NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

At the Bottom of the Gulf of Mexico, Corals and Diversity Suffered After Deepwater Horizon Oil Spill

The Deepwater Horizon Oil Spill: Five Years Later

This is the second in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

Very little, if any, light from the sun successfully travels to the extreme bottom of the Gulf of Mexico. At these dark depths, the water is cold and the inescapable pressure of thousands of feet of ocean bears down on everything.

Yet life in the deep ocean is incredibly diverse. Here, delicate branches of soft coral are embraced by the curling arms of brittlestars. Slender sea fans, tinged with pink, reach for tiny morsels of food drifting down like snow from above. From minute marine worms to elongated fish, the diversity of the deep ocean is also a hallmark of its health and stability.

However, this picture of health was disrupted on April 20, 2010. Beginning that day and for almost three months after, the Macondo wellhead unleashed an unprecedented amount of oil and natural gas nearly a mile beneath the ocean. In addition, the response to this oil spill released large amounts of chemical dispersant, both at the source of the leaking oil and on the ocean surface. These actions were meant to break down oil that might have threatened life at the sea surface and on Gulf shores. Nevertheless, the implications for the ocean floor were largely unknown at the time.

In the five years since the Deepwater Horizon oil spill, a number of academic and independent scientists along with state and federal agencies, including NOAA and the Bureau of Ocean Energy Management, have been collaborating to study just how this oil spill and response affected the deep ocean and seafloor of the Gulf. What they found was the footprint of the oil spill on the seafloor, stamped on sickened deep-sea corals and out-of-balance communities of tiny marine invertebrates.

A Sickened Seafloor

A part of the world difficult to reach—and therefore difficult to know—the depths of the Gulf of Mexico required a huge collaborative and technological effort to study its inhabitants. Beginning in the fall of 2010, teams of scientists set out on multiple research cruises to collect deep-sea data, armed with specialized equipment, including remotely operated vehicles (ROVs), cameras capable of withstanding the crushing pressure of the deep ocean, and devices that could bore into the ocean bottom and scoop up multiple samples of sediments at a time.

Through these efforts, researchers have uncovered large areas of the Gulf of Mexico seafloor that contain most of the oil spill’s notable deep-sea impacts. One area in particular surrounds the damaged wellhead and stretches to the southwest, following the path of the massive underwater plume of Deepwater Horizon oil. At times, up to 650 feet thick and over a mile wide, the oil plume drifted at depths more than 3,500 feet beneath the ocean surface, leaving traces of its presence on the bottom as it went (Camilli et al. 2010).

The Macondo wellhead sits at the center of a bull’s-eye–shaped pattern of harm on the seafloor, with oil-related impacts lessening in intensity farther from the oil’s source. Further tying this pattern of injury to the Deepwater Horizon spill, a conservative chemical tracer of petroleum turned up in surface seafloor sediments extending 15 miles from the wellhead (Valentine et al. 2014).

Diversity Takes a Nose Dive

Few people ever see the bottom of the deep ocean. So what do these impacted areas actually look like? Starting several months after the leaking well was capped, researchers used ROVs and special cameras to dive down roughly 4,500 feet. They found multiple deep-sea coral colonies showing recent signs of poor health, stress, and tissue damage. On these corals, the polyps, which normally extend frilly tentacles from the corals’ branching arms, were pulled back, and excessive mucus hung from the corals’ skeletons, which also revealed patches of dead tissue. All of these symptoms have been observed in corals experimentally exposed to crude oil (White et al. 2012 PDF).

Five photos of deep-sea coral showing the progression of impacts over several years.

A time series of coral showing the progression of typical impacts at a site of coral colonies located less than seven miles from the source of Deepwater Horizon oil. You can see the brown “floc” material present in November 2010 disappears by March 2011 and afterward, is replaced by fuzzy gray hydroids and the coral loses its brittlestar companion. (Credit: Hsing et al. 2013)

Many of these coral colonies were partly or entirely coated in a clumpy brown material, which researchers referred to as “floc.” Chemical analysis of this material revealed the presence of petroleum droplets with similar chemical markers to Deepwater Horizon oil. The brittlestars usually associated with these corals also appeared in strange colors and positions. Some entire coral colonies were dead.

Research teams noted these observations only at corals within roughly 16 miles of the wellhead (White et al. 2012 PDF, Fisher et al. 2014). However, many similar coral colonies located further from the spill site showed no poor health effects.

Even one and two years later, deep-sea corals within the footprint of the spill still had not recovered. Hydroids took the place of the brown floc material on affected corals. Relatives of jellies, hydroids are fuzzy, grayish marine invertebrates that are known to encrust unhealthy coral.

Life on and under the sediment at the bottom of the Gulf also suffered, with the diversity of a wide range of marine life dropping across an area roughly three times the size of Manhattan (Montagna et al. 2013). Notably, numbers of tiny, pollution-tolerant nematodes increased in areas of moderate impact but at the expense of the number and types of other species, particularly copepods, small crustaceans at the base of the food chain. These effects were related to the concentration of oil compounds in sediments and to the distance from the Deepwater Horizon spill but not to natural oil seeps.

Top row, from left,  two types of crustaceans and a mollusk. Bottom row shows three types of marine worms known as polychaetes.

Examples of some of the common but very small marine invertebrates found living on and under the Gulf of Mexico seafloor. The top row shows, from left, two types of crustaceans and a mollusk, which are more sensitive to pollution. The bottom row shows three types of marine worms known as polychaetes, which tended to dominate ocean sediments with higher oil contamination found near corals. (Courtesy of Paul Montagna, Texas A&M University)

More sensitive to pollution, fewer types and numbers of crustaceans and mollusks were found in sediments around coral colonies showing impacts. Instead, a few types of segmented marine worms known as polychaetes tended to dominate ocean sediments with higher oil contamination near these corals (Fisher et al. 2014).

A Long Time Coming

Life on the bottom of the ocean moves slowly. Deep-sea corals live for hundreds to thousands of years, and their deaths are rare events. Some of the corals coated in oily brown floc are about 600 years old (Prouty et al. 2014). The observed impacts to life in the deep ocean are tied closely to the Deepwater Horizon oil spill, but the full extent of the harm and the eventual recovery may take years, even decades, to manifest (Fisher and Demopoulos, et al. 2014).

Learn more about the studies supported by the federal government’s Natural Resource Damage Assessment for the Deepwater Horizon oil spill, which determines the environmental harm due to the oil spill and response and seeks compensation from those responsible in order to restore the affected resources.


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


Leave a comment

How Do You Keep Invasive Species out of America’s Largest Marine Reserve?

A young monk seal and birds on the beach of French Frigate Shoals in the Northwestern Hawaiian Islands.

The coral reefs of Papahānaumokuākea Marine National Monument are the foundation of an ecosystem that hosts more than 7,000 species, including marine mammals, fishes, sea turtles, birds, and invertebrates. Many are rare, threatened, or endangered, including the endangered Hawaiian monk seal. At least one quarter are found nowhere else on Earth. (NOAA)

From Honolulu, it takes a day and a half to get there by boat. But Scott Godwin, an expert in the ways “alien” marine life can travel and take hold in new places, knows what is at risk. He understands perfectly well what might happen if a new species manages to make that journey to the remote and incredible area under his watch.

Godwin works for the Resource Protection Program in NOAA’s Office of National Marine Sanctuaries. Along with the U.S. Fish and Wildlife Service and State of Hawaii, he is charged with protecting Papahānaumokuākea Marine National Monument, a tall order considering that it is one of the largest marine conservation areas in the world. This monument includes an isolated chain of tropical islands, atolls, and reefs hundreds of miles northwest of the main Hawaiian Islands—appropriately known as the Northwestern Hawaiian Islands—as well as nearly 140,000 square miles of surrounding waters. The monument is home to a host of rare and unique species, some found exclusively within its borders, as well as some of the healthiest and least disturbed coral reefs on Earth.

Map of main and Northwestern Hawaiian Islands

Papahānaumokuākea Marine National Monument is the single largest fully protected conservation area under the U.S. flag, and one of the largest marine conservation areas in the world. It encompasses 139,797 square miles of the Pacific Ocean — an area larger than all the country’s national parks combined. (NOAA)

And it is Godwin’s job to keep it that way. Along with climate change and marine debris, invasive species have been identified as one of the top three threats to this very special place, which, in addition to being a national monument, is also a national wildlife refuge and United Nations World Heritage Site. Fortunately, invasive species also happen to be Godwin’s area of expertise.

If new species were to break into the monument’s borders—and in some cases, they already have—the risk is of them exhibiting “invasive” behavior. In other words, outcompeting the native marine life among the coral reefs and taking the lion’s share of the most valuable resources: food and space.

But considering how remote and expansive the area is—the Northwestern Hawaiian Islands stretch across 1,200 nautical miles and are closed to the general public—how would anything find its way there in the first place?

Yet help from humans is how many species arrive in new environments, including the main Hawaiian Islands, where more than 400 non-native marine species are established. That means ships and other human activity coming from Hawaii represent the greatest potential for bringing invasive species into the monument.

Packing List: Bleach, Deep Freezer, and Quarantine Clothes

Dianna Parker of the NOAA Marine Debris Program learned this lesson firsthand. In October 2014, she and colleague Kyle Koyanagi joined a team of NOAA divers from the Pacific Islands Fisheries Science Center (PIFSC) on a mission to Papahānaumokuākea Marine National Monument to remove the tons of old fishing nets that wash up on its coral reefs each year.

In the months leading up to her departure from Honolulu, Parker learned she would need something called “quarantine clothes.” In essence, they were a brand-new set of clothes set aside for each time she would step on dry land in the Northwestern Hawaiian Islands. Furthermore, these new clothes had to be sealed in plastic bags and stored in a walk-in freezer for 48 hours before she could wear them. That made for a chilly start to the day, as Parker recalled.

The quarantine clothes were part of a U.S. Fish and Wildlife Service protocol for limiting both the introduction of foreign species into the monument and the spread of species between islands within it. “Something that’s native to one tiny island could be alien to the next one down the chain,” said Parker. The transmission could happen via a spore on your shoe or a seed stuck to your shirt.

In addition, all of the gear and equipment they were using, such as wet suits, fins, and life vests, had to be soaked in a dilute bleach solution before being used in a new location, a protocol developed by NOAA.

For the roughly month-long mission, Parker brought six full outfits to wear on the six islands the ship planned to visit. In the end, she only visited five islands and was able to turn a t-shirt from the sixth outfit into a makeshift hat to keep the hot sun at bay.

“Having to go through that level of precaution to not bring invasive species into the monument makes you realize just how delicate things are up there,” reflected Parker.

Stowaways Not Welcome

But before Parker and the rest of her team left on their mission, the vessel that would carry them, the NOAA Ship Oscar Elton Sette, first had to undergo a thorough cleaning and inspection before being granted a permit to enter the monument. The hull was scrubbed and checked by specially trained divers for even as much as a rogue barnacle. Ballast water, the water held in tanks on a ship to provide stability, was inspected closely as well because numerous creatures worldwide have been documented hitching a secret ride this way. And, of course, the ship was examined for rats, the perennial stowaways.

However, rats arrived in the monument years ago via the U.S. military activity previously based on Midway Atoll, a strategic naval base during World War II and the Cold War, and French Frigate Shoals, a runway and refueling stop for planes headed to Midway during World War II. While efforts to eradicate rats at these former military bases were successful, attempting a similar project for underwater species would be much more challenging. Marine species spread very quickly and human activities are necessarily limited by the finite amount of time we can spend underwater.

Currently, Godwin has documented about 60 non-native marine species in the Papahānaumokuākea Marine National Monument, mainly at Midway, but these species—the majority of which are marine invertebrates such as tube worms and sea squirts—are not recent arrivals. Most likely harken back to the area’s military days, which ended in 1994. Today the easiest way for a new marine species to get a foothold on these reefs is by colonizing “disturbed habitat,” or areas humans have altered, such as seawalls or docks, as is the case at Midway and French Frigate Shoals.

“Competition with native species is pretty stiff,” admits Godwin. While marine life from outside the monument can become established, they often don’t have the opportunity to become invasive, he said. “But we never say never,” which is why he helps train NOAA divers going to the monument to recognize the aggressive behaviors of marine invasive species.

Marine Debris and Surprises from Japan

Person pulling bio-fouled net out of water into boat with diver's help.

NOAA divers examining the abandoned fishing nets for potentially invasive species, as they were removing them from the Northwestern Hawaiian Islands in October 2014. (NOAA)

Godwin was on high-alert, however, when debris washed away from Japan during the 2011 tsunami began showing up in Hawaii. Most marine debris in the Northwestern Hawaiian Islands comes in the form of fishing nets typically lost in the open ocean—the kind the NOAA PIFSC team was clearing from reefs. Many of the species colonizing these nets are native to the open ocean and generally do not survive in the monument’s coastal environment.

But the boats and other debris from Japan came from the coast, bringing with them the hardy and flexible marine life capable of surviving the transoceanic journey until they found another coastal home. Fortunately, Godwin found that none of the non-native Japanese species showing up on tsunami debris became established in either Hawaii or the monument.

“Marine debris is a vector [for invasive species],” said Godwin, “but we have very little control,” which is why dealing with it in the monument focuses more on response than prevention. Yet with invasive species, prevention is always the goal. And when you get a glimpse of the unique place that is Papahānaumokuākea Marine National Monument, it is not hard to understand the lengths being taken to protect it.


1 Comment

To Save Corals in an Oahu Bay, First Vacuum up Invasive Algae, Then Apply Sea Urchins

Diver placing algae into Super Sucker vacuum hose.

With the help of a gentle vacuum hose attached to a barge — a device known as the “Super Sucker” — divers can now remove invasive algae from coral reefs in Kaneohe Bay in much less time. (Credit: State of Hawaii Division of Aquatic Resources)

Progress used to be painfully slow. On average, it would take a diver two strenuous hours to remove one square meter (roughly 10.5 square feet) of the exotic red algae carpeting coral reefs in Kaneohe Bay, Hawaii. In addition to ripping away thick mats of algae, divers also had to pluck off any remaining algae stuck to the reef and use a hand net to capture bits floating in the surrounding water. Even then, these invasive algae were quick to regrow from the tiniest remnants left behind.

Today, however, divers can clear the same area in roughly half the time, or even less, depending on how densely the algae are growing. How? With the help of a device called the “Super Sucker.”

This underwater vacuum is not much more than a barge equipped with a 40 horsepower pump and long hose that gets lowered into the water. Divers still pull off chunks of algae from the reef, but they then stuff it into the device’s hose. The steady, gentle suction of the Super Sucker pulls the algae—including any tiny drifting remnants—through the hose up to a mesh table on the barge. There, seawater drains out and any critters accidentally caught by the algae-vacuuming can be returned to the ocean. People on the barge can then pack the algae into mesh bags to be taken back to shore. (Watch a video of the Super Sucker at work.)

Super sucker barge with green collection hose in a tropical bay.

The Super Sucker barge at left in Kaneohe Bay. The green collection hose used to vacuum up invasive algae from the reefs below is visible on the water surface. (Credit: State of Hawaii Division of Aquatic Resources)

The success of the Super Sucker stands to be augmented with help from small, spiny sea creatures—sea urchins—as well as a new, dedicated infusion of funding from NOAA which will expand the device’s reach in Oahu’s Kaneohe Bay. But the question remains: How did exotic algae come to cause so much trouble for corals in the first place?

A Welcome Introduction, an Unintended Stay

The problematic marine algae, or seaweed, in Oahu’s Kaneohe Bay actually is a complex of two types of algae originally from Southeast Asia: Kappaphycus and Eucheuma. Both algae were brought to this area on the eastern side of Oahu in the 1970s in an attempt to cultivate them as a source of carrageenan, a thickening agent used in processed foods. While the agricultural endeavor never took off in Oahu, these algae did. Unfortunately, this was somewhat of a surprise. Two years after the algae’s introduction, several studies found a low likelihood of their escaping from experimental pens and threatening coral habitat in the bay.

In the decades since, Kappaphycus and Eucheuma have proven that prediction very wrong, as these algae are now comfortably established in Kaneohe Bay. Because these algae spread aggressively once they arrived in this new environment, they have earned the label “invasive.” The algae have been overgrowing the coral reefs, smothering and killing corals by blocking the sunlight these organisms need to survive. These days, some areas of Kaneohe Bay are no longer dominated by corals but instead by invasive algae.

Tumbleweed-like clumps of invasive algae on a coral reef.

Meet the complex of invasive algae plaguing coral reefs in Oahu’s Kaneohe Bay: Kappaphycus and Eucheuma. These thick, warty, plastic-like, and irregularly branching algae grow in tumbleweed-like clumps, often smothering coral beneath them. (Credit: State of Hawaii Division of Aquatic Resources)

Delivering a Double-Whammy to Invasive Algae

Around 2005, NOAA helped fund the development of the Super Sucker as part of a joint project between the State of Hawaii and the Nature Conservancy. The project was aimed at containing these invasive algae in Kaneohe Bay, a partnership that continues to the present day.

Today, NOAA is becoming involved once more by expanding this project and bringing the Super Sucker into new parts of Kaneohe Bay. NOAA will accomplish this by using part of the nearly $6 million available for restoration after the 2005 grounding of the ship M/V Cape Flattery. When the ship became lodged on coral reefs south of Oahu, efforts to refloat the vessel and avoid an oil spill caused extensive harm to coral habitat across approximately 20 acres, an area now recovering well on its own.

Sea urchins grazing on seaweed on a coral reef.

The native sea urchins eat away at any invasive algae left on the coral, keeping the algae’s growth in check. The State of Hawaii Division of Aquatic Resources is raising these urchins in captivity and releasing them into Kaneohe Bay. (Credit: State of Hawaii Division of Aquatic Resources)

This restoration project will not just involve the Super Sucker, however. Another key component in controlling invasive algae in Kaneohe Bay is reintroducing a native predator. While most plant-eating fish there prefer to graze on other, tastier algae, native sea urchins have shown they are happy to munch away at the tiniest scraps of Kappaphycus and Eucheuma found on reefs. But the number of sea urchins in Kaneohe Bay is unusually low.

Currently, the State of Hawaii Division of Aquatic Resources is raising native sea urchins and experimentally releasing them back into the bay. NOAA’s restoration project for the Cape Flattery coral grounding would greatly expand the combined use of the Super Sucker and reintroduced sea urchins to control the invasive algae.

Together, mechanically removing the algae with the Super Sucker and reintroducing sea urchins in the same area should be effective at curbing the regrowth and spread of invasive algae in the northern part of Kaneohe Bay. Making sure invasive algae do not spread outside the bay is an important part of this coral restoration project. This northern portion, near a major entrance to the bay, is a critical area for containing the algae and making sure it doesn’t escape from the bay to other near shore reefs.

Saving Corals and Creating Fertilizer

Top, coral reef with invasive algae. Bottom, same reef after algae was removed.

Top, coral reef before Super Sucker operations, and bottom, the same reef after the Super Sucker has cleared away the invasive algae. (Credit: State of Hawaii Division of Aquatic Resources)

Ultimately, the goal is to move toward natural controls (i.e., the sea urchins) taking over the containment of Kappaphycus and Eucheuma algae in Kaneohe Bay.

The benefits of removing the algae from the area’s coral reefs are two-fold. First, clearing away the carpets of algae saves the corals that are being smothered beneath them. Second, opening up other areas of the seafloor previously covered by algae creates space for young corals to settle and establish themselves, growing new reef habitat.

Another benefit of clearing the invasive algae in this project is that it provides a source of free fertilizer for local farmers. Not only does it offer a sustainable source of nutrients on agricultural fields but the algae breaks down more slowly and is therefore less susceptible than commercial fertilizer to leaching into nearby waterways.

Even so, a 2004 study confirmed that these algae do not survive in waters with low salt levels, meaning that any algae that do run off from farms into nearby streams will not eventually re-infect the marine environment. Another win.


Leave a comment

NOAA Partners with University of Washington to Examine How Citizen Science Can Help Support Oil Spill Response

This is a guest post by University of Washington graduate students Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño.

Volunteers sample mussels at a Mussel Watch beach site near Edmonds, Wash.

Volunteers sample mussels at a Mussel Watch site in Washington, one of NOAA’s National Mussel Watch Program sites. This program relies on citizen scientists to gather data on water pollution levels and seafood safety by regularly sampling mussels at established locations across the nation. (Alan Mearns/NOAA)

Citizen science—characterized by public participation in the scientific process—is a growing trend in scientific research. As technology opens up new opportunities, more and more people are able to collaborate on scientific efforts where widespread geographic location or project scope previously may have been a barrier.

Citizen science can take a number of forms, ranging from small-scale environmental monitoring to massive crowdsourced classification efforts, and there is a great deal of benefit to be realized when managed properly. For example, the NOAA National Severe Storms Laboratory developed the mPING smartphone app to allow anyone in the United States to file hyper-local weather reports, which in turn helps the NOAA National Weather Service fine-tune their weather forecasts.

The Citizen Science Management Project

Our team of University of Washington graduate students is working with NOAA’s Office of Response and Restoration to research the potential for incorporating citizen science into its oil spill response efforts.

Thanks to improvements in technology, the public is more interested in and better able to contribute help during oil spills than ever before. During recent oil spills, notably the 2010 Deepwater Horizon incident, large numbers of citizens have expressed interest in supporting monitoring and recovery efforts. As the lead science agency for oil spills, NOAA is considering how to best engage the public in order to respond to oil spills even more effectively.

The goal of the project is to provide recommendations for NOAA on effective citizen science management. To do this, we began working to find the most current and relevant information on citizen science by conducting a broad review of the published scientific literature and speaking with experts in the fields of oil spill response, citizen science, and coastal volunteer management. Our next steps are to analyze the research and come up with possible options for NOAA’s Office of Response and Restoration on how to best adopt and incorporate citizen science into its work.

Initial Findings

NOAA’s Role. NOAA’s role in an oil spill response is primarily that of scientific support. During a response, NOAA begins by addressing a few core questions. Phrased simply, they are:

  • What got spilled?
  • Where will it go and what will it hit?
  • What harm will it cause and how can the effects of the spill be reduced?

We believe that using citizen scientists to help answer these fundamental questions may help NOAA better engage communities in the overall response effort and produce additional usable data to strengthen the response.

Aerial view of Deepwater Horizon oil spill and response vessels.

A view of the oil source and response vessels during the Deepwater Horizon incident as seen during an overflight on May 20, 2010. This spill piqued public interest in oil spills. (NOAA)

Changing Trends and New Opportunities. Technology is changing quickly. More than half of Americans own a smartphone, mapping programs are readily available and easy-to-use, and the Internet provides an unparalleled platform for crowdsourced data collection and analysis, as well as a venue for communication and outreach. These advances in technology are adding a new dimension to citizen science by creating the ability to convey information more quickly and by increasing visibility for citizen science projects. Increased exposure to citizen science efforts spurs interest in participation and the additional data collection capacity provided by smartphones and other technology allows more people to contribute. One such trend is the digital mapping of crowdsourced information, such as the NOAA Marine Debris Program’s Marine Debris Tracker app, which enables people to map and track different types of litter and marine debris they find around the world.

Oil Spills, NOAA, and Citizen Science. In 2012 the National Response Team prepared a document on the “Use of Volunteers: Guidelines for Oil Spills,” outlining ways in which oil spill responders can move toward improved citizen involvement before, during, and after an oil spill. We will use this as a framework to assess potential citizen science programs that could be adopted or incorporated by NOAA’s Office of Response and Restoration.

Challenges. All citizen science programs face certain challenges, such as ensuring data reliability with increased participation from non-experts, finding and maintaining the capacity required to manage a citizen science program and incorporate new data, and working with liability concerns around public participation. The challenges become even greater when incorporating citizen science into oil spill response. The unique challenges we have identified are the compressed timeline associated with a spill situation; the unpredictability in scope, geography, and nature of a spill; and the heightened risk and liability that come from having volunteers involved with hazardous material spill scenarios. We will keep all of these concerns in mind as we develop our recommendations.

Next Steps

From here, our team will be analyzing our findings and developing some recommendations for NOAA’s Office of Response and Restoration. We hope to identify, categorize, and assess different citizen science models that may work in a response situation, weighing the strengths and weaknesses of each model. These findings will be presented in a final report to NOAA in March 2015.

If you would like to learn more about the Citizen Science Management Project or check on our progress, please visit the project website: https://citizensciencemanagement.wordpress.com. If you have ideas about the project, feel free to reach out to us through the contact page. We would love to hear from you!

Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño are graduate students at the University of Washington in Seattle, Washington. The Citizen Science Management Project is being facilitated through the University of Washington’s Program on the Environment. It is the most recent project in an ongoing relationship between NOAA’s Office of Response and Restoration and the University of Washington’s Program on the Environment.


4 Comments

Information about Oil Spills Is at Your Fingertips

Where and when was the biggest oil spill? How many oil spills happen each year? Is the frequency of oil spills going up or down? Where can I get information about oil spills?

We at NOAA’s Office of Response and Restoration hear these questions often, frequently from high school students looking for help writing their research papers …

We have a lot of information on our website about oil spills in general, as well as those cases in which we have provided scientific expertise during the response. In addition, we maintain IncidentNews.noaa.gov, which has information on thousands of selected historical incidents spanning 30 years of our experience responding to spills.

But NOAA only becomes involved with larger, more complex incidents in which scientific expertise is required to track or clean up spilled oil or cases with a significant threat to marine and coastal resources. Sometimes we get involved before any oil has actually spilled, such as when a ship runs aground on a coral reef and the fuel tanks have not been breached—yet. We typically respond to more than a hundred oil and chemical incidents annually, but there are thousands of smaller spills happening as well, many in marinas and urban and industrial waterways.

So what are some good sources of information on oil spills? For general statistics on oil spills in U.S. waters, I recommend that researchers go to the National Response Center website at http://www.nrc.uscg.mil.

The National Response Center (NRC) receives all reports of releases involving hazardous substances, including oil spills. Reports to the NRC activate the National Contingency Plan and the federal government’s response capabilities. The NRC maintains reports of all releases and spills in a national database going back to 1990 that you can download and search.

If you are interested in a specific pollution incident in the United States, the U.S. Coast Guard has a lot of information in their Marine Casualty and Pollution Data files. This database goes back to 1973 and captures details about marine casualty and pollution incidents that were investigated by the Coast Guard.

On the international level, the International Tanker Owners Pollution Federation (ITOPF) does a good job of providing data on oil spills from tankers and barges transporting oil. The ITOPF database goes back to 1970, and includes data from a variety of sources including maritime insurers and shipping publications.

One of the interesting trends that ITOPF data shows is that while tanker traffic has increased over the past 30 years, there has been a downward trend in oil spills originating from tankers.  In their list of the top 20 tanker accidents, 19 occurred before 1990, or pre-Exxon Valdez. Since then, many oil pollution prevention rules have been put in place and ship navigation tools have been improved. One notable example being the phase out of single-hull tankers.

Another good source of international data is CEDRE, the Centre of Documentation, Research and Experimentation on Accidental Water Pollution, based in Brittany, France. The CEDRE website has a good map and database featuring major oil spills around the world, dating back to 1917.

Speaking of oil spill data, we crunched the numbers on the locations of all of our oil spill-related responses from 2014 and came up with the following infographic:

Map of United States with numbers of oil spill responses in various coastal regions.

NOAA oil spill responses in 2014, by region. Includes actual and potential oil spills. The Gulf of Mexico, a region which produces and refines a lot of oil, also experiences the most oil spill responses NOAA is involved with of any other region. The U.S. Coast Guard in different regions takes advantage of NOAA support services in different ways, which may account for some of the very low or very high numbers of NOAA responses in various regions. (NOAA)


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Winter 2015

Two people talking on a beach with a ferry in the background.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of February 23–27, 2015 at the NOAA Disaster Response Center in Mobile, Alabama.

We will accept applications for this class through Friday, January 9, 2015, and we will notify applicants regarding their participation status by Friday, January 16, 2015, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas, (April 27–May 1, 2015) and Seattle, Washington (date to be determined).

For more information, and to learn how to apply for the class, visit the SOS Classes page.

Follow

Get every new post delivered to your Inbox.

Join 513 other followers