human and environmental. The eggs incubate in the hatchery for between 52 and 58 days before hatching.

Because I had arrived at the end of sea turtle nesting season, I mostly handled the hatchlings and released them into the ocean. When the newly hatched turtles had completely emerged from their nests, I would—while wearing a glove—pick up each one from its nest and head to the ocean. I would then set the turtles down on the sand and watch them walk into the ocean. Some turtles would lose their way because they would walk in the wrong direction or get swept aside by a big wave, so it was my job to make sure they found their way to the ocean without mishap.

Most of my turtle volunteer shifts were at night, and because sea turtles are very sensitive to white light, we could only use a red light while handling them. During night shifts, we were always paired with a second person, allowing us to have one person handle the hatched turtles while the other could stand guard at the hatchery (a very important job, as I observed my first night).

After releasing the turtles, I had to record the number of turtles released, the time of the release, and other notes. Each of the nests held roughly 80-100 eggs, and about 50-70 eggs would hatch, which was an incredible sight.

Don’t Stop (Thinking About What You Can Do)

This trip was an absolutely amazing experience for me. By working with these turtles, I began to fulfill my dream of making a global impact on endangered species populations. On top of that, I was able to connect with other people who care about these issues and form a deep bond over this shared experience.

In the future, I hope to continue volunteering for the conservation of imperiled species like the tiny sea turtles I encountered in Costa Rica. In 2017, I plan to travel to Thailand to work with the endangered elephant population.

But there are lots of ways to protect endangered species at home too. How do you plan to help?

Three people help wash an oiled goose in big soapy wash tubs.

Valerie Chu is an Environmental Scientist who has been providing support for the Office of Response and Restoration’s Emergency Response Division software projects since 2012, when she obtained her undergraduate degree in Environmental Science and Resource Management and then started working with NOAA and Genwest. During her spare time, she volunteers with animal welfare-related causes such as PAWS and Zazu’s House Parrot Sanctuary.


Leave a comment

Our Top 10 New Year’s Resolutions for 2016

2015 written on a sandy beach with an approaching wave.

So long, 2015. Hello, 2016!

Another year has gone by, and we’ve stayed plenty busy: responding to a leaking California pipeline, examining the issue of wrecked and abandoned ships, preparing a natural resource damage assessment and restoration plan for the Gulf of Mexico, and removing 32,201 pounds of marine debris from Hawaii’s Midway Atoll.

You can read more about what we accomplished in the last year, but keep in mind we have big goals for 2016 too. We’re aiming to:

  1. Be better models. This spring, we are planning to release an overhaul of our signature oil spill trajectory forecasting (GNOME) and oil weathering (ADIOS) models, which will be combined into one tool and available via an online interface for the first time.
  2. Tidy up. Our coasts, that is. In the next year, we will oversee marine debris removal projects in 17 states and territories, empowering groups to clean up coastal areas of everything from plastics to abandoned fishing gear.
  3. Use or lose. Nature and wildlife offer a lot of benefits to people, and we make use of them in a number of ways, ranging from recreational fishing to birdwatching to deep-seated cultural beliefs. In 2016 we’ll examine what we lose when nature and wildlife get harmed from pollution and how we calculate and make up for those losses.
  4. Get real. About plastic in the ocean, that is. We’ll be turning our eye toward the issue of plastic in the ocean, how it gets there, what its effects are, and what we can do to keep it out of the ocean.
  5. Explore more. We’ll be releasing an expanded, national version of our DIVER data management tool, which currently holds only Deepwater Horizon data for the Gulf of Mexico, allowing us and our partners to better explore and analyze ocean and coastal data from around the country.
  6. Get artistic. Through our NOAA Marine Debris Program, we are funding projects to create art from ocean trash to raise awareness of the issue and keep marine debris off our coasts and out of our ocean.
  7. Break ground on restoration. Finalizing the draft comprehensive restoration plan for the Gulf of Mexico, following the 2010 Deepwater Horizon oil spill, will bring us one step closer to breaking ground on many restoration projects over the next several years.
  8. App to it. We are working on turning CAMEO Chemicals, our popular database of hazardous chemicals, into an application (app) for mobile devices, making access to critical information about thousands of potentially dangerous chemicals easier than ever.
  9. Train up. We pride ourselves on providing top-notch training opportunities, and in 2016, we already have Science of Oil Spill classes planned in Mobile, Alabama, and Ann Arbor, Michigan (with more to come). Plus, we’ve introduced a brand-new Science of Chemical Releases class, designed to provide information and tools to better manage and plan for responses to chemical incidents.
  10. Get strategic. We are updating our five year strategic plan, aligning it with NOAA’s Ocean Service strategic priorities [PDF], which are coastal resilience (preparedness, response, and recovery), coastal intelligence, and place-based conservation.
Follow

Get every new post delivered to your Inbox.

Join 647 other followers