NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Five Key Questions NOAA Scientists Ask During Oil Spills

Responders in a small boat pressure-wash rocky shore at the site of an oil spill.

Responders pressure wash the Texas shoreline after the tank ship Eagle Otome oil spill in January of 2010. (NOAA)

During an emergency situation such as an oil spill or ship grounding, scientists in NOAA’s Office of Response and Restoration are guided by five central questions as they develop scientifically based recommendations for the U.S. Coast Guard.

These recommendations help the Coast Guard respond to the incident while minimizing environmental impacts resulting from the spill and response.

Identified in the late 1980s by NOAA, these questions provide a sequential framework for identifying key information at each step that will then inform answers to subsequent questions raised during an oil spill. For example, in order to predict “where could it go?” (question two), you first need to know “what spilled?” (question one), and so on.

Questions guiding NOAA's oil spill response science, with a ship leaking oil, surrounded by boom, with flying birds and a benzene molecule.

Naturally, during a spill response, it may become necessary to revisit earlier questions or assumptions as conditions change and more—or better—information becomes available.

The Scene of the Spill

Establishing what happened is the first step. What is the scenario for this incident and where is it occurring? Gathering this information means figuring out facts such as:

  • the type of incident (e.g., pipeline rupture versus oil tanker collision).
  • the volume and types of oil involved.
  • the incident environment (e.g., stormy, calm).
  • the incident location (e.g., open ocean, near shore, water temperature).

Forecast: Cloudy with a Chance of Oil

Dr. Amy MacFadyen is a NOAA physical oceanographer who frequently works on the next step, which is predicting where the oil is going to go. In most of the spills we respond to, the oil is spilled at or near the water surface and is less dense than water. Initially, the oil will float and form a slick. Dr. MacFadyen looks at what is going on in the environment with wind and waves, which can break up the slick, causing some of the oil to mix into the water column in the form of small droplets.

An important point is that responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.

In order to make predictions about oil movement, Dr. MacFadyen uses a computer model which includes ocean current and wind forecasts to generate an oil trajectory forecast map. Trajectory forecast models may be updated frequently, as conditions at the site of the spill change. Although the trajectory map shows the position of the oil, there is an element of uncertainty as the forecasts are based on other predictions, such as weather forecasts, which are not always perfect and are themselves subject to change.

To reduce uncertainty, trajectory forecasts incorporate information from trained observers flying over the slick who can confirm the actual location of the oil over the course of the spill response. MacFadyen can then incorporate that updated information as she runs the trajectory forecast model again.

A Sense of Sensitivity

In order to answer what the oil might affect, NOAA developed Environmental Sensitivity Index maps to identify what might be harmed by a spill in different habitat types. It is necessary for responders and decision makers to know what shoreline types exist in the path of the oil, as well as vulnerable species and habitats so that they can plan for the appropriate protection (such as booming) or cleanup method (such as skimming). Cleaning up oil off a sandy beach is very different than a salt marsh, mudflat, or rocky shore.

Animals, plants, and habitats at risk can include those on the water (e.g., seabirds), below the surface (e.g., fish), and on the bottom (e.g., mussels), as well as on the shoreline (e.g., marsh grasses).

Jill Petersen, manager of the Office of Response and Restoration Environmental Sensitivity Index map program, works to ensure that these maps of each U.S. coastal region are up-to-date so that this information is readily available should a spill occur.

Raise the Alarm for Harm

The next step is to look at what harm the oil could cause. When oil is released into the water, it can cause harm to marine animals and the environment. Oil contains thousands of chemical compounds. Polycyclic aromatic hydrocarbons [PDF], or PAHs as they are commonly known, are a class of oil compounds that have been associated with toxic effects in exposed organisms. Because of this, scientists frequently study PAHs in spilled oil to gauge the oil’s potential environmental impact.

However, the complexity of each oil’s chemistry and the changes that occur once it is in the environment make the assessment of risk a challenging task. In order to do so, response biologists consider the type of oil, the sensitivity of potentially exposed organisms, and how the oil is expected to behave in the environment.

Oil spills can involve releases of large volumes of oil that overwhelm whatever natural capacity there might be to absorb impacts, which leads to the photographs we see of heavy oil covering plants and animals. But recent research studies have shown that even minute amounts of petroleum can harm marine eggs and larvae—which means the decisions we make during a response are even more critical to the long-term health of the affected habitats.

NOAA marine biologist Dr. Alan Mearns is an expert on how pollution from oil harms the environment. Each year, he reviews and summarizes recent research in this field to ensure oil spill response recommendations and decisions are based on the most current science that exists.

Sending Help

A skimmer picks up oil off the surface of the Delaware River.

A skimmer picks up oil off the surface of the Delaware River after the tanker Athos spilled oil in 2004. (NOAA)

Answering the previous questions allows us to determining what can be done to help. Doug Helton, the Office of Response and Restoration’s Incident Operations Coordinator, describes possible solutions as usually falling under three categories: containing the source, cleaning up, and protecting the shore.

To contain the source means to limit the further release of pollution by plugging the leak in the pipeline or containing the spill, for example, by keeping the ship from sinking and losing its entire cargo of oil.

Cleanup on the water could be conducted by mechanical means, such as booming and skimming, or through alternative technologies, such as burning the oil in open water or using chemicals to disperse the oil.

Cleanup along the shoreline can be done manually or mechanically using methods such as pressure washing. When considering cleanup options, sometimes monitoring the situation is the best option when a response method could actually cause more harm to the environment. One example is in an oiled marsh because these habitats are especially vulnerable to oil but also to being damaged by people walking through them trying to remove oil.

In addition to providing scientific support to the U.S. Coast Guard, NOAA’s Office of Response and Restoration develops oil spill response software and mapping tools. For responders, NOAA has published a series of job aids and manuals that provide established techniques and guidelines for observing oil, assessing shoreline impact, and evaluating accepted cleanup technologies for a variety of oil spill situations.


Leave a comment

Who Is Funding Research and Restoration in the Gulf of Mexico After the Deepwater Horizon Oil Spill?

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration, and Frank Parker, Associate Director for the NOAA RESTORE Act Science Program, with NOAA’s National Centers for Coastal Ocean Science.

The Deepwater Horizon Oil Spill: Five Years Later

This is the fourth in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

When an oil spill takes place, people want to see the coasts, fish, wildlife, and recreational opportunities affected by that spill restored—so they can be as they were before, as quickly as possible. Fortunately, the Oil Pollution Act of 1990 supports this. After most major oil spills, what routinely happens is the government undertakes a Natural Resource Damage Assessment, a rigorous, scientific process of assessing environmental injuries and, with public input, identifying and implementing the appropriate amount of restoration to compensate for the injuries resulting from this spill (all paid for by those responsible for the pollution).

What is not routine in the wake of an oil spill is the groundswell of support for even more research and restoration, beyond the scope of the usual damage assessment process, to bolster the resilience of the impacted ecosystem and coastal communities. Yet that is exactly what happened after the Deepwater Horizon well blowout in 2010, which renewed a national interest in the unique environment that is the Gulf of Mexico.

In the wake of this disaster, there have been various additional investments, outside of the Natural Resource Damage Assessment process, in more broadly learning about and restoring the Gulf of Mexico. These distinct efforts to fund research and restoration in the Gulf have been sizable, but keeping track of them can be, frankly, a bit confusing.

The many organizations involved are working to ensure the Gulf’s new infusions of funding for restoration and research are well coordinated. However, keep in mind that each effort is independent of the others in funding mechanism, primary mandate, and process.

Tracking Dollars for Gulf Restoration

In one effort, announced while the Macondo well was still gushing oil, BP dedicated up to $500 million dollars to be spent over 10 years “to fund an independent research program designed to study the impact of the oil spill and its associated response on the environment and public health in the Gulf of Mexico.” This investment spawned the Gulf of Mexico Research Initiative, or GOMRI, which is governed by an independent, academic research board of 20 science, public health, and research administration experts and independent of BP’s influence.

Meanwhile, BP faced both potential criminal and civil penalties under the Clean Water Act, which regulates the discharge of pollutants into U.S. waters. When such penalties are pursued by the government for pollution events, such as an oil spill, a portion of the criminal monetary penalties are usually paid to a local environmental foundation or conservation organization to administer the funds.

Ultimately, BP agreed to a $4 billion criminal settlement in 2013, with the bulk of that money going to North American Wetlands Conservation Fund, National Fish and Wildlife Foundation, and National Academy of Sciences.

Chart showing various investments and their recipients for science and restoration efforts in the Gulf of Mexico after the Deepwater Horizon oil spill.

Science and restoration initiatives in the Gulf of Mexico following the Deepwater Horizon oil spill. (NOAA)

That still leaves civil penalties to be determined. Normally, civil penalties under the Clean Water Act are directed to the General Treasury.

However, Congress passed legislation calling for 80 percent of the administrative and civil penalties related to the Deepwater Horizon oil spill to be diverted directly to the Gulf of Mexico for ecological and economic restoration. This legislation, known as the RESTORE Act (Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012), passed on July 6, 2012.

While the full extent of BP’s civil penalties have yet to be determined, in 2013 the Department of Justice finalized a civil settlement with Transocean in the amount of $1 billion. This settlement results in more than $800 million going to the Gulf of Mexico under the RESTORE Act. As to penalties for BP, the court has currently ruled on two of the three trial phases. Based on those rulings, currently under appeal, the penalty cap for BP is $13.7 billion. A third trial phase for factors that are taken into account in establishing the penalty at or under that cap was concluded in February 2015. The court has yet to rule on the third phase of the trial, and the pending appeals have not yet been heard by the appeals court.

NOAA and Restoration in the Gulf

So where does NOAA fit into all of this? NOAA is carrying out its usual duties of working with its partners to assess injury to and restore impacted natural resources through the Natural Resource Damage Assessment process. However, NOAA also is involved in supporting broader Gulf research and resilience, which will complement the damage assessment process, in two new ways through the RESTORE Act.

First, NOAA is supporting in the RESTORE Act’s Gulf Coast Ecosystem Restoration Council, which is chaired by Commerce Secretary Penny Pritzker (NOAA sits in the Department of Commerce). Second, NOAA is leading the Gulf Coast Ecosystem Restoration Science, Observation, Monitoring, and Technology Program, or more simply, the NOAA RESTORE Act Science Program.

A NOAA ship at dock.

NOAA is leading a science program aimed at improving our understanding of the Gulf of Mexico and the plants and animals that live there, in order to better protect and preserve them. (NOAA)

This program exists because we simply don’t know as much as we need to know about the Gulf of Mexico and the plants and animals that live there in order to reverse the general decline of coastal ecosystems and ensure resilience in the future.

To make sure this new science program addresses the needs of the region, NOAA, in partnership with the U.S. Fish and Wildlife Service, met with resource managers, scientists, and other Gulf of Mexico stakeholders to discuss what the focus of the program should be. We heard three key messages loud and clear:

  • Make sure the research we support is closely linked to regional resource management needs.
  • Coordinate with other science initiatives working in the region.
  • Make the results of research available quickly to those who could use them.
Woman checks for bubbles in a sample of water on board the NOAA Ship Pisces.

The NOAA RESTORE Act Science Program is already in the process of making available $2.5 million for research in the Gulf of Mexico, with more opportunities to come. (NOAA)

NOAA and the U.S. Fish and Wildlife Service have designed a science plan [PDF] for the NOAA RESTORE Act Science Program that outlines how we will make this happen.

The science plan describes the research priorities highlighted during our engagement with stakeholders and from reviewing earlier assessments of the science needed to better understand the Gulf of Mexico. These priorities will guide how the program directs its funding over the coming years.

The research priorities include improving our understanding of how much and when freshwater, sediment, and nutrients enter the coastal waters of the Gulf of Mexico and what this means for the growth of wetlands and the number of shellfish and fish in the Gulf of Mexico. Another priority is developing new techniques and technologies for measuring conditions in the Gulf to help inform resource management decisions.

Apply for Research Funding

Currently, the NOAA RESTORE Act Science Program is holding its first competition for funding, with over 100 research teams already responding. It will make $2.5 million available for researchers to review and integrate what we already know about the Gulf of Mexico and work with resource managers to develop strategies directing the program toward our ultimate goal of supporting the sustainability of the Gulf and its fisheries.

The results of this work also will help inform the direction of other science initiatives and restoration activities in the Gulf region. NOAA and the U.S. Fish and Wildlife Service will announce the winners of this funding competition in the fall of 2015.

To learn more about the NOAA RESTORE Act Science Program and future funding opportunities, visit http://restoreactscienceprogram.noaa.gov/.


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


2 Comments

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

Staghorn coral fragments hanging on an underwater tree structure of PVC pipes.

NOAA uses coral nurseries to help corals recover after traumatic events, such as a ship grounding. Hung on a tree structure, the staghorn coral shown here will have a better chance of surviving and being transplanted back onto a reef. (NOAA)

The cringe-inducing sound of a ship crushing its way onto a coral reef is often the beginning of the story. But, thanks to NOAA’s efforts, it is not usually the end. After most ship groundings on reefs, hundreds to thousands of small coral fragments may litter the ocean floor, where they would likely perish rolling around or buried under piles of rubble. However, by bringing these fragments into coral nurseries, we give them the opportunity to recover.

In the waters around Florida, Puerto Rico, and the U.S. Virgin Islands, NOAA works with a number of partners in various capacities to maintain 27 coral nurseries. These underwater safe havens serve a dual function. Not only do they provide a stable environment for injured corals to recuperate, but they also produce thousands of healthy young corals, ready to be transplanted into previously devastated areas.

Checking into the Nursery

When they enter coral nurseries, bits of coral typically measure about four inches long. They may come from the scene of a ship grounding or have been knocked loose from the seafloor after a powerful storm. Occasionally and with proper permission, they have been donated from healthy coral colonies to help stock nurseries. These donor corals typically heal within a few weeks. In fact, staghorn and elkhorn coral, threatened species which do well in nurseries, reproduce predominantly via small branches breaking off and reattaching somewhere new.

In the majority of nurseries, coral fragments are hung like clothes on a clothesline or ornaments on trees made of PVC pipes. Floating freely in the water, the corals receive better water circulation, avoid being attacked by predators such as fireworms or snails, and generally survive at a higher rate.

After we have established a coral nursery, divers may visit as little as a few times per year or as often as once per month if they need to keep algae from building up on the corals and infrastructure. “It helps if there is a good fish population in the area to clean the nurseries for you,” notes Sean Griffin, a coral reef restoration ecologist with NOAA.

Injured corals generally take at least a couple months to recover in the nurseries. After a year in the nursery, we can transplant the original staghorn or elkhorn colonies or cut multiple small fragments from them, which we then use either to expand the nursery or transplant them to degraded areas.


One of the fastest growing species, staghorn coral can grow up to eight inches in a year while elkhorn can grow four inches. We are still investigating the best ways to cultivate some of the slower growing species, such as boulder star coral and lobed star coral.

Growing up to Their Potential

In 2014, we placed hundreds of coral fragments from four new groundings into nurseries in Puerto Rico and the U.S. Virgin Islands. This represents only a fraction of this restoration technique’s potential.

After the tanker Margara ran aground on coral reefs in Puerto Rico in 2006, NOAA divers rescued 11,000 salvageable pieces of broken coral, which were reattached at the grounding site and established a nursery nearby using 100 fragments from the grounding. That nursery now has 2,000 corals in it. Each year, 1,600 of them are transplanted back onto the seafloor. The 400 remaining corals are broken into smaller fragments to restock the nursery. We continue to grow healthy corals in this nursery and then either transplant them back to the area affected by the grounded ship, help restore other degraded reefs, or use some of them to start the process over for another year.

Nurseries in Florida, Puerto Rico, and the U.S. Virgin Islands currently hold about 50,000 corals. Those same nurseries generate another 50,000 corals which we transplant onto restoration sites each year. Sometimes we are able to use these nurseries proactively to protect and preserve corals at risk. In the fall of 2014, a NOAA team worked with the University of Miami to rescue more than 200 threatened staghorn coral colonies being affected by excessive sediment in the waters off of Miami, Florida. The sedimentation was caused by a dredging project to expand the Port of Miami entrance channel.

We relocated these colonies to the coral nurseries off Key Biscayne run by our partners at the University of Miami. The corals were used to create over 1,000 four-inch-long fragments in the nursery. There, they will be allowed to recover until dredge operations finish at the Port of Miami and sedimentation issues are no longer a concern. The corals then can either be transplanted back onto the reef where they originated or used as brood stock in the nursery to propagate more corals for future restoration.


Leave a comment

When the Dynamics of an Oil Spill Shut Down a Nuclear Power Plant

Yellow containment boom floats on a river next to a nuclear power plant.

Precautionary containment boom is visible around the water intake system at the Salem Nuclear Generating Station in New Jersey on December 6, 2004. The nuclear plant was shut down for 11 days to prevent the heavy, submerged oil from the Athos spill from clogging the water intakes. (NOAA)

“I’ve never reopened a nuclear power plant,” thought NOAA’s Ed Levine. Despite that, Levine knew it was his job to get the right information to the people who ultimately would make that decision. This was his role as a NOAA Scientific Support Coordinator during oil spills. However, most major oil spills do not affect nuclear power plants. This wintry day in 2004 was an exception.

Forty miles north of the Salem Nuclear Generating Station in New Jersey, an oil tanker called the Athos I had struck an object hidden beneath the Delaware River. As it was preparing to dock at the CITGO refinery near Philadelphia on November 26, the ship began tilting to one side, the engine shut down, and oil started gushing out.

“Not your typical oil spill,” later reflected Jonathan Sarubbi, who served as U.S. Coast Guard Captain of the Port and led the federal response during this incident. Not only did no one immediately know what the ship had hit—or where that object was located in the river channel—but the Athos, now sitting too low in the water to reach the dock, was stuck where it was. And it was still leaking its cargo of heavy Venezuelan crude oil.

Capt. Sarubbi ordered vessel traffic through this busy East Coast shipping channel to stop until the object the Athos hit could be found. Little did Capt. Sarubbi, Levine, and the other responders know that even more challenges would be in store beneath the water and down the river.

Getting Mixed up

Most oils, most of the time, float on the surface of water. This was precisely what responders expected the oil coming out of the Athos to do. But within a couple days of the spill, they realized that was not the case. This oil was a little on the heavier side. As it shot out of the ship’s punctured bottom, some of the oil mixed with sediment from the river bottom. It didn’t have far to go; thanks to an extremely low tide pulling the river out to sea, the Athos was passing a mere 18 inches above the bottom of the river when it sprung a leak.

Now mixed with sediment, some of the spilled oil became as dense as or denser than water. Instead of rising to the river surface, it sank to the bottom or drifted in the water column. Even some of the oil that floated became mixed with sediment along the shoreline, later sinking below the surface. For the oil suspended in the water, the turbulence of the Delaware River kept it moving with the currents increasingly toward the Salem nuclear plant, perched on the river’s edge.

NOAA’s oil spill trajectory model GNOME forecasts the spread of oil by assuming the oil is floating on the water’s surface. Normally, our oceanographers can verify how well the forecasts are doing by calibrating the model against twice-a-day aerial surveys of the oil’s movement. The trouble with oil that does not float is that it is harder to see, especially in the murky waters of the Delaware River.

Responders were forced to improvise. To track oil underwater, they created new sampling methods, one of which involved dropping weighted ropes into the water column at various points along the river. The ropes were lined with what looked like cheerleader pom-poms made of oil-attracting plastic strips that would pick up oil as it passed by.

Nuclear Ambitions

Nuclear plants like the Salem facility rely on a steady flow of freshwater to cool their reactors. A thin layer of floating oil was nearing the plant by December 1, 2004, with predictions that the heavier, submerged oil would not be far behind. By December 3, small, sticky bits of oil began showing up in the screens on the plant’s cooling water intakes. To keep them from becoming clogged, the plant decided to shut down its two nuclear reactors the next day. That was when NOAA’s Ed Levine was tasked with figuring out when the significant threats due to the oil had passed.

Eleven days later, the Salem nuclear plant operators, the State of New Jersey, and the Nuclear Regulatory Commission allowed the plant to restart. A combination of our modeling and new sampling methods for detecting underwater oil had shown a clear and significant drop in the amount of oil around the plant. Closing this major electric generating facility cost $33.1 million out of more than $162 million in claims paid to parties affected by the Athos spill. But through our innovative modeling and sampling, we were able to reduce the time the plant was offline, minimizing the disruption to the power grid and reducing the economic loss.

Levine recalled this as an “eye-opening” experience, one yielding a number of lessons for working with nuclear power plants should an oil spill threaten one in the future. To learn more about the Athos oil spill, from response to restoration, visit response.restoration.noaa.gov/athos.

A special thanks to NOAA’s Ed Levine and Chris Barker, former U.S. Coast Guard Captain Jonathan Sarubbi, and Henry Font, Donna Hellberg, and Thomas Morrison of the Coast Guard National Pollution Funds Center for sharing information and data which contributed to this post.


Leave a comment

Carrying on a Nearly Fifty Year Tradition, Scientists Examine the Intersection of Pollution and Marine Life

As reliably as the tides, each month biologist Donald J. Reish would wash over the library at California State University, Long Beach, armed with stacks of 3×5 index cards. On these cards, Reish meticulously recorded every scientific study published that month on pollution’s effects on marine life. When he began this ritual in 1967, this did not amount to very many studies.

“There was essentially none at the time,” says Reish, who helped pioneer the study of pollution’s impacts on marine environments in the 1950s.

Nevertheless, after a year of collecting as much as he could find in scientific journals, he would mail the index cards with their handwritten notes to a volunteer crew that often included his former graduate students, including Alan Mearns, now an ecologist with NOAA’s Office of Response and Restoration. Like a wave, they would return to the library to read, review, and send summaries of these studies back to Reish. At his typewriter, he would compile the individual summaries into one comprehensive list, an “in case you missed it” for scientists interested in this emerging field of study. This compilation would then be published in a scientific journal itself.

By the early 2000s, Reish handed off leadership of this annual effort to Mearns, an early recruit to the project. Today, Mearns continues the nearly 50 year tradition of reviewing the state of marine pollution science and publishing it in the journal Water Environment Research. Their 2014 review, “Effects of Pollution on Marine Organisms,” comes together a little differently than in the 1960s and 70s—and covers issues that have changed with the years as well.

Signs of the Times

Man and woman at a desk covered with scientific papers.

NOAA Office of Response and Restoration biologists Alan Mearns and Nicolle Rutherford tackle another year’s worth of scientific studies, part of an effort begun in 1967. (NOAA)

For starters, vastly more studies are being published on marine pollution and its environmental effects. For this year’s publication, Mearns and his six co-authors, who include Reish and NOAA scientists Nicolle Rutherford and Courtney Arthur, reviewed 341 scientific papers which they pulled from a larger pool of nearly 1,000 studies.

The days of having to physically visit a library each month to read the scientific journals are also over. Instead, Mearns can wait until the end of the year to scour online scientific search engines. Emails replace the handwritten 3×5 index cards. And fortunately, typewriters are no longer involved.

The technology the reviewers are using isn’t the only thing to change with the years. In the early days, the major contaminants of concern were heavy metals, such as copper, which were turning up in the bodies of fish and invertebrates. Around the 1970s, the negative effects of the insecticide DDT found national attention, thanks to the efforts of biologist Rachel Carson in her seminal book Silent Spring.

Today, Mearns and Reish see the focus of research shifting to other, often more complicated pollutants, such as nanomaterials, which can be any of a number of materials roughly 100,000 times smaller than the width of a human hair. On one hand, nanotechnology is helping scientists decipher the effects of some pollutants, while, on the other, nanomaterials, such as those found in cosmetics, show potentially serious effects on some marine life including mussels.

Another major trend has been the evolution of the ways scientists evaluate the effects of pollutants on marine life. Researchers in the United States and Western Europe used to study the toxicity of a pollutant by increasing the amount animals are exposed to until half the study animals died. In the 1990s, researchers began exploring pollutants’ finer physiological effects. How does exposure to X pollutant affect, for example, a fish’s ability to feed or reproduce?

Nowadays, the focus is even more refined, zeroing in on the molecular scale to discern how pollutants affect an animal’s genetic material, its DNA. How does the presence of oil change whether certain genes in a fish’s liver are turned on or off? What does that mean for the fish?

A Year of Pollution in Review

With three Office of Response and Restoration scientists working on this effort, it unsurprisingly features a lot on oil spills and marine debris, two areas of our expertise.

Of particular interest to Mearns and Rutherford, as oil spill biologists, are the studies of biodegradation of oil in the ocean, specifically, how microbes break down and eat components of oil, especially the toxic polycyclic aromatic hydrocarbons (PAHs). Scientists are examining collections of genes in such microbes and determining which ones produce enzymes that degrade PAHs.

“That field has really exploded,” says Mearns. “It’s just amazing what they’re finding once they use genomics and other tools to go into [undersea oil spill] plumes and see what these critters are doing and eating.”

Marine debris research in 2013 focused on the effects of eating, hitchhiking on, or becoming entangled in debris. Studies examined the resulting impacts on marine life, including sea birds, fish, crabs, turtles, marine mammals, shellfish, and even microbes. The types of debris that came up again and again were abandoned fishing gear and plastic fragments. In addition, quite a bit of research attempted to fill in gaps in understanding of how plastic debris might take up and then leach out potentially dangerous chemicals.

Attitude Adjustment

A group of men and women stand around Don Reish.

Reish often relied on his former graduate students, including NOAA’s Alan Mearns, to help review the many studies on marine pollution’s effects each year. Shown here in 2004, Reish (seventh from left) is surrounded by a few of his former students who gathered to honor him at the Southern California Academy of Sciences Annual Meeting. Mearns is fifth from left and another contributer, Phil Oshida of the U.S. Environmental Protection Agency, stands between and behind Mearns and Reish. (Alan Mearns)

Perhaps the most significant change over the decades has been a change in attitudes. Reish recalled a presentation he gave at a scientific meeting in 1955. He was discussing his study of how marine worms known as polychaetes changed where they lived based on the effects of pollution in southern California. Afterward, he sat down next to a professor from another college, whose response to his presentation was, “Don, why don’t you go do something important?”

In 2014 attitudes generally skew to the other end of the spectrum when it comes to understanding human impacts on our world and how intertwined these impacts often are with human well-being.

And while there is a lot of bad news about these impacts, Mearns and Reish have seen some bright spots as well. Scientists are starting to observe slow declines in the presence of toxic chemicals, such as DDT from insecticides and PCBs from industrial manufacturing, which last a long time in the environment and build up in the bodies of living things, such as the fish humans like to catch and eat.

The end of the year is approaching and, reliably, Mearns and his colleagues are again preparing to scan hundreds of studies for their annual review of the scientific literature. Reflecting on this effort, Mearns points out another benefit of bringing together such a wide array of research disciplines. It encourages him to cross traditional boundaries of scientific study, enriching his work in the process.

“For me, it inspires out-of-the-box thinking,” says Mearns. “I’ll be looking at wastewater discharge impacts and I’ll spot something that I think is relevant to oil spill studies…We can find out things from these other fields and apply them to our own.”


Leave a comment

The Earth Is Blue and We’d Like to Keep It That Way

Pod of dolphins swimming.

Spinner dolphins in the lagoon at Midway Atoll National Wildlife Refuge in Papahānaumokuākea Marine National Monument. A pod of over 200 spinner dolphins frequent Midway Atoll’s lagoon. (NOAA/Andy Collins)

Often, you have to leave a place to gain some perspective.

Sometimes, that means going all the way to outer space.

When humans ventured away from this planet for the first time, we came to the stunning realization that Earth is blue. A planet covered in sea-to-shining-sea blue. And increasingly, we began to worry about protecting it. With the creation of the National Marine Sanctuaries system in 1972, a very special form of that protection began to be extended to miles of ocean in the United States. Today, that protection takes the form of 14 marine protected areas encompassing more than 170,000 square miles of marine and Great Lakes waters.

Starting October 23, 2014, NOAA’s Office of National Marine Sanctuaries is celebrating this simple, yet profound realization about our planet—that Earth is Blue—on their social media accounts. You can follow along on Facebook, Twitter, YouTube, and now their brand-new Instagram account @NOAAsanctuaries. Each day, you’ll see an array of striking photos (plus weekly videos) showing off NOAA’s—and more importantly, your—National Marine Sanctuaries, in all of their glory. Share your own photos and videos from the sanctuaries with the hashtag #earthisblue and find regular updates at sanctuaries.noaa.gov/earthisblue.html.

You can kick things off with this video:

Marine sanctuaries are important places which help protect everything from humpback whales and lush kelp forests to deep-sea canyons and World War II shipwrecks. But sometimes the sanctuaries themselves need some extra protection and even restoration. In fact, one of the first marine sanctuaries, the Channel Islands National Marine Sanctuary off of southern California, was created to protect waters once imperiled by a massive oil spill which helped inspire the creation of the sanctuary system in the first place.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

To minimize damage to the coastline and marine habitat, federal agencies removed the Japanese dock that turned up on the Washington coast in late 2012. In addition to being located within a designated wilderness portion of Olympic National Park, the dock was also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

At times NOAA’s Office of Response and Restoration is called to this role when threats such as an oil spill, grounded ship, or even huge, floating dock endanger the marine sanctuaries and their incredible natural and cultural resources.

Olympic Coast National Marine Sanctuary

In March 2013, we worked with a variety of partners, including others in NOAA, to remove a 185-ton, 65-foot Japanese floating dock from the shores of Washington. This dock was swept out to sea from Misawa, Japan, during the 2011 tsunami and once it was sighted off the Washington coast in December 2012, our oceanographers helped model where it would wash up.

Built out of plastic foam, concrete, and steel, this structure was pretty beat up by the time it ended up inside NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park. A threat to the environment, visitors, and wildlife before we removed it, its foam was starting to escape to the surrounding beach and waters, where it could have been eaten by the marine sanctuary’s whales, seals, birds, and fish.

Florida Keys National Marine Sanctuary

In an effort to protect the vibrant marine life of the Florida Keys National Marine Sanctuary, NOAA’s Restoration Center began clearing away illegal lobster fishing devices known as “casitas” in June 2014. The project is funded by a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from the sanctuary’s seafloor. Constructed from materials such as metal sheets, cinder blocks, and lumber, these unstable structures not only allow poachers to illegally harvest huge numbers of spiny lobsters but they also damage the seafloor when shifted around during storms.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita in the Florida Keys National Marine Sanctuary. NOAA is removing these illegal lobster fishing devices which damage seafloor habitat. (NOAA)

Also in the Florida Keys National Marine Sanctuary, our office and several partners ran through what it would be like to respond to an oil spill in the sanctuary waters. In April 2005, we participated in Safe Sanctuaries 2005, an oil spill training exercise that tested the capabilities of several NOAA programs, as well as the U.S. Coast Guard. The drill scenario involved a hypothetical grounding at Elbow Reef, off Key Largo, of an 800-foot cargo vessel carrying 270,000 gallons of fuel. In the scenario, the grounding injured coral reef habitat and submerged historical artifacts, and an oil spill threatened other resources. Watch a video of the activities conducted during the drill.

Papahānaumokuākea Marine National Monument

Even hundreds of miles from the main cluster of Hawaiian islands, the Papahānaumokuākea Marine National Monument does not escape the reach of humans. Each year roughly 50 tons of old fishing nets, plastics, and other marine debris wash up on the sensitive coral reefs of the marine monument. Each year for nearly 20 years, NOAA divers and scientists venture out there to remove the debris.

This year, the NOAA Marine Debris Program’s Dianna Parker and Kyle Koyanagi are documenting the effort aboard the NOAA Ship Oscar Elton Sette. You can learn more about and keep up with this expedition on the NOAA Marine Debris Program website.

Follow

Get every new post delivered to your Inbox.

Join 566 other followers