NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

1 Comment

An Estuary in the Shadow of Seattle

People working at marsh's edge.

Volunteers help restore the Duwamish River by planting native vegetation at an Earth Day event hosted at Codiga Park, April 2008. (NOAA)

Update: It’s been announced that a proposed settlement was reached with Seattle to resolve its liability for injured natural resources. Seattle has purchased restoration credits from Bluefield Holdings Inc., a company that develops restoration projects. The city’s credit purchase totals approximately $3.5 million worth of restoration. This is the first natural resource damages settlement to fund restoration through the purchase of credits by a restoration development company. For more details:

What makes river water flow in one direction in the morning and change direction in the afternoon? Tides.

Where the Duwamish River meets Puget Sound in Washington state this shift of water flow happens daily. The Duwamish pours into the salty waters of Puget Sound, making it Seattle’s downtown estuary. The powerful tides that fill and drain the sound push and pull on the Duwamish causing a shift in directions at the river’s estuary.

This estuary does not look like the estuaries from high school text books. It no longer has a wide delta where the freshwater river fans out to meet the salty ocean. Instead, it looks like a channelized waterway. Almost all of the Duwamish estuarine wetlands and mudflats have been lost to dredging or filling for industrial purposes. Restoring the Duwamish‘s estuary is a massive challenge—requiring government agencies, industry, and the public to work together.

Aerial view of city with river.

Aerial photograph of the Lower Duwamish River. Harbor Island and Elliott Bay are shown in the top left and downtown Seattle in the top center of the photograph. (NOAA)

I am happy to report a significant step forward in this collaboration. NOAA recently produced key answers to some tough questions, based on lessons we learned as we worked on this restoration effort: What works the best to restore this highly urban and developed river and estuary? What are some of the key obstacles we encountered?

Main challenges for restoring the Duwamish:

  • Dealing with costs and challenges of existing contamination
  • Preventing erosion of new restoration
  • Keeping newly-planted vegetation alive—geese and other wildlife love to eat newly planted restoration sites

Key lessons learned for successful restoration:

  • Plan for uncertainty: the most common issue for restoration in urban areas is discovering unexpected challenges, such as sediment contamination during construction.
  • Allow for ongoing maintenance: Restoration isn’t over just because a project is complete. To ensure the long-term success of restoration efforts, continued stewardship of the site is necessary and should be included in project planning.
  • Get the biggest bang for your buck: When companies conduct cleanups of their sites, it is most cost effective to conduct restoration at the same time.
River with grid strung above it.

Geese inside goose exclusion fencing at Boeing Project. (Credit: Boeing)

The challenges and recommendations are only a snapshot of what can be found in the NOAA report, Habitat Restoration in an Urban Waterway: Lessons Learned from the Lower Duwamish River. While the Duwamish estuary may look nothing like it did historically, it is important to always be reminded that it is still full of life. From salmon to kayakers to industry, the estuary serves a key role in the Seattle community. Learn more about what we are doing to restore the Duwamish River.

Leave a comment

Restoring Marsh Habitat by Sharing Assessment Techniques

Group of four people stand in a marsh.

Training participants examine a one meter square quadrant transect (rod at bottom) to illustrate how new metrics could be applied for a northeast assessment. (NOAA)

There is no one-size-fits-all approach to environmental assessments for oil spills or hazardous waste events. We must therefore custom-tailor our technical approach for each pollution incident.

We first determine whether impacts to natural resources have occurred and whether it is appropriate to proceed with a Natural Resource Damage Assessment (NRDA). We collect time-sensitive data, evaluate available research and information about the type of injury, and determine what species and habitats are likely to have been affected. If we determine that habitats, wildlife or human uses have been harmed or could experience significant impacts, we often proceed with a full damage assessment.

This type of scientific assessment is particularly challenging in a marsh environment given potential injury due to both oil persistence and toxicity. For example, a home heating oil released by the North Cape barge in 1996 caused acute injury to lobsters, clams, fish, crabs, and mussels in, and adjacent to, the marshes of southern Rhode Island. The light oil was highly toxic, but quickly dissipated, thereby causing a lot of immediate injury, but less long-term problems. By contrast, a more chronic impact was the result of persistent fuel oil released by the Barge Bouchard 120 in the salt marshes of Massachusetts in 2003. That oil saturated 100 miles of shoreline, impacting tidal marshes, mudflats, beaches, and rocky shorelines. These evolving factors are why we constantly share best practices and lessons learned among our colleagues in the northeast and nationwide.

Members of the Northeast and Spatial Data Branch of NOAA’s Office of Response and Restoration and NOAA’s Restoration Center recently met at Spermaceti Cove, Sandy Hook, New Jersey, to participate in a hands-on workshop to improve our salt marsh damage assessment techniques and data compilation.

They were building on previous findings presented at a 2015 salt marsh assessment workshop in Massachusetts, that information learned there should be shared in other locales. Of note were the variety of vegetation and native invertebrates around the coastal United States that necessitate region-specific marsh field training.

Two people standing in shallow water holding a seining net.

Scientists seining salt marsh tidal channel collecting native small fish for injury determination. (NOAA)

To address the study of natural resource damages in a mid-north Atlantic salt marsh environ, this 2016 effort included the count of flora and fauna species within a 2 meter square quadrant along a designated transect (see photo) to provide a measure of diversity and species richness.  Also they used a seine, a lift net, and minnow traps to collect fish adjacent to the marsh for species identification and to measure body size and observe possible abnormalities, both external and internal.

Additionally, NOAA scientists discussed and demonstrated current best practices to perform our work regarding health and safety, sample custody, and data management.

In an actual future marsh injury assessment, the Trustees would develop a conceptual site model for guidance in testing the hypotheses, the specific study design, and the proper site and habitat injury measures.

Ken Finkelstein and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.


Abandoned Vessels of Florida’s Forgotten Coast

This is a post by NOAA Scientific Support Coordinator Adam Davis of the Office of Response and Restoration.

Derelict vessel with osprey nest on top of broken mast.

Along Florida’s Forgotten Coast, a pair of osprey had built a nest on an abandoned vessel. The U.S. Coast Guard called in NOAA for assistance as they were trying to remove fuel from that boat with minimal impact to wildlife. (NOAA)

There is a stretch of the Florida Panhandle east of the more heavily developed beach destinations of Destin and Panama City that some refer to as the “Forgotten Coast.” This area has vast tracts of pine forest including large stands of longleaf pine and savanna, towering dunes and nearly undeveloped barrier islands, seemingly endless coastal marsh, and miles and miles of winding shoreline along its expansive bays and coastal rivers.

It is no coincidence that much of the area is undeveloped; reserves, wildlife refuges, and other federal and state protected lands and waters occupy a large percentage of the area.

However, this flattened landscape of wild greens and blues is occasionally punctuated by the unnatural texture of human influence of a certain type: rusting hulls, broken masts, boats half-submerged in the muddy waters. It was one of these abandoned and decaying vessels that brought me to Florida’s Forgotten Coast.

Birds-Eye View of a Problem

The U.S. Coast Guard as well as state and local agencies and organizations have been working to address potential pollution threats from a number of abandoned and derelict boats sprinkled throughout this region. Vessels like these often still have oils and other hazardous materials on board, which can leak into the surrounding waters, posing a threat to public and environmental health and safety.

Half-sunken boat surrounded by oil containment boom.

Even a small release of marine fuel in sensitive environmental areas like this can have significant negative environmental consequences. Many abandoned vessels still have fuel and other hazardous materials on board. (NOAA)

As a Scientific Support Coordinator for NOAA’s Office of Response and Restoration, I provide assistance to the Coast Guard in their pollution response efforts. This support often involves analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment.

In this case, the Coast Guard called me with an unusual complication in their efforts: A pair of osprey had taken up residence on one of these abandoned vessels. Their nest of sticks was perched atop the ship’s mast, now bent at a precarious 45 degree angle. The Coast Guard needed to know what kind of impacts might result from assessing the vessel’s pollution potential and what might be involved in potentially moving the osprey nest, or the vessel, if needed.

As a federal agency, the Coast Guard must adhere to federal statutes that protect wildlife, such as the Endangered Species Act and the Migratory Bird Treaty Act. Essentially, these statutes require the Coast Guard (or other person or organization) to consider what effect their actions might have on protected species, in this case, osprey.

This is where we Scientific Support Coordinators often can provide some assistance.  A large part of our support in this area involves coordinating with the “trustee” agencies responsible for the stewardship of the relevant natural resources.

My challenge is evaluating the scientific and technical aspects of the planned action (disturbing the chicks and their parents or possibly moving the osprey nest in order to remove the vessel), weighing possible effects of those actions against threats posed by no action, and communicating all of that in an intelligible way to trustees, stakeholders, and the agency undertaking the action in question.

Fortunately, the pollution assessment and removal in the case of the osprey-inhabited vessel proved very straightforward and the abandoned vessels project got off to a good start.

Abandoned But Not Forgotten

Aerial view of abandoned vessels with osprey nest on mast, located in Florida waterway.

NOAA’s Adam Davis helped the U.S. Coast Guard with a project spanning more than 230 miles of Florida coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. (NOAA)

Over the course of eight weeks, I was fortunate to contribute in a number of ways to this project. For example, I joined several aerial overflights of the coast from Panama City to St. Marks, Florida, and participated in numerous boat rides throughout the Apalachicola Bay watershed to identify, assess, and craft strategies for pollution removal from abandoned vessels.

Ultimately, the project spanned more than 230 miles of coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. Most of the fuel was removed from vessels located in highly sensitive and valuable habitats, such as those located along the Jackson and Brother’s Rivers.

Portions of both of these rivers are located within the Apalachicola National Estuarine Research Reserve and are designated as critical habitat for Gulf sturgeon, a federally threatened species of fish that, like salmon, migrates between rivers and the ocean.

Even a small release of marine fuel in areas like this can have significant negative environmental consequences. Impacts can be even more severe if they occur during a time when species are most vulnerable, such as when actively spawning, breeding, or nesting.  In addition, spills in these otherwise pristine, protected areas can have negative consequences for important commercial and recreational activities that rely upon the health of the ecosystem as a whole.

People on boats on a Florida coastal river.

When NOAA supports the Coast Guard with abandoned vessels work, our efforts often involve analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment. These Coast Guard boats are equipped to remove fuel from abandoned vessels. (NOAA)

While we’d like to be able to remove the entire vessels every time, which can be navigation hazards and create marine debris, funding options are often limited for abandoned vessels. However, the Oil Pollution Act of 1990 enables us to remove the hazardous materials on board and reduce that environmental threat.

I find working in the field directly alongside my Coast Guard colleagues to be invaluable. Inevitably, I come away from these experiences having learned a bit more and increased my appreciation for the uniqueness of both the people and the place. Hopefully, that makes me even better prepared to work with them in the future—and in the beautiful and remote wilds of the Forgotten Coast.

NOAA's Adam Davis, left, on a Coast Guard boat removing oil from a derelict vessel.Adam Davis serves as NOAA Scientific Support Coordinator for U.S. Coast Guard District 8 and NOAA’s Gulf of Mexico Disaster Response Center. He graduated from the University of Alabama at Birmingham before entering the United States Army where he served as a nuclear, biological, and chemical operations specialist. Upon completing his tour in the Army, Adam returned home and completed a second degree in environmental science at the University of West Florida. He comes with a strong background in federal emergency and disaster response and has worked on a wide range of contaminant and environmental issues. He considers himself very fortunate to be a part of NOAA and a resident of the Gulf Coast, where he and his family enjoy the great food, culture, and natural beauty of the coast.

Leave a comment

Oil Spills, Seeps, and the Early Days of Drilling Oil Along California’s Coast

Black and white photo of early oil derricks and piers at Summerland, California, 1902

Some of the earliest offshore oil wells were located at Summerland in Santa Barbara County, California. Shown here in 1902, you can see the early wharves that extended from the shore out to derricks over the wells. (U.S. Geological Survey)

One of the challenges of the 2015 pipeline oil spill near Santa Barbara, California, was distinguishing between oil released from the pipeline and oil released naturally from the many seeps in the area. This challenge could become even more complicated when you consider the history of oil drilling in southern California [PDF] that dates back to the 1860s.

Unless you are a history buff or study environmental pollution, you probably didn’t realize that the beautiful sand beaches of southern California were once home to some of the earliest offshore oil rigs.

Oil seeps both on the shore and in the ocean were clues to the underground oil reservoirs in the Santa Barbara Channel. Even today, natural seeps in Santa Barbara’s Coal Oil Point area release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011).

Drilling into History

The first offshore wells in the United States were drilled in 1896 in the Summerland region just east of Santa Barbara. Initial wells were built on piers sticking several hundred feet out into the ocean. Over the years, many more wells and offshore platforms were built in the region.

However, oil exploration and drilling was virtually unregulated at the time, and spills were common. California’s first out-of-control oil gusher occurred in February 1892 near Santa Paula, but since no one had a way to store so much oil (1,500 barrels were released per day), much of it eventually flowed into the ocean via the Santa Clara River.

Black and white photo of men building a pier over the ocean to reach oil derricks drilling offshore at Summerland, California, 1900.

A view looking down the Treadwell wharf toward shore and the central portion of the Summerland oil field in Santa Barbara County, California, in 1900. These early oil fields were essentially unregulated, resulting in spills and leaks back then as well as today. (U.S. Geological Survey)

In addition, many of these first flimsy piers and oil platforms at Summerland were destroyed by storms or fires or later abandoned without much thought about preventing spills in the future. The state’s first laws governing oil well abandonment came into place in 1915, in part to protect the oil and gas wells on neighboring properties. (Fortunately, the old and leaky Summerland wells were far enough away from the 2015 pipeline spill location that they didn’t add yet another possible source of oil in the area of the spill.)

By the 1960s offshore oil production began to take off in California, particularly along Santa Barbara County. That is, until January 1969, when Union Oil’s Platform A suffered a blowout six miles off the coast. The result was more than 3.2 million gallons of crude oil were released into the Santa Barbara Channel and on surrounding shorelines.

Public outcry was so great that not only did California ban new leases for offshore drilling in state-owned waters, but it helped catalyze a broader movement to protect the environment and prevent pollution in the United States. Still, natural seeps serve as a reminder of the area’s “Wild West” days of oil exploration.

Seep vs. Spill

Today, the region is much cleaner, but, as we saw after the 2015 pipeline spill at Refugio State Beach near Santa Barbara, that doesn’t mean it’s free of oil, either naturally released or spilled during extraction. While telling the two apart can be complicated, it isn’t impossible.

One clue for distinguishing seep oil from oil coming from production platforms is looking at how “weathered” the oil is. Oil being drilled by a platform is extracted directly from a deep underground reservoir and thus appears “fresher,” that is, less weathered by environmental processes.

The seep oil, on the other hand, generally appears more weathered, having migrated up through the seafloor and ocean depths. Seep oil is more weathered because many of its less stable compounds have been dissolved into the water column, oxidized by sunlight or evaporated into the atmosphere at the surface, or broken down by microbes that naturally metabolize hydrocarbon molecules.

Another method for distinguishing among oils is a process known as “fingerprinting,” which uses analytical chemistry to compare the relative quantities of hydrocarbons unique to petroleum in the spilled oil versus another oil.

Even though seeps release a lot of oil into the ocean, oil spills such as the 2015 pipeline spill near Santa Barbara have different and more significant impacts on the nearshore environment than the slower, steadier release of natural oil seeps. Spills often release relatively large volumes of oil suddenly into an area, which can overwhelm the ability of the environment (such as its oil-eating microbes) to adapt to the influx of oil.

That doesn’t mean seeps don’t have any environmental impacts themselves. Oil from seeps can be toxic to marine life, including fish, sea stars, shrimp, and seabirds, with impacts largely concentrated in the immediate area around a seep. While our job is to use science to minimize and evaluate potential environmental impacts during oil spills (and not seeps), knowing the history of an area like Santa Barbara can go a long way to helping us do just that.

NOAA environmental scientist Greg Baker also contributed to this post.

Leave a comment

Studying Marine Life a Year After the Oil Spill at Refugio State Beach

One year after the pipeline oil spill at Refugio State Beach near Santa Barbara, California, scientists from NOAA and our partners have been back to the site of the spill. They are gathering a new round of samples to help determine the health of the environment and marine life.

This May and June, these teams have been conducting comprehensive scientific surveys to collect data on three distinct but interconnected habitats within the impacted spill zone: sandy beach, subtidal, and rocky intertidal habitats.

Specifically, the surveys are examining:

  • talitrid (beach hopper or “sand flea”) populations in sandy beach habitats.
  • a variety of organisms in rocky intertidal habitat.
  • surfgrass in subtidal habitats.
  • fish, including grunion spawning on the beaches and surfperch in nearshore waters.

Information collected from these sampling efforts will be used to determine the amount of restoration needed to return the environment to the condition it would have been in if not for the spill, and to compensate the public for natural resource injuries and lost recreational opportunities. This is part of the Natural Resource Damage Assessment process, which evaluates the environmental impacts of pollution and implements restoration to make up for those effects.

Ten people stand in the beach surf pulling a seine net to shore.

Scientists pull in a seine net along a beach near Santa Barbara, California, about a year after the oil spill at Refugio State Beach. They are sampling fish known as surfperch to evaluate any impacts from the oil spill. (NOAA)

This pipeline spill occurred on May 19, 2015 and resulted in more than 100,000 gallons of crude oil being released on land, with a portion of the oil reaching the Pacific Ocean. Field teams documented dead fish, invertebrates, and other wildlife in the oiled areas following the spill. The spill also shut down fisheries, closed multiple beaches, and impacted recreational uses, such as camping, non-commercial fishing, and beach visits.

To submit a restoration project idea, please visit: Learn more about spill cleanup and response efforts at

Leave a comment

How Do Oil Spills Affect Sea Turtles?

Head and upper body of Kemp's Ridley sea turtle coated in thick brown oil.

A Kemp’s Ridley sea turtle covered in oil from the Deepwater Horizon oil spill in the Gulf of Mexico. (NOAA)

Sea turtles: These beloved marine reptiles have been swimming the seas for millions of years. Yet, in less than a hundred years, threats from humans, such as accidentally catching turtles in fishing gear (“bycatch”), killing nesting turtles and their eggs, and destroying habitat, have caused sea turtle populations to plummet. In fact, all six species of sea turtles found in U.S. waters are listed as threatened or endangered under the U.S. Endangered Species Act.

As we’ve seen in the Gulf of Mexico in recent years, oil spills represent yet another danger for these air-breathing reptiles that rely on clean water and clean beaches. But how exactly do oil spills affect sea turtles? And what do people do during and after an oil spill to look out for the well-being of sea turtles?

Living the Ocean Life

From the oil itself to the spill response and cleanup activities, a major oil spill has the potential to have serious negative effects on sea turtles. Part of the reason for this is because sea turtles migrate long distances and inhabit so many different parts of the ocean environment at different stages of their lives.

Graphic showing the life cycle of sea turtles in the ocean: egg laying; hatchling dispersal; oceanic feeding: small juveniles in sargassum; feeding on the continental shelf: large juveniles and adults, mating and breeding migration; and internesting near beach.

The life cycle of a sea turtle spans multiple habitats across the ocean, from sandy beaches to the open ocean. (NOAA)

For starters, sea turtles hatch (and females later return as adults to lay eggs) on sandy beaches. Then, they head to the vast open ocean where the tiny young turtles drift, hide from predators, and grow among floating islands of seaweed called sargassum. Finally, as larger juveniles and adults, they swim to the shallower waters of the continental shelf and near shore, where they spend the majority of the rest of their lives.

If a large offshore spill releases oil into the open ocean, currents and winds can carry oil across all of the habitats where sea turtles are found—and into the potential path of sea turtles of every age—as it makes its way to shore.

Another reason sea turtles can be particularly vulnerable to ocean oil spills is simply because they breathe air. Even though sea turtles can hold their breath on dives for extended periods of time, they usually come to the surface to breathe several times an hour. Because most oils float, sea turtles can surface into large oil slicks over and over again.

The situation can be even worse for very young sea turtles living among floating sargassum patches, as these small turtles almost never leave the top few feet of water, increasing their exposure to a floating oil slick. Furthermore, ocean currents and winds often bring oil to the same oceanic convergence zones that bring sargassum and young sea turtles together.

Turtle Meets Oil, Inside and Out

So, we know the many places sea turtles can run into an oil spill, but how exactly do they encounter the oil during a spill?

Graphic showing how spilled oil in the ocean can affect sea turtles at all stages of life and across ocean habitats: Oil on the shoreline can contaminate nesting females, nests, and hatchlings; larger turtles can inhale oil vapors, ingest oil in prey or sediment, and become coated in oil at the surface; winds and currents create ocean fronts, bringing together oil, dispersants, and sargassum communities, causing prolonged floating oil exposure; juvenile turtles ingest oil, inhale vapors, and become fatally mired and overheated; prey items may also be killed by becoming stuck in heavy oil or by dissolved oil components; and sargassum fouled by oil and dispersants can sink, leaving sargassum-dependent animals without food and cover and vulnerable to predators. Dead sea turtles may sink.

The potential impacts of an oil spill on sea turtles are many and varied. For example, some impacts can result from sea turtles inhaling and ingesting oil, becoming covered in oil to the point of being unable to swim, or losing important habitat or food that is killed or contaminated by oil. (NOAA)

It likely starts when they raise their heads above the water’s surface to breathe. When sea turtles surface in a slick, they can inhale oil and its vapors into their lungs; gulp oil into their mouths, down their throats, and into their digestive tracts while feeding; and become coated in oil, to the point of becoming entirely mired and unable to swim. Similarly, sea turtles may swim through oil drifting in the water column or disturb it in the sediments on the ocean bottom.

Female sea turtles that ingest oil can even pass oil compounds on to their developing young, and once laid, the eggs can absorb oil components in the sand through the eggshell, potentially damaging the baby turtle developing inside. Nesting turtles and their hatchlings are also likely to crawl into oil on contaminated beaches.

Not the Picture of Health

Graphic showing how oil spill cleanup and response activities can negatively affect sea turtles: Cleaning oil from surface and subsurface shores with large machines deters nesting; booms and other barriers prevent females from nesting; response vessels can strike and kill sea turtles and relocation trawlers can inadvertently drown them; application of dispersants may have effects on sea turtles; and skimming and burning heavy oil may kill some sea turtles, while also exposing others to smoke inhalation.

Oil spill cleanup and response activities can negatively affect sea turtles as well. For example, oil containment booms along beaches can prevent nesting females from reaching the shores to lay their eggs. (NOAA)

Once sea turtles encounter oil, what are the impacts of that exposure?

Inhaling and swallowing oil generally result in negative health effects for animals, as shown in dolphins and other wildlife, hindering their overall health, growth, and survival. Lining the inside of sea turtles’ throats are pointy spines called esophageal papillae, which normally act to keep swallowed food inside while allowing water to be expelled. Unfortunately, these projections also seem to trap thick oil in sea turtles’ throats, and evidence of oil has been detected in the feces of oiled turtles taken into wildlife rehabilitation centers.

Oil can irritate sensitive mucus membranes around the eyes, mouth, lungs, and digestive tract of sea turtles, and toxic oil compounds known as polycyclic aromatic hydrocarbons (PAHs) can be absorbed into vital organ tissues such as the lungs and liver. Because sea turtles can hold their breath for long periods, inhaled oil has a greater chance of being absorbed into their bodies. Oil compounds that get passed from mother turtles to their young can interfere with development and threaten the survival of sea turtles still developing in the eggs.

Once inside their systems, oil can impede breathing and heart function in sea turtles, which can make diving, feeding, migrating, mating, and escaping predators more difficult. Being heavily covered in oil likewise impedes sea turtles’ abilities to undertake these activities, which puts them at risk of exhaustion and dehydration. In addition, dark oil under a hot summer sun can heat up turtles to dangerous temperatures, further jeopardizing their health and even killing them. In fact, sea turtles heavily coated in oil are not likely to survive without medical attention from humans.

Another, less direct way oil spills can affect the health of sea turtles is by killing or contaminating what they eat, which, depending on the species, can range from fish and crabs to jellyfish to seagrass and algae. In addition, if oil kills the sargassum where young sea turtles live, they lose their shelter and source of food and are forced to find suitable habitat elsewhere, which makes them more vulnerable to predators and uses more energy.

Spill response and cleanup operations also can harm sea turtles unintentionally. Turtles can be killed after being struck by response vessels or as a result of oil burning and skimming activities. Extra lighting and activity on beaches can disrupt nesting and hatchling turtles, as well as incubating eggs.

Help Is on the Way

A person holding a small clean Kemp's Ridley sea turtle over a blue bin.

A Kemp’s Ridley sea turtle ready to be returned to the wild after being cleaned and rehabilitated during an oil spill. (NOAA)

The harm that oil spills can cause to sea turtles is significant, and estimating the full suite of impacts to these species is a long and complicated process.  There are some actions that have been taken to protect these vulnerable marine reptiles during oil spills. These include activities such as:

  • Performing rescue operations by boat, which involve scooping turtles out of oil or water using dip-nets and assessing their health.
  • Taking rescued turtles to wildlife rehabilitation centers to be cleaned and cared for.
  • Monitoring beaches and coastlines for injured (and sometimes dead) turtles.
  • Monitoring nesting beaches to safeguard incubating nests.
  • Conducting aerial surveys to assess abundance of adults and large juvenile turtles potentially in the footprint of an oil spill.

Finally, the government agencies acting as stewards on behalf of sea turtles, as well as other wildlife and habitats, will undertake a scientific evaluation of an oil spill’s environmental impacts and identify restoration projects that make up for any impacts.

As an example, read about the impacts to sea turtles from the 2010 Deepwater Horizon oil spill, details about how they were harmed, and the proposed restoration path forward.

Leave a comment

Restoration on the Way for New Jersey’s Raritan River, Long Polluted by Industrial Waste

The Raritan River as it runs through a wooded area.

A draft restoration plan and environmental assessment is now available for the American Cyanamid Superfund Site which affected the Raritan River in northern New Jersey. (U.S. Coast Guard)

Update: Oct, 20, 2016—Restoration for the Raritan River moved one step closer with the U.S. Department of Justice’s announcement of a settlement for the American Cyanamid Superfund Site. Details can be found here.

Following years of intensive cleanup and assessment at the American Cyanamid Superfund Site, NOAA and our partners are now accepting public comment on a draft restoration plan and environmental assessment [PDF] for this northern New Jersey site.

For many years, the 575 acre site located along the Raritan River in Bridgewater Township was used by the American Cyanamid Company for chemical manufacturing and coal tar distillation.

However, chemical wastes released during manufacturing at the facility harmed natural resources in the sediments and surface waters of the Raritan River and its tributaries. The facility was designated a Superfund site in 1983 due to contamination by a variety of toxic substances including mercury, chromium, arsenic, lead, and PCBs.

The area affected by the contamination provides habitat for a variety of migratory fish, such as alewife, blueback herring, striped bass, rainbow smelt, American shad, American eel, and other aquatic life. In addition, large numbers of birds nest, forage, and migrate along the Raritan River, from raptors and songbirds to waterfowl and shorebirds.

Over the years, NOAA has worked with the U.S. Environmental Protection Agency to ensure a thorough cleanup to protect natural resources in the Raritan River watershed. NOAA and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, evaluated the extent of injury in the river and determined the best path toward restoration.

An Industrial History

Factories and trains at the American Cyanamid chemical manufacturing site, 1940.

The American Cyanamid Company, shown here circa 1940, produced fertilizers, cyanide, and other chemical products whose wastes were released directly into the Raritan River for decades. (Photographer unknown)

The American Cyanamid Company got its start in the early 1900s by developing an effective fertilizer ingredient, a compound of nitrogen, lime, and carbide called cyanamid. By the early 1920s, the company, whose focus had been primarily agricultural products, began producing cyanide for use in gold and silver extraction and hydrocyanic acid, important to rubber production.

Over the next several decades, the American Cyanamid Company diversified, adding chemicals, plastics, dyes, and resins to their growing line of products. Further expanding into pharmaceuticals, the company provided valuable medical products to the World War II effort.

Starting in the 1920s and continuing up to the 1980s, chemical waste associated with the company’s manufacturing practices became an issue. For decades, chemical waste was released directly into the Raritan River.

Waste treatment began in 1940, which meant it was buried at the site or stored in unlined “impoundments,” or reservoirs. That practice stopped in 1979 and dye manufacturing ended three years later. By 1985 there was no more direct discharge into the Raritan River and manufacturing at the site ceased in 1999. It is estimated that over time, 800,000 tons of chemical wastes were buried at the site.

A New Chapter for the Raritan River

The American Cyanamid site on the Raritan River in New Jersey.

The draft restoration plan for the Raritan River aims to restore passage for migratory fish while improving water quality and habitat due to years of industrial pollution at the American Cyanamid manufacturing site. (NOAA)

The restoration plan and environmental assessment were created by NOAA in coordination with the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection. The plan proposes restoration actions that will compensate for any injuries to the river and related natural resources.

A major component of the restoration would be the removal of the Weston Mill Dam, near the confluence of the Millstone and Raritan Rivers. The original dam, a barrier to migratory fish, is thought to have been built around 1700 to power a mill. Removal of the current dam, a 1930s-era concrete replacement of the original, will help to achieve the restoration goals of restoring passage for migratory fish while improving water quality and habitat.

As explained in the plan, removing this dam will return the flow of the Raritan River and the streams it feeds closer to their natural states and do so without negative impacts to endangered species or cultural, sociological, or archaeological resources.

Long situated in an area of industrial activity, the American Cyanamid Superfund Site is only one of several contaminated sites along the Raritan River and its tributaries. Many of these sites are now being remediated, and the watershed is being restored.

According to NOAA Regional Resource Coordinator, Reyhan Mehran, “While it’s likely that this site is among those that contributed to the general degradation of the Raritan River over the last century, the site’s cleanup and compensatory projects will be important parts of the story of restoring the Raritan.”

Learn how to comment on the draft restoration plan and environmental assessment.