NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

NOAA, Deepwater Horizon Trustees announce draft restoration plans for Gulf of Mexico following 2010 disaster

Bulldozers doing construction in a Gulf of Mexico marsh.

These efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident. (NOAA)

NOAA and the other Deepwater Horizon Natural Resource Trustees today released 15-year comprehensive, integrated environmental ecosystem restoration plans for the Gulf of Mexico in response to the April 20, 2010 Deepwater Horizon oil rig explosion and spill.

Implementing the plan will cost up to $8.8 billion. The explosion killed 11 rig workers and the subsequent spill lasted 87 days and impacted both human and natural resources across the Gulf.

The Draft Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement allocates Natural Resource Damage Assessment  monies that are part of a comprehensive settlement agreement in principle  among BP, the U.S. Department of Justice on behalf of federal agencies, and the five affected Gulf States announced on July 2, 2015. The Department of Justice lodged today in U.S. District Court a consent decree as part of the more than $20 billion dollar settlement.

In the draft plan, the Trustees provide documentation detailing impacts from the Deepwater Horizon oil spill to:

  • wildlife, including fish, oysters, plankton, birds, sea turtles, and marine mammals across the Gulf
  • habitat, including marshes, beaches, floating seaweed habitats, water column, submerged aquatic vegetation, and ocean-bottom habitats
  • recreational activities including boating, fishing, and going to the beach

The Trustees determined that “overall, the ecological scope of impacts from the Deepwater Horizon spill was unprecedented, with injuries affecting a wide array of linked resources across the northern Gulf ecosystem.” As a result of the wide scope of impacts identified, the Trustees “have determined that the best method for addressing the injuries is a comprehensive, integrated, ecosystem restoration plan.”

Both the consent decree and the draft plan are available for 60 days of public comment. The Trustees will address public comment in adopting a final plan. For the consent decree, once public comment is taken into account the court will be asked to make it final.

Public comments on the draft plan will be accepted at eight public meetings to be held between October 19 and November 18 in each of the impacted states and in Washington, DC. Comments will also be accepted online and by mail sent to: U.S. Fish and Wildlife Service, P.O. Box 49567, Atlanta, GA 30345. The public comment period will end on December 4, 2015.

The Trustees are proposing to accept this settlement, which includes, among other components, an amount to address natural resource damages of $8.1 billion for restoration and up to $700 million for addressing unknown impacts or for adaptive management. These amounts include the $1 billion in early restoration funds which BP has already committed.

“NOAA scientists were on the scene from day one as the Deepwater spill and its impacts unfolded. NOAA and the Trustees have gathered thousands of samples and conducted millions of analyses to understand the impacts of this spill,” said Kathryn D. Sullivan, Ph.D., undersecretary of commerce for oceans and atmosphere and NOAA administrator. “The scientific assessment concluded that there was grave injury to a wide range of natural resources and loss of the benefits they provide. Restoring the environment and compensating for the lost use of those resources is best achieved by a broad-based ecosystem approach to restore this vitally important part of our nation’s environmental, cultural and economic heritage.”

People in boat and in marsh assessing oiling impacts.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals. (NOAA)

NOAA led the development of the 1,400 page draft damage assessment and restoration plan, with accompanying environmental impact statement, in coordination with all of the natural resource Trustees. The draft plan is designed to provide a programmatic analysis of the type and magnitude of the natural resources injuries that have been identified through a Natural Resource Damage Assessment conducted as required by the Oil Pollution Act of 1990 and a programmatic restoration plan to address those injuries. Alternative approaches to restoration are evaluated in the plan under the Oil Pollution Act and the National Environmental Policy Act.

Specific projects are not identified in this plan, but will be proposed in future project-specific restoration proposals. The Trustees will ensure that the public is involved in their development through public notice of proposed restoration plans, opportunities for public meetings, and consideration of all comments received.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals.

The five overarching goals of the proposed plan are to:

  • restore and conserve habitat
  • restore water quality
  • replenish and protect living coastal and marine resources
  • provide and enhance human use recreational activities
  • provide for long term monitoring, adaptive management, and administrative oversight of restoration efforts.

The 13 proposed restoration activities are:

  1. Restoration of wetlands, coastal, and nearshore habitats
  2. Habitat projects on federally managed lands
  3. Nutrient reduction
  4. Water quality
  5. Fish and water column invertebrates
  6. Sturgeon
  7. Submerged aquatic vegetation
  8. Oysters
  9. Sea turtles
  10. Marine mammals
  11. Birds
  12. Low-light and deep seafloor communities
  13. Provide and enhance recreational opportunities

Together, these efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident.

Once the plan is finally approved and the settlement is finalized, NOAA will continue to work with all of the Trustees to plan, approve, and implement restoration projects. NOAA will bring scientific  expertise and focus on addressing remedies for living marine resources — including fish, sturgeon, marine mammals, and sea turtles — as well as coastal habitats and water quality. NOAA scientists developed numerous scientific papers for the NRDA case including documentation of impacts to bottlenose dolphins, pelagic fish, sea turtles, benthic habitat and deep water corals.

The Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement is available for public review and comment through December 4. It is posted at and will be available at public repositories throughout the Gulf and at the meetings listed at

Leave a comment

Restoration along Oregon’s Willamette River Opens up New Opportunities for Business and Wildlife

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

Salmon, mink, bald eagles, and other wildlife should be lining up to claim a spot among the lush new habitat freshly built along Oregon’s Willamette River. There, a few miles downstream from the heart of Portland, construction at the Alder Creek Restoration Project is coming to a close. Which means the reshaped riverbanks and restored wetlands are open for their new inhabitants to move in.

This 52 acre project is the first habitat restoration effort for the Portland Harbor Superfund Site and has been implemented specifically to benefit fish and wildlife affected by years of industrial contamination in the harbor.

Salmon, lamprey, osprey, bald eagle, mink, and others will now enjoy sandy beaches, native vegetation, and large pieces of wood to perch on or hide underneath. These features replace the saw mill, parking lots, and other structures present on the property before it was purchased by Wildlands, Inc. Chinook salmon and osprey have already been seen seeking refuge and searching for food in the newly constructed habitat.

Wildlands is a business that intends to sell ecological “credits” from this restoration project. The credits that the Alder Creek project generates are available for purchase to resolve the liability of those who discharged oil or hazardous substances into Portland Harbor.

Newly planted wetland vegetation on the bank of a river.

Habitat restored at Alder Creek in Oregon in 2014 was planted with native vegetation in 2015. (Photo courtesy Wildlands)

Construction on the restoration site began in the summer of 2014. First, hundreds of thousands of yards of wood chips were removed from the site of a former saw mill and several buildings were demolished. A channel was excavated on the western portion of the site, which was continued through the eastern half of the site when construction resumed in 2015.

View a time lapse video of channel construction on the Alder Creek site:

Also this year, efforts involved removing invasive vegetation, planting native vegetation, and installing large wood structures along the channel to create ideal places for young fish to rest, feed, and hide from predators.

Rowed dirt field next to river channels.

View of newly created channels on the Alder Creek site connecting to Oregon’s Willamette River. Salmon and osprey have already been seen making themselves at home in the newly constructed habitat. (Photo courtesy of Wildlands)

After a final breach of the earthen dam dividing the restoration site this September, water now flows across the newly restored area. Once additional planting is completed this winter, the project will officially be “open for business,” although some entrepreneurial wildlife are already getting a head start.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Oregon, she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.

Leave a comment

Expanding a Washington River’s Floodplain to Protect Northwest Salmon and Communities

Bridge over industrial waterway in Tacoma and view of Mt. Rainier.

Mt. Rainier looms over the Thea Foss Waterway as it leads out to Commencement Bay, the industrial heart of Tacoma, Washington. Two new restoration projects will make up for the natural resource damages caused by organizations releasing hazardous substances into this and a neighboring waterway. (Photo: Kendrick Hang, Attribution 2.0 Generic License)

From the edge of the Emmons Glacier on Washington’s tallest peak, the scenic White River winds down the mountain, through forest, and joins the Puyallup River before finally reaching the sea at an industrial port in the city of Tacoma.

Here, in the salty waters of Puget Sound’s Commencement Bay, iconic Northwest salmon start their own journey in reverse. These fish head up waterways toward Mt. Rainier, where they were born, where they will spawn, and where they will die.

Recently NOAA and our partners announced a restoration project that will improve the floodplain of the White River for migrating fish. One of Mt. Rainier’s largest rivers and one of Puget Sound’s most important areas for imperiled salmon and steelhead, the White River has been re-routed and re-engineered for longer than a century.

This restoration was made possible by the U.S. Department of Justice’s August 6, 2015 announcement that more than 56 parties have agreed to restore key salmon habitat on the White River. The settlement will also permanently preserve intertidal habitat in Wheeler Osgood Waterway in Tacoma’s Commencement Bay. Fulfilling these restoration projects will resolve their liability for natural resource damages caused by releasing hazardous substances into the bay’s Thea Foss and Wheeler-Osgood Waterways.

Person along the wooded edge of a river in Washington.

One restoration project will set back levees on the White River and widen its previously re-engineered floodplain. This will create better habitat for migrating fish to feed, rest, and spawn, as well as offer improved flood protection for nearby homes and businesses. (NOAA)

The White River project will not only help protect the region’s salmon but also its communities as it sets back levees and widens the floodplain. By restoring fish habitat and providing slower-moving side channels on the river, the proposed project will reopen 121 acres of historic floodplain around the river. Allowing floodwaters more room to flow, this project will also help reduce the risk of flood damage for more than 200 nearby homes and businesses.

The latest project will continue a long legacy of ensuring those responsible for releasing hazardous materials—from industrial chemicals such as PCBs to heavy metals including lead and zinc—into Commencement Bay are held accountable for restoring public natural resources. This is the 20th natural resources settlement related to pollution in Commencement Bay, which is the industrial heart of Tacoma. Through these settlements, more than 350 acres of Puget Sound habitat will have been restored, offsetting impacts to salmon, other fish, and wildlife harmed by pollution in the bay.

Those responsible for the pollution will monitor and adaptively manage the project under a 10-year plan that ensures at least 32.5 acres of the restoration site are inundated by the river and thus accessible to fish. They also will pay more than $1 million toward the natural resource trustees’—including NOAA’s—assessment, oversight and the long-term stewardship costs of maintaining the project over the next 100 years and beyond.

1 Comment

From Natural Seeps to a Historic Legacy, What Sets Apart the Latest Santa Barbara Oil Spill

Cleanup worker and oiled boulders on Refugio State Beach where the oil from the pipeline entered the beach.

The pipeline release allowed an estimated 21,000 gallons of crude oil to reach the Pacific Ocean, shown here where the oil entered Refugio State Beach. (NOAA)

The response to the oil pipeline break on May 19, 2015 near Refugio State Beach in Santa Barbara County, California, is winding down. Out of two* area beaches closed due to the oil spill, all but one, Refugio State Beach, have reopened.

NOAA’s Office of Response and Restoration provided scientific support throughout the response, including aerial observations of the spill, information on fate and effects of the crude oil, oil detection and treatment, and potential environmental impacts both in the water and on the shore.

Now that the response to this oil spill is transitioning from cleanup to efforts to assess and quantify the environmental impacts, a look back shows that, while not a huge spill in terms of volume, the location and timing of the event make it stand out in several ways.

Seep or Spill: Where Did the Oil Come From?

This oil spill, which allowed an estimated 21,000 gallons of crude oil to reach the Pacific Ocean, occurred in an area known for its abundant natural oil seeps. The Coal Oil Point area is home to seeps that release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011) and are among the most active in the world. Oil seeps are natural leaks of oil and gas from subterranean reservoirs through the ocean floor.

The pipeline spill released a much greater volume of oil than the daily output of the local seeps. Furthermore, because it was from a single source, the spill resulted in much heavier oiling along the coast than you would find from the seeps alone.

A primary challenge, for purposes of spill response and damage assessment, was to determine whether oil on the shoreline and nearby waters was from the seeps or the pipeline. Since the oil from the local natural seeps and the leaking pipeline both originated from the same geologic formation, their chemical makeup is similar.

However, chemists from Woods Hole Oceanographic Institution, the University of California at Santa Barbara, Louisiana State University, and the U.S. Coast Guard Marine Safety Lab were able to distinguish the difference by examining special chemical markers through a process known as “fingerprinting.”

Respecting Native American Coastal Culture

The affected shorelines include some of the most important cultural resource areas for California Native Americans. Members of the Chumash Tribe populated many coastal villages in what is now Santa Barbara County prior to 1800. Many local residents of the area trace their ancestry to these communities.

To ensure that impacts to cultural resources were minimized, Tribal Cultural Resource Monitors were actively engaged in many of the upland and shoreline cleanup activities and decisions throughout the spill response.

Bringing Researchers into the Response

The massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010 highlighted the need for further research on issues surrounding oil transport and spill response. As a result, there was a great deal of interest in this spill among members of the academic community, which is not always the case for oil spills. In addition, the spill occurred not far from the University of California at Santa Barbara.

From the perspective of NOAA’s Office of Response and Restoration, this involvement with researchers was beneficial to the overall effort and will potentially serve to broaden our scientific resources and knowledge base for future spills.

The Legacy of 1969

Another unique aspect of the oil spill at Refugio State Beach was its proximity to the site of one of the most historically significant spills in U.S. history. Just over 46 years ago, off the coast of Santa Barbara, a well blowout occurred, spilling as much as 4.2 million gallons of oil into the ocean. The well was capped after 11 days.

The 1969 Santa Barbara oil spill, which was covered widely in the media, oiled miles of southern California beaches as well. It had such a devastating impact on wildlife and habitat that it is credited with being the catalyst that started the modern-day environmental movement. Naturally, the 2015 oil spill near the same location serves as a reminder of that terrible event and the damage that spilled oil can do in a short period of time.

Moving Toward Restoration

In order to assess the environmental impacts from the spill and cleanup, scientists have collected several hundred samples of sediment, oil, water, fish, mussels, sand crabs, and other living things. In addition, they have conducted surveys of the marine life before and after the oil spill.

The assessment, which is being led by the state of California, involves marine ecology experts from several California universities as well as federal and state agencies.

After a thorough assessment of the spill’s harm, the focus will shift toward restoring the injured natural and cultural resources and compensating the public for the impacts to those resources and the loss of use and enjoyment of them as a result of the spill. This process, known as a Natural Resource Damage Assessment, is undertaken by a group of trustees, made up of federal and state agencies, in cooperation with the owner of the pipeline, Plains All American Pipeline. This group of trustees will seek public input to help guide the development of a restoration plan.

*UPDATED 7/10/2015: This was corrected to reflect the fact that only two area beaches were closed due to the spill while 20 remained open in Santa Barbara.

Leave a comment

From Building B-17 Bombers to Building Habitat for Fish: The Reshaping of an Industrial Seattle River

Imagine living in as little as two percent of your home and trying to live a normal life. That might leave you with something the size of a half bathroom.

Now imagine it’s a dirty half bathroom that hasn’t been cleaned in years.

Gross, right? As Muckleshoot tribal member Louie Ungaro recently pointed out, that has been roughly the situation for young Chinook salmon and Steelhead trout for several decades as they pass through the Lower Duwamish River in south Seattle, Washington.

Salmon and Steelhead trout, born in freshwater streams and creeks in Washington forests, have to make their way to the Puget Sound and then the ocean through the Duwamish River. However, this section of river has been heavily industrialized and lacks the clean waters, fallen trees, huge boulders, and meandering side channels that would represent a spacious, healthy home for young fish.

Chair of his tribe’s fish commission, Ungaro sent a reminder that the health of this river and his tribe, which has a long history of fishing on the Duwamish and nearby rivers, are closely tied. “We’re no different than this river,” he implored. Yet he was encouraged by the Boeing Company’s recent cleanup and restoration of fish habitat along this Superfund site, a move that he hopes is “just a start.”

The Pace—and Price—of Industry

Starting as far back as the 1870s and stretching well into the twentieth century, the Lower Duwamish River was transformed by people as the burgeoning city of Seattle grew. The river was straightened and dredged, its banks cleared and hardened. Factories and other development lined its banks, while industrial pollution—particularly PCBs—poured into its waters.

More than 40 organizations are potentially responsible for this long-ago pollution that still haunts the river and the fish, birds, and wildlife that call it home. Yet most of those organizations have dragged their feet in cleaning it up and restoring the impacted lands and waters. However, the Boeing Company, a longtime resident of the Lower Duwamish River, has stepped up to collaborate in remaking the river.

Newly restored marsh and riverbank vegetation with protective ropes and fencing on the Duwamish River.

The former site of Boeing’s Plant 2 is now home to five acres of marsh and riverbank habitat, creating a much friendlier shoreline for fish and other wildlife. Protective fencing and ropes attempt to exclude geese from eating the young plants. (NOAA)

Boeing’s history there began in 1936 when it set up shop along 28 acres of the Duwamish. Here, the airplane manufacturer constructed a sprawling building known as Plant 2 where it—with the help of the women nicknamed “Rosie the Riveters”—would eventually assemble 7,000 B-17 bombers for the U.S. government during World War II. The Army Corps of Engineers even took pains to hide this factory from foreign spies by camouflaging its roof “to resemble a hillside neighborhood dotted with homes and trees,” according to Boeing.

But like many of its neighbors along the Duwamish, Boeing’s history left a mark on the river. At the end of 2011, Boeing tore down the aging Plant 2 to prepare for cleanup and restoration along the Duwamish. Working with the City of Seattle, Port of Seattle, and King County, Boeing has already removed the equivalent of thousands of railcars of contaminated sediment from the river bottom and is replacing it with clean sand.

From Rosie the Riveter to Rosie the Restorer

By 2013, a hundred years after the Army Corps of Engineers reshaped this section of the Duwamish from a nine mile estuary into a five mile industrial channel, Boeing had finished its latest transformation of the shoreline. It planted more than 170,000 native wetland plants and grasses here, which are interspersed with large piles of wood anchored to the shore.

Five acres of marsh and riverbank vegetation now line its shores, providing food, shelter, and calmer side channels for young fish to rest and grow as they transition from freshwater to the salty ocean.

Canada geese on an unrestored portion of the Duwamish River shoreline.

Protecting the newly restored shoreline, out of sight to the left, from Canada geese is a challenge to getting the young wetland plants established. Behind the geese, the artificial, rocky shoreline is a stark difference from the adjacent restored portion. (NOAA)

Now the challenge is to keep the Canada geese from eating all of the tender young plants before they have the chance to establish themselves. That is why protective ropes and fencing surround the restoration sites.

Already, biologists are beginning to see a change in the composition of the birds frequenting this portion of the river. Rather than the crows, starlings, and gulls typically associated with areas colonized by humans, birds such as herons and mergansers, a fish-eating duck, are showing up at the restoration sites. Those birds like to eat fish, which offers hope that fish such as salmon and trout are starting to make a comeback as well.

Of course, these efforts are only the beginning. Through the Natural Resource Damage Assessment process, NOAA looks forward to working with other responsible organizations along the Duwamish River to continue restoring its health, both for people and nature now and in the future.

Leave a comment

NOAA Launches New Data Management Tool for Public Access to Deepwater Horizon Oil Spill Data

Two people launch a water column sampling device off the side of a ship.

Launching a device to take measurements in the water column during the 2010 Deepwater Horizon oil spill. NOAA built the online tool DIVER to organize and provide access to these scientific data and the many others collected in the wake of the spill. (NOAA)

A flexible new data management tool—known as DIVER and developed by NOAA to support the Natural Resource Damage Assessment (NRDA) for the 2010 Deepwater Horizon oil spill—is now available for public use. DIVER stands for “Data Integration, Visualization, Exploration and Reporting,” and it can be accessed at

DIVER was developed as a digital data warehouse during the Deepwater Horizon oil spill response effort and related damage assessment process, which has required collecting and organizing massive amounts of scientific data on the environmental impacts of the spill.

The tool serves as a centralized data repository that integrates diverse environmental data sets collected from across the Gulf of Mexico ecosystem. It allows scientists from different organizations and laboratories located across the country to upload field data, analyses, photographs, and other key information related to their studies in a standardized format. DIVER thus brings together all of that validated information into a single, web-based tool.

In addition, DIVER provides unprecedented flexibility for filtering and downloading validated data collected as part of the ongoing damage assessment efforts for the Gulf of Mexico. The custom query and mapping interface of the tool, “DIVER Explorer,” provides both a data filter and review tools, which allow users to refine how they look for data and explore large data sets online. Query results are presented in an interactive dashboard, with a map, charts, table of results, metadata (data about the data), and sophisticated options for exporting the data.

View of DIVER Explorer map and query results for environmental impact data in the Gulf of Mexico.

A view of DIVER Explorer query results shown in an interactive dashboard. (NOAA)

In addition to the DIVER Explorer query tools, this website presents a detailed explanation of our data management approach, an explanation of field definitions and codes used in the data warehouse, and a robust help section.

Currently, DIVER provides access to more than 13* million validated results of analytical chemistry from over 50,000 samples of water, tissue, oil, and sediment collected by federal, state, academic, and nongovernmental organizations to support the Deepwater Horizon damage assessment. As additional data sets become publicly available they will be accessible through the DIVER Explorer tool.

Read the announcement of this tool’s public launch from the NOAA website.

*Updated October 8, 2015 from “nearly 4 million” to “more than 13 million” records now available.

1 Comment

NOAA Builds Tool to Hold Unprecedented Amounts of Data from Studying an Unprecedented Oil Spill

This is a post by Benjamin Shorr of NOAA’s Office of Response and Restoration.

The Deepwater Horizon Oil Spill: Five Years Later

This is the seventh in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

The Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. In the wake of this massive pollution release, NOAA and other federal and state government scientists need to determine how much this spill and ensuing response efforts harmed the Gulf of Mexico’s natural resources, and define the necessary type and amount of restoration.

That means planning a lot of scientific studies and collecting a lot of data on the spill’s impacts, an effort beginning within hours of the spill and continuing to this day.

Scientists collected oil samples from across the Gulf Coast. Oil spill observers snapped photographs of oil on the ocean surface from airplanes. Oceanographic sensors detected oil in the water column near the Macondo wellhead. Biologists followed the tracks of tagged dolphins as they swam through the Gulf’s bays and estuaries. Scientists are using this type of information—and much more—to better understand and assess the impacts to the Gulf ecosystem and people’s uses of it.

But what is the best way to gather together and organize what would become an unprecedented amount of data for this ongoing Natural Resource Damage Assessment process? Scientists from across disciplines, agencies, and the country needed to be able to upload their own data and download others’ data, in addition to searching and sorting through what would eventually amount to tens of thousands of samples and millions of results and observations.

First, a Quick Fix

Early on, it became clear that the people assessing the spill’s environmental impacts needed a single online location to organize the quickly accumulating data. To address this need, a team of data management experts within NOAA began creating a secure, web-based data repository.

This new tool would allow scientific teams from different organizations to easily upload their field data and other key information related to their studies, such as scanned field notes, electronic data sheets, sampling protocols, scanned images, photographs, and navigation information. Graphic with gloved hands pouring liquid from sample jar into beaker and numbers of samples, results, and studies resulting from NOAA efforts. While this data repository was being set up, NOAA needed an interim solution and turned to its existing database tool known as Query Manager. Query Manager allowed users to sort and filter some of the data types being collected for the damage assessment—including sediment, tissue, water, and oil chemistry results, as well as sediment and water toxicity data—but the scope and scale of the Deepwater Horizon oil spill called for more flexibility and features in a data management tool. When NOAA’s new data repository was ready, it took over from Query Manager.

Next, a New Data Management Solution

As efforts to both curtail and measure the spill’s impacts continued, the amount and diversity of scientific data began pouring in at unprecedented rates. The NOAA team working on the new repository took stock of the types of data being entered into it and realized a database alone would not be enough. They searched for a better way to not only manage information in the repository but to organize the data and make them accessible to myriad scientists on the Gulf Coast and in laboratories and offices across the country.

Building on industry standard, open source tools for managing “big data,” NOAA developed a flexible data management tool—known as a “data warehouse”—which gives users two key features. First, it allows them to integrate data sets and documents as different as oceanographic sensor data and field observations, and second, it allows users to filter and download data for further analysis and research.

Now, this data warehouse is a little different than the type of physical warehouse where you stack boxes of stuff on row after row of shelves in a giant building. Instead, this web-based warehouse contains a flexible set of tables which can hold various types of data, each in a specific format, such as text documents in .pdf format or images in .jpg format.

Screenshot of data management tool showing map with locations of various data.

NOAA’s data management tool allows users to integrate very different data sets and documents, such as water and oil samples and field observations, as well as filter and download data for further analysis and research. (NOAA)

To fill this digital warehouse with data, the development team worked with the scientific and technical experts, who in many cases were out collecting data in places impacted by the oil spill, to establish a flow of information into the appropriate tables in the warehouse. In addition, they standardized formats for entering certain data, such as date, types of analysis, and names of species.

Manual and automated checks ensure the integrity of the data being entered, a process which gets easier as new data arrive in the warehouse and are incorporated into the proper table. The process of standardizing and integrating data in one accessible location also helps connect cross-discipline teams of scientists who may be working on different parts of the ecosystem, say marsh versus nearshore waters.

The NOAA team has also created a custom-built “query tool” for the data warehouse that can search and filter all of those diverse data in a variety of ways. A user can filter data by one or more values (such as what type of analysis was done), draw a box around a specific geographic area to search and filter data by location, select a month and year to sort by date sampled, or even type in a single keyword or sample ID. This feature is critical for the scientists and technical teams tasked with synthesizing data across time and space to uncover patterns of environmental impact.

Download the Data Yourself

NOAA’s data warehouse currently holds validated damage assessment data from more than 53,000 water, tissue, oil, and sediment samples, which, once these samples were analyzed, have led to over 3.8 million analytical results, also stored within the new tool. Together, NOAA’s samples and analytical results have informed more than 16 scientific studies published in peer-reviewed scientific journals, as well as many other academic and scientific publications.

While not all of the data from the damage assessment are publicly available yet, you can access validated data collected through cooperative studies or otherwise made available through the Natural Resource Damage Assessment legal process.

You can find validated data exported from NOAA’s digital data warehouse available for download on both the Natural Resource Damage Assessment website and NOAA’s interactive online mapping tool for this spill, the ERMA Deepwater Gulf Response website. Stay tuned for more about this new tool, including additional details on how it works and where you can find it.


Get every new post delivered to your Inbox.

Join 617 other followers