NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


3 Comments

Detecting Change in a Changing World: 25 Years After the Exxon Valdez Oil Spill

Life between high and low tide along the Alaskan coast is literally rough and tumble.

The marine animals and plants living there have to deal with both crashing sea waves at high tide and the drying heat of the sun at low tide. Such a life can be up and down, boom and bust, as favorable conditions come and go quickly and marine animals and plants are forced to react and repopulate just as quickly.

But what happens when oil from the tanker Exxon Valdez enters this dynamic picture—and 25 years later, still hasn’t completely left? What happens when bigger changes to the ocean and global climate begin arriving in these waters already in flux?

Telling the Difference

Two people wearing chest waders sift for marine life in shallow rocky waters.

In 2011 NOAA marine biologist Gary Shigenaka (right) sifts through the sediments of Alaska’s Lower Herring Bay, looking for the tiny marine life that live there. (Photo by Gerry Sanger/Sound Ecosystem Adventures)

In the 25 years since the Exxon Valdez oil spill hit Alaska’s Prince William Sound, NOAA scientists, including marine biologist Gary Shigenaka and ecologist Alan Mearns, have been studying the impacts of the spill and cleanup measures on these animals and plants in rocky tidal waters.

Their experiments and monitoring over the long term revealed a high degree of natural variability in these communities that was unrelated to the oil spill. They saw large changes in, for example, numbers of mussels, seaweeds, and barnacles from year to year even in areas known to be unaffected by the oil spill.

This translated into a major challenge. How do scientists tell the difference between shifts in marine communities due to natural variability and those changes caused by the oil spill?

Several key themes emerged from NOAA’s long-term monitoring and subsequent experimental research:

  • impact. How do we measure it?
  • recovery. How do we define it?
  • variability. How do we account for it?
  • subtle connection to large-scale oceanic influences. How do we recognize it?

What NOAA has learned from these themes informs our understanding of oil spill response and cleanup, as well as of ecosystems on a larger scale. None of this, however, would have been apparent without the long-term monitoring effort. This is an important lesson learned from the Exxon Valdez experience: that monitoring and research, often viewed as an unnecessary luxury in the context of a large oil spill response, are useful, even essential, for framing the scientific and practical lessons learned.

Remote Possibilities

As NOAA looks ahead to the future—and with the Gulf of Mexico’s Deepwater Horizon oil spill in our recent past—we can incorporate and apply lessons of the Exxon Valdez long-term program into how we will support response decisions and define impact and recovery.

The Arctic is a region of intense interest and scrutiny. Climate change is opening previously inaccessible waters and dramatically shifting what scientists previously considered “normal” environmental conditions. This is allowing new oil production and increased maritime traffic through Arctic waters, increasing the risk of oil spills in remote and changing environments.

If and when something bad happens in the Arctic, how do scientists determine the impact and what recovery means, if our reference point is a rapidly moving target? What is our model habitat for restoring one area impacted by oil when the “unimpacted” reference areas are undergoing their own major changes?

Illustrated infographic showing timeline of ecological recovery after the Exxon Valdez oil spill.

Tracking the progress of recovery for marine life and habitats following the Exxon Valdez oil spill is no easy task. Even today, not all of the species have recovered or we don’t have enough information to know. (NOAA) Click to enlarge.

Listening in

NOAA marine biologist Gary Shigenaka explores these questions as he reflects on the 25 years since the Exxon Valdez oil spill in the following Making Waves podcast from the National Ocean Service:

[NARRATOR] This all points back at what Gary says is the main take-away lesson after 25 years of studying the aftermath of this spill: the natural environment in Alaska and in the Arctic are rapidly changing. If we don’t understand that background change, then it’s really hard to say if an area has recovered or not after a big oil spill.

[GARY SHIGENAKA] “I think we need to really keep in mind that maybe our prior notions of recovery as returning to some pre-spill or absolute control condition may be outmoded. We need to really overlay that with the dynamic changes that are occurring for whatever reason and adjust our assessments and definitions accordingly. I don’t have the answers for the best way to do that. We’ve gotten some ideas from the work that we’ve done, but I think that as those changes begin to accelerate and become much more marked, then it’s going to be harder to do.”

 

Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research on its recovery over the past 25 years.


1 Comment

Japan Confirms Dock on Washington Coast Is Tsunami Marine Debris

A worker uses a 30% bleach spray to decontaminate the Japanese dock which made landfall on Washington’s Olympic Peninsula in December 2012.

January 3, 2013 — A worker uses a 30% bleach spray to decontaminate and reduce the spread of possible marine invasive species on the Japanese dock which made landfall on Washington’s Olympic Peninsula in December 2012. (Washington Department of Fish and Wildlife/Allen Pleus)

The Japanese Consulate has confirmed that a 65-foot, concrete-and-foam dock that washed ashore in Washington’s Olympic National Park in late December 2012 is in fact one of three* docks from the fishing port of Misawa, Japan. These docks were swept out to sea during the earthquake and tsunami off of Japan in March 2011, and this is the second dock to be located. The first dock appeared on Agate Beach near Newport, Ore., in June 2012.

Using our trajectory forecast model, NOAA’s Office of Response and Restoration helped predict the approximate location of the dock after an initial sighting reported it to be floating somewhere off of Washington’s Olympic Peninsula. When the dock finally came aground, it ended up both inside the bounds of NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

In order to minimize damage to the coastline and marine habitat, federal agencies are moving forward with plans to remove the dock. In addition to being located within a designated wilderness portion of Olympic National Park, the dock is also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

According to the Washington State Department of Ecology, representatives from Olympic National Park, Washington State Department of Fish and Wildlife, and Washington Sea Grant Program have ventured out to the dock by land several times to examine, take samples, and clean the large structure.

Initial results from laboratory testing have identified 30-50 plant and animal species on the dock that are native to Japan but not the United States, including species of algae, seaweed, mussels, and barnacles.

In addition to scraping more than 400 pounds of organic material from the dock, the team washed its heavy side bumpers and the entire exterior structure with a diluted bleach solution to further decontaminate it, a method approved by the National Park Service and Olympic Coast National Marine Sanctuary.

Government representatives are examining possible options for removing the 185-ton dock from this remote and ecologically diverse coastal area.

Look for more information and updates on Japan tsunami marine debris at http://marinedebris.noaa.gov/tsunamidebris/.

*[UPDATE 4/5/2013: This story originally stated that four docks were missing from Misawa, Japan and that “the first dock was recovered shortly afterward on a nearby Japanese island.” We now know only three docks were swept from Misawa in the 2011 tsunami and none of them were found on a Japanese island. This dock has now been removed from the Washington coast.]


Leave a comment

Post Hurricane Sandy, NOAA Aids Hazardous Spill Cleanup in New Jersey and New York

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy.

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy. (NOAA)

[UPDATED NOVEMBER 6, 2012] Hurricane Sandy’s extreme weather conditions—80 to 90 mph winds and sea levels more than 14 feet above normal—spread oil, hazardous materials, and debris across waterways and industrial port areas along the Mid Atlantic. NOAA’s Office of Response and Restoration is working with the U.S. Coast Guard and affected facilities to reduce the impacts of this pollution in coastal New York and New Jersey.

We have several Scientific Support Coordinators and information management specialists on scene at the incident command post on Staten Island, N.Y.

Since the pollution response began, we have been dispatching observers in helicopters with the Coast Guard to survey the resulting oil sheens on the water surface in Arthur Kill, N.J./N.Y. This is in support of the response to a significant spill at the Motiva Refinery in Sewaren, N.J., as well as for the cleanup and assessment of several small spills of diesel fuel, biodiesel, and various other petroleum products scattered throughout northern New Jersey’s refinery areas.

One of the challenges facing communities after a devastating weather event is information management. One tool we have developed for this purpose is ERMA, an online mapping tool which integrates and synthesizes various types of environmental, geographic, and operational data. This provides a central information hub for all individuals involved in an incident, improves communication and coordination among responders, and supplies resource managers with the information necessary to make faster and better informed decisions.

ERMA has now been adopted as the official common operational platform for the Hurricane Sandy pollution response, and we have sent additional GIS specialists to the command post.

Species and Habitats at Risk

The most sensitive habitats in the area are salt marshes, which are often highly productive and are important wildlife habitat and nursery areas for fish and shellfish. Though thin sheens contain little oil, wind and high water levels after the storm could push the diesel deep into the marsh, where it could persist and contaminate sediments. Because marshes are damaged easily during cleanup operations, spill response actions will have to take into account all of these considerations.

In addition, diesel spills can kill the many small invertebrates at the base of the food chain which live in tidal flats and salt marshes if they are exposed to a high enough concentration. Resident marsh fishes, which include bay anchovy, killifish, and silversides, are the fish most at risk because they are the least mobile and occupy shallow habitats. Many species of heron nest in the nearby inland marshes, some of the last remaining marshlands in Staten Island. Swimming and diving birds, such as Canada geese and cormorants, are also vulnerable to having their feathers coated by the floating oil, and all waterfowl have the potential to consume oil while feeding.

Based on the risks to species and habitats from both oil and cleanup, we weigh the science carefully before making spill response recommendations to the Coast Guard.

Tracking the Spilled Oil

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012.

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012. (U.S. Coast Guard)

Because no two oils are alike, we train aerial observers to evaluate the character and extent of oil spilled on the water. NOAA performs these aerial surveys, or overflights, of spilled oil like in Arthur Kill to determine the status of the oil’s source and to track where wind and waves are moving spilled oil while also weathering it. The movement of wind and waves, along with sunlight, works to break down oil into its chemical components. This changes the appearance, size, and location of oil, and in return, can change how animals and plants interact with the oil.

When spilled on water, diesel oil spreads very quickly to a thin film. However, diesel has high levels of toxic components which dissolve fairly readily into the water column, posing threats to the organisms living there. Biodiesel can coat animals that come into contact with it, but it breaks down up to four times more quickly than conventional diesel. At the same time, this biodegradation could cause potential fish kills by using up large amounts of oxygen in the water, especially in shallow areas.

Look for photos, maps, and updates on pollution-related response efforts at IncidentNews.

Check the Superstorm Sandy CrisisMap for aggregated information from NOAA, FEMA, and other sources on weather alerts and observations; storm surge and flood water data; aerial damage assessment imagery; and the locations of power outages, food and gas in New Jersey, and emergency shelters.


Leave a comment

Do Bigger Oil Spills Require More Restoration?

This is a post by NOAA intern Franziska Economy.

Quick, can you name ten major oil spills?

Having a hard time? Until recently, I would have been scratching my head after:

  1. Deepwater Horizon/BP spill in the Gulf of Mexico (2010)
  2. Exxon Valdez tanker spill in Alaska (1989)
  3. … ?

Maybe some of you managed to come up with a couple of the other major spills from the last few decades, but this seems to be a tall order for the average person.

Oil spills actually happen just about every day, but most don’t make the news. I was surprised to learn that there are nearly 14,000 oil and chemical spills reported to the National Response Center every year.

Even crazier to me was the discovery that sometimes the best recovery option for small oil spills is actually taking “No Action.” This can be the case when cleaning up the oil would cause more harm to a sensitive ecosystem than just leaving it there to break down naturally. Sometimes, however, an oil spill can be relatively large and present real dangers to the plants and animals in the area without attracting much attention from the greater public.

Learning all of this prompted me to delve into the treasure trove of information on the oil spill cases NOAA’s Office of Response and Restoration handles. As the lead science agency for oil spills, NOAA is asked to respond to about 100–200 of the more significant marine and coastal spills every year to provide scientific support to help with the cleanup. A much smaller subset of those spills require a legal assessment of environmental monetary damages to restore those natural resources. This is known as a Natural Resource Damage Assessment or NRDA.

When studying these NRDA spill cases, I focused on two particularly interesting factors: the size of the oil spill and the “restoration cost,” or how much money the oil spiller has to pay to restore the public’s injured natural resources. Take a look at the top ten oil spill cases in each category and see how they compare:

Graph of the top ten NOAA oil spill NRDA settlements by dollar amount needed to restore injured environmental resources.

Figure 1. The top ten NOAA oil spill NRDA settlements by dollar amount needed to restore injured environmental resources. Note: each color in this graph corresponds to a spill found on both Figure 1 and Figure 2; gray spills are only found on one graph. Source: http://www.darrp.noaa.gov/ Click to enlarge.

Graph of the top ten NOAA oil spill NRDA settlements by the volume of oil spilled in gallons.

Figure 2. The top ten NOAA oil spill NRDA settlements by the volume of oil spilled in gallons. Source: http://www.darrp.noaa.gov/ Click to enlarge.

Right off the bat, it is easy to spot that bigger oil spills don’t always result in the highest restoration costs, and even if the restoration cost of a spill is relatively high, it is not necessarily related to the size of the spill. The Cosco Busan and Athos place first and second among oil spill settlements by restoration cost (Figure 1), but they are not big enough to land in the top ten by spill size (Figure 2; they are 12 and 23, respectively).

Furthermore, before the Deepwater Horizon/BP incident, the spill Barge Morris J. Berman was the largest spill that OR&R had responded to; yet it ranked only the fifth highest among restoration settlements, not even one-third the amount of the highest settlement, the Cosco Busan. In general, only half of the spills on each graph appear on the other, showing a lower correlation between these two variables than I originally thought.

So, why do you think that is? I’ve been brainstorming what factors could influence why gallons of oil spilled do not necessarily result in the most money required to restore natural resources. A single variable—such as the amount or type of oil spilled—isn’t by itself an accurate indicator of how much money it takes to respond to, clean up, and restore the environment after an oil spill. We have to examine a variety of factors to understand the bigger picture.

Other factors which might affect the restoration cost of an oil spill include:

  • the properties of the oil spilled (was it thick like tar that would sink to the bottom? Or was it light and likely to evaporate quickly from the water’s surface?)
  • the type and effectiveness of cleanup methods (was very little oil able to be recovered?)
  • the type of ecosystem affected (was it an estuary full of sensitive marsh grass and bird nesting sites or in an lower quality industrial area with a bulkheaded shoreline?)
  • the cultural and economic values of nearby cities and towns (was the spill close to a population with strong ties to the outdoor environment?)

What other issues do you think might play a role in how much restoration is required to offset the impacts of an oil spill on the environment?

Franziska Economy is an American University graduate with a Bachelors of Arts in Economics and Environmental Science. She is working as a Constituent and Legislative Affairs intern for NOAA’s Office of Response and Restoration and enjoys sharing the interesting facts she has learned and statistics she has uncovered. She hopes to help break down the acronym-filled, complicated world of responding to oil spills, assessing damages, and restoring broken ecosystems.


8 Comments

Investigating Environmental Impacts: Oil on the Kalamazoo River

Posted sign closing river activity due to oil spill response.

The Kalamazoo River has been closed to the public since the spill in 2010. We’re examining how this has affected public recreation and tribal cultural uses. (Terry Heatlie, NOAA)

In late summer of 2010, while the nation was fixated on the massive oil spill in the Gulf of Mexico, an underground pipeline in Michigan also began gushing oil. My job has been to help investigate the environmental damage that spill caused when the oil flowed into the Kalamazoo River.

The Situation
More than 800,000 gallons of crude oil** poured out of the leaking pipeline before it was eventually shut off. It oozed through the soft, wet ground just outside of Marshall, Mich., before washing into the Kalamazoo River, one of the largest rivers in southern Michigan.

I was at a meeting in Milwaukee with my suitcase full of sandals and skirts — not exactly dressed for an oil spill — when I got called to the scene. I drove nearly nonstop to Marshall, with only a quick detour in Indiana to buy steel-toed boots and work pants.

The Challenges
When I arrived, the other scientists and I made plans to collect data on the oil’s damage. Heavy rains had caused the river to flood over its banks, and as the oil flowed approximately forty miles* down the Kalamazoo, it was also carried up onto the banks and into trees. As the flood waters receded, oil was left on overhanging branches and in floodplains.

As the flood water receded, oil was left behind on river vegetation and overhanging tree branches, as well as in yards and forested floodplains. Yellow containment boom is in the foreground. (Gene Suuppi, State of Michigan)

The river’s floodplains, full of forests and wetlands, are also home to sensitive seasonal ponds, which provide valuable habitat for fish and macroinvertebrates (aquatic “bugs” at the base of the food chain). Therefore, we needed to find out: how far did the oil make it into the floodplain, what did it contact while there, and how much oil was left?

The smell of oil was sickeningly strong at first. Residents evacuated the houses nearest to the leak, and workers within half a mile of the pipeline break had to wear respirators to protect them from inhaling fumes. Even a dozen miles downstream, I could smell the oil and feel the fumes irritating my eyes. These fumes were the light components of the oil evaporating into the air. The heavy components of the oil were left behind on the banks or gradually sank to the bottom of the river.

The sunken oil has proven difficult to clean up. This winter, spill responders have been working to quantify how much sunken oil is left and to develop and test techniques for cleaning it up.

The Science
Along with my team from NOAA’s Office of Response and Restoration, the U. S. Fish and Wildlife Service, the State of Michigan, and the Huron Band and Gun Lake Tribe of the Potawatomi joined together as trustees to assess damages that the spill caused to natural resources.

We’ve conducted a variety of studies to collect information on the impacts of the spill and repeated some of the studies to see how the environment is recovering. Now we’re gathering all this data for the official damage assessment. We’ve examined samples of fish, mussels, water, and sediments for evidence of oil-related chemicals. We’ve collected observations of oiled vegetation and records of the number and condition of animals brought to the wildlife rehab center.

Talmadge Creek cleanup crews on Aug 6, 2010.

Cleanup crews place absorbent pads to sop up oil at Talmadge Creek, near the source of the spill, on Aug 6, 2010. We also take into account the effect cleanup has on the environment. (Chuck Getter)

Unfortunately, cleanup-related activities have an environmental impact too. For example, extra boat traffic on the river during cleanup led to some riverbank erosion and crushed freshwater mussels. Our studies include these factors too. We’ll also look into the effect the spill had on public recreation (the river has been closed to the public since the spill) and on tribal cultural uses.

What Next?
We and the other trustees will seek out restoration projects that address the impacts caused by the spill, being careful to balance the projects with the results of our studies. We’ll take project ideas from the public and from watershed organizations to make sure that we choose projects that fit in well with other restoration work being done across the broader Kalamazoo River watershed.

Enbridge Energy, as the owner of the pipeline, will have the option to implement the projects themselves with oversight from us trustees, or could pay for the cost of these projects as part of a larger legal settlement.

Stay tuned and we’ll keep you updated as this story unfolds.

*Correction: This originally stated that the oil flowed thirty miles down the Kalamazoo River.

**This was later discovered to be an oil sands (or tar sands) product.


3 Comments

Oil Spills Don’t Take a Holiday

As we get ready for Thanksgiving, I am reminded of a couple oil spills that have occurred over that weekend in the past. Most of our work takes place each day from 9-5, but when a spill happens, we respond 24-7 regardless of holiday schedules.

On November 26, 1997, the day before Thanksgiving, the M/V Kuroshima, a 368-foot frozen seafood freighter, broke away from its anchorage during a severe storm. While the vessel was attempting to move to a safer anchorage, winds in excess of 100 knots blew the freighter into Second Priest Rock near the entrance of Dutch Harbor, Alaska, puncturing several of the vessel’s fuel tanks. The disabled vessel subsequently ran aground at Summer Bay, spilling about 39,000 gallons of heavy fuel oil.

M/V Kuroshima run aground.

M/V Kuroshima run aground in Summer Bay, Alaska. Credit: Jim Severns, Dutch Harbor, with permission.

Fans of “The Deadliest Catch” know these waters—and their dangers—well. The fishing vessels pass this point on their way to and from the Bering Sea fishing grounds. And this incident lived up to that deadly reputation. Two of the ship’s crew were killed during the grounding.

I flew up to Dutch Harbor to help with the response. Late fall in Alaska’s Aleutian Islands is not the best flying weather, and the airport is challenging even during good weather. The airport’s runway is bordered on one side by a drop off into the ocean and the side of a hill on the other. Both ends drop off into open water, with mountains guarding the approach. Winds buffeted the plane, and I remember the airplane taking a couple shaky passes at the runway—one of the shortest commercial runways in North America—before landing.  You can get a sense of what it is like to land there from this video [leaves this blog].

After that flight I vowed to increase my life insurance.

Dutch Harbor runway.

Final approach to Dutch Harbor, Alaska (on a calm day). Credit: Doug Helton, NOAA.

Bitter cold and high winds also hampered the cleanup and salvage of the ship and its spilled contents. It took four months to refloat the vessel, and cleanup lasted for over a year.

Shoreline cleanup in Summer Bay Lake, Alaska.

Shoreline cleanup along Summer Bay Lake, Alaska, December 1997, following M/V Kuroshima oil spill. Credit: Ruth Yender, NOAA.

The damage assessment and restoration effort for the spill took several years. The final restoration plan [PDF], prepared by the state and federal natural resource trustees in consultation with the Qawalangin Tribe of Unalaska, addressed five areas of impacts: birds, vegetation, intertidal shellfish, salmon, and recreation. A settlement was reached in 2002 for natural resource damages, totaling approximately $650,000.

The recreational projects prompted some interesting challenges and solutions. Under the Oil Pollution Act of 1990, claims can be made for the lost use of natural resources; in this case, the spill affected the prime recreational beach for the city of Unalaska. As compensation for the lost recreational opportunities during the spill, one project funded a summer outdoor recreation camp for the Qawalangin Tribe. While there, the students learned traditional subsistence harvesting techniques for shellfish and participated in other cultural and environmental activities with Unangan elders. We also arranged for further chemical analysis of the shellfish tissues and educated the community on the safety of the local seafoods.

While the spill response and restoration was successful, the story of the ship doesn’t end well. After the M/V Kuroshima was refloated, it was repaired, sold to a Latvian company and renamed the M/V Linkuva. On June 20, 2000, the ship and 18 crewmembers were lost in Hurricane Carlotta off Acapulco, Mexico.


Leave a comment

A DDT Legacy and the Road to Recovery in California

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

Effects of DDT on bird eggs.

On display at the National Museum of American History, you can see the effects of DDT on a bird egg (right). Credit: Kari Bluff, Creative Commons.

If you ask the earlier Baby Boomer generation about DDT (dichlorodiphenyltrichloroethane), they might recall images of this chemical being sprayed in their neighborhoods right where they were playing.

DDT was first considered a wonder chemical by many for its use against disease-carrying insects and agricultural pests, prompting a Nobel Prize for its discovery. DDT was widely used as a pesticide beginning in the 1940s, until concerned biologists led by Rachel Carson, documented its harmful effects on birds, other wildlife, and possibly human health.

Another trait of DDT is that once released, it stays in the environment for a very long time.  The U.S. Environmental Protection Agency (EPA) finally banned its use in 1972. However, releases of this chemical were widespread by the time it was banned.

The story in southern California, however, is a little different.  A DDT manufacturing company called the Montrose Chemical Corporation, located in Torrance, Calif., had a permit to release their DDT waste through an outfall pipe that led to the ocean nearby. Other factories in the area were manufacturing PCBs, another harmful chemical, and releasing their waste through the same outfall pipe at White Point.

Millions of pounds* later, local and federal governments determined that the release of these chemicals was a violation of the Comprehensive Environmental Response Compensation Liability Act (CERCLA), which is also known as Superfund. After 10 years of litigation and data collection, a settlement agreement was reached, and funds were made available to clean up the contamination site at the bottom of the ocean along Palos Verdes Shelf and to restore resources harmed from the pollution within the Southern California Bight.

One year after a settlement was reached, in 2001, the Montrose Settlements Restoration Program (MSRP) was formed to oversee restoration of resources harmed by DDT and PCBs including Bald Eagles, Peregrine Falcons, seabirds, fishing, and fish habitat. This year marks the 10 year anniversary for the restoration program, and there is plenty to celebrate. At www.montroserestoration.noaa.gov, you can find the program’s restoration accomplishments, photos, wildlife webcams, and the latest updates from the program’s trustee council. Relive some highlights of successful restoration milestones of the program over the last decade, and see what projects MSRP is proposing in the Draft Phase 2 Restoration Plan released for public comment this month.

A larger symbol of the hope for recovery here manifests itself in the film Return Flight: Restoring the Bald Eagle to the Channel Islands, directed by the Filmmakers Collaborative SF. This film captures the spirit of biologists, partners, volunteers, and concerned citizens working to secure a biological legacy for the Bald Eagle in southern California despite the chemical legacy of DDT.

You can watch the short film here:

*Correction: Previously, this incorrectly stated “hundreds of millions of tons,” not pounds, of PCBs and DDT waste.

Above photo is licensed under a Creative Commons Attribution-No Derivatives license.

Gabrielle Dorr

Gabrielle Dorr.

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.