NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

On the Hunt for Shipping Containers Lost off California Coast

Large waves break on a pier that people are walking along.

The M/V Manoa lost 12 containers in stormy seas off the coast of California in the area of the Greater Farallones National Marine Sanctuary. (Credit: Beach Watch/mojoscoast)

On December 11, 2015, the Matson container ship M/V Manoa was en route to Seattle from Oakland, California, when it lost 12 large containers in heavy seas. At the time of the spill, the ship was maneuvering in order to allow the San Francisco Bay harbor pilot to disembark.

The containers, which are 40 feet long and 9 feet wide, are reported as empty except for miscellaneous packing materials, such as plastic crates and packing materials such as Styrofoam. Luckily there were no hazardous materials in the cargo that was spilled.

The accident occurred about eight miles outside of the Golden Gate Bridge in the Greater Farallones National Marine Sanctuary. Three containers have come ashore, two at or near Baker Beach, just south of the Golden Gate Bridge, and one at Mori Point near Pacifica, California. The search continues for the others.

The Coast Guard is responding to this incident with assistance from NOAA, the National Park Service, State of California, and City of San Francisco. The responsible party is working with an environmental contractor to recover the debris and containers. The Coast Guard asks that if a container is found floating or approaching shore to exercise caution and notify the Coast Guard Sector San Francisco Command Center at 415-399-7300.

On December 14, NOAA’s Office of Response and Restoration became involved when the Coast Guard Sector San Francisco contacted the NOAA Scientific Support Coordinator for the region, Jordan Stout. The Coast Guard requested help from the Office of Response and Restoration in tracking the missing containers. Oceanographer Chris Barker is providing trajectory modeling, using wind and current information to predict the potential direction of the spilled containers.

NOAA chart of waters off San Francisco showing where the shipping containers were lost and where three have been found.

A NOAA oceanographer is using wind and current information to predict the potential direction of the spilled shipping containers off the California coast. This information is helping direct search efforts for the remaining containers. (NOAA)

This accident occurred in NOAA’s Greater Farallones National Marine Sanctuary. The Greater Farallones Marine Sanctuary Association Beach Watch program, provided some of the initial sightings to the Coast Guard, and volunteers are doing additional beach surveys to look for debris and more containers. There is a concern that the containers, contents, or parts of the containers could pose a hazard to wildlife through entanglement or by ingestion. There is also concern about the containers potentially damaging ocean and coastal bottom habitats within the marine sanctuary. (Read a statement from the sanctuary superintendent. [PDF])

This incident illustrates another way that marine debris can enter the environment. According to Sherry Lippiatt of the NOAA Marine Debris Program, “This incident is a reminder that while marine debris is an everyday problem, winter storms and higher ocean swells may increase the amount of debris entering the environment.”

To learn more about how storms can lead to increased marine debris, take a look at the recent article, California’s “First Flush”. For information on how citizen science can help in situations like this, see this article about searching for Japan tsunami debris on the California coast.


Leave a comment

When Boats Don’t Float: From Sunken Wrecks to Abandoned Ships

Derelict boat in a Gulf marsh.

Ships end up wrecked or abandoned for many reasons and can cause a variety of environmental and economic issues. After Hurricanes Katrina and Rita, thousands of vessels like this one needed to be scrapped or salvaged in the Gulf of Mexico. (NOAA)

The waterways and coastlines of the United States are an important national resource, supporting jobs and providing views and recreation. However, the past century of maritime commerce, recreation, and even warfare has left a legacy of thousands of sunken, abandoned, and derelict vessels along our coasts, rivers, and lakes.

Some of these sunken shipwrecks are large commercial and military vessels such as the USS Arizona in Pearl Harbor, Hawaii; the Edmund Fitzgerald in the Great Lakes; and the recent tragic loss of the 790 foot cargo ship El Faro and its crew off the Bahamas.

These large vessels may be environmental threats because of their cargoes, munitions, and fuel, but many also are designated as submerged cultural resources—part of our maritime heritage. Some even serve as memorials or national historic landmarks. Unless they are pollution hazards, or shallow enough to be threats to navigation or become dive sites, most are largely forgotten and left undisturbed in their deep, watery resting sites.

But another class of wrecks, abandoned and derelict boats, are a highly visible problem in almost every U.S. port and waterway. Some vessels are dilapidated but still afloat, while others are left stranded on shorelines, or hidden just below the surface of the water. These vessels can have significant impacts on the coastal environment and economy, including oil pollution, marine debris, and wildlife entrapment. They become hazards to navigation, illegal release points for waste oils and hazardous materials, and general threats to public health and safety.

Large rusted out ship in shallow water surrounded by corals.

Some shipwrecks, like this one stranded among coral in American Samoa, can become threats to marine life and people. (NOAA)

Most derelict and abandoned vessels are the result of chronic processes—rot and rust and deterioration from lack of maintenance or economic obsolescence—with vessels slowly worsening until they sink or become too expensive to repair, and around that point are abandoned.

Others are mothballed or are awaiting repair or dismantling. If the owners can’t afford moorage and repairs, or if the costs to dismantle the ship exceed the value of the scrap, the owners often dump the boat and disappear. Many vessels end up sinking at moorings, becoming partially submerged in intertidal areas, or stranding on shorelines after their moorings fail. These vessels typically lack insurance, have little value, and have insolvent or absentee owners, a problematic and expensive combination.

Another source of abandoned vessels comes from major natural disasters. After large hurricanes, coastal storms, and tsunamis, a large number of vessels of varying sizes, conditions, and types may be damaged or set adrift in coastal waters. For example, approximately 3,500 commercial vessels and countless recreational vessels needed to be salvaged or scrapped after Hurricanes Katrina and Rita hit the Gulf Coast in 2005. And remember the empty squid boat that drifted across the Pacific Ocean after the 2011 Japan earthquake and tsunami?

NOAA’s interests in this wide range of lost or neglected ships include our roles as scientific advisers to the U.S. Coast Guard, as stewards of marine living and cultural resources (which extends to when these resources are threatened by pollution as well), and as the nation’s chart maker to ensure that wrecks are properly marked for safe navigation.

This week we’re taking a deeper dive into the many, varied, and, at times, overlooked issues surrounding the wrecks and abandoned vessels dotting U.S. waters. As recent events have shown, such as in a recently discovered leaking wreck in Lake Erie and a rusted tugboat left to rot in Seattle, this issue isn’t going away.

First, check out our infographic below exploring the different threats from wrecked and abandoned ships and a gallery of photos highlighting some examples of these ships, both famous and ordinary. UPDATE 11/16/2015: Take a look at the stories featured during this deep dive:

Illustration showing a sunken, abandonedship sticking out of the water close to shore, leaking oil, damaging habitat, posing a hazard to navigation, and creating marine debris on shore.

Sunken and abandoned ships can cause a lot of potential damage to the environment and the economy. (NOAA)


Leave a comment

In Wake of Japan’s 2011 Tsunami, Citizen Scientists Comb California Beaches Counting Debris

Man with clipboard and bag walking on beach.

A volunteer counts and collects the marine debris washed up at Drakes Beach in the Greater Farallones National Marine Sanctuary. (NOAA)

It all started nearly five years ago on the other side of the Pacific Ocean. A devastating earthquake and tsunami rocked Japan in 2011, ultimately sweeping millions of tons of debris from the coastline into the ocean. But it wasn’t until June the following year, in 2012, that a 66-foot-long Japanese dock settled on the Oregon coast and reminded the world how the ocean connects us.

NOAA’s Kate Bimrose explained how this event and the resulting concern over other large or hazardous items of Japanese debris spurred the start of NOAA monitoring programs on beaches up and down the West Coast and Pacific islands. She coordinates the program that monitors marine debris in the Greater Farallones National Marine Sanctuary off the north-central California coast.

Thanks to funding from NOAA’s Marine Debris Program, the first surveys in this sanctuary near San Francisco took place in July 2012, a month after the Oregon dock made an appearance. No previous baseline data on debris existed for the shores along this California sanctuary. The only way anyone would know if Japan tsunami marine debris started arriving is by counting how much marine debris was already showing up there on a regular basis.

Training a Wave of Citizen Scientists

Graphic showing an example 100 meter stretch of beach with four 5 meter transects.

Following NOAA Marine Debris Program monitoring protocols, volunteers survey the same 100 meter (328 foot) stretch of beach each month, randomly choosing four sections to cover. Next, they record every piece of trash bigger than a bottle cap in those areas. (NOAA)

To find out how much trash and other manmade debris was washing up, Bimrose trained a small group of dedicated, volunteer “citizen scientists” to perform monthly surveys at four regular California beach sites. Three are located in Point Reyes National Seashore and one is in Año Nuevo State Park, but all are fed by the waters of the Greater Farallones National Marine Sanctuary.

Following NOAA Marine Debris Program monitoring protocols, once a month two volunteers head to the same 100 meter (328 foot) stretch of beach, using GPS coordinates to locate it. Next, they randomly pick four sections, each five meters (nearly 16.5 feet) long, to survey that day. This ensures they cover 20 percent of the area each time.

For those areas, the volunteers record every piece of trash they find that is at least the size of a bottle cap, or roughly an inch long. Having this size standard increases the reliability of the data being collected, providing a more accurate picture of what the ocean is bringing to each beach. NOAA is confident that volunteers are able to scan the sand and find the majority of items larger than an inch sitting on the surface of the beach.

Taking Things to the Next Level

Bottle with Asian characters on the cap.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. (NOAA)

All of the data volunteers gather—from number of items to types of material found—gets entered into a national online database, which will allow NOAA to determine trends in where, what, and how much marine debris is showing up. Leaving the items behind reveals how debris concentrates and persists on shorelines, information which is lost when debris is hauled off the beach.

While gathering this information is useful, Bimrose admitted to one sticking point for her: none of the debris is cleaned up from these four beach locations.

“We want to be able to remove the debris,” she said. “It’s painful for all my volunteers to be out there and record it and not remove it.” However, the good news is that a June 2015 expansion to this monitoring program has added two new beach locations to the rotation, and after volunteers record the debris there, they pack it out. In addition, Bimrose takes out larger groups of one-time volunteers to those locations and trains them on site, creating a broader educational reach for the program.

Bimrose hopes to recruit local school groups as well as businesses to volunteer. Before each survey at the new locations, she introduces the sanctuary and the monitoring program, while passing around mason jars filled with the trash collected at past surveys to give volunteers an idea of what to expect.

These new monitoring sites receive more recreational use than the previous ones, and at least for the one at Ocean Beach, a heavily used shoreline in the heart of San Francisco, that means finding a lot more consumer trash left on the beach.

From clothes and cigarette butts to food wrappers and even toilet paper, the surveys at Ocean Beach are markedly different from those surveys further north at Drakes Beach, the other new site. There, volunteers count and remove mostly small, hard fragments of plastic that appear worn down by sun and sea, indicating the majority of the debris there is brought to shore by the waves, not beachgoers.

Survey Says

Long blue piece of boat insulation sitting on a table.

A volunteer surveying a beach in the Greater Farallones National Marine Sanctuary found this piece of insulation from an elite sailboat that broke apart in San Francisco Bay in 2012. The debris took two months to travel to a shoreline 60 miles north. (NOAA)

After four years of monitoring and roughly 150 surveys, what have they found so far on the north-central California coast? More than 5,000 debris items recorded in all, which, as Bimrose said, is “a good amount but not too crazy.”

Expanding to six survey sites from four only increases what they can learn about debris patterns in this area. As more data roll in, NOAA will able to outline the regional scope of the problem and see patterns between seasons, years, categories, and locations of debris accumulation. One thing that is likely not to change, however, is that plastic debris dominates. It constitutes about 80 percent of the trash found at all sites.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. Through other partners associated with beach cleanups however, three pieces of Japan tsunami debris have been confirmed in California. The most recent was a large green pallet with Kanji lettering that landed on Mussel Beach just south of San Francisco. The discovery reinforces the importance of continuing to monitor debris along sanctuary beaches and shows us how items can persist in the ocean for years before sinking, breaking up, or landing on shore.

Another unusual example linking a piece of debris to the exact event that released it occurred in 2012. During a training run for the America’ Cup sailing race, an $8 million boat capsized and broke apart in San Francisco Bay on October 16, 2012. Two months later, one of Bimrose’s volunteers discovered a piece of insulation from that boat on a beach about 60 miles north.

Every month, Bimrose tags along with at least one pair of volunteers for their survey of one of the four “survey-only” beach sites. On one such occasion, one volunteer, an older gentleman, brought along his wife, who was puzzled by her husband’s constant chatter about “his” beach. According to Bimrose, a lot of the surveys could be considered rather clean or even monotonous. But even so, after a day walking and counting with him, the volunteer’s wife told her, “I totally get it, why he comes out here and rearranges his schedule to do this.”


Leave a comment

How Do You Keep Invasive Species out of America’s Largest Marine Reserve?

A young monk seal and birds on the beach of French Frigate Shoals in the Northwestern Hawaiian Islands.

The coral reefs of Papahānaumokuākea Marine National Monument are the foundation of an ecosystem that hosts more than 7,000 species, including marine mammals, fishes, sea turtles, birds, and invertebrates. Many are rare, threatened, or endangered, including the endangered Hawaiian monk seal. At least one quarter are found nowhere else on Earth. (NOAA)

From Honolulu, it takes a day and a half to get there by boat. But Scott Godwin, an expert in the ways “alien” marine life can travel and take hold in new places, knows what is at risk. He understands perfectly well what might happen if a new species manages to make that journey to the remote and incredible area under his watch.

Godwin works for the Resource Protection Program in NOAA’s Office of National Marine Sanctuaries. Along with the U.S. Fish and Wildlife Service and State of Hawaii, he is charged with protecting Papahānaumokuākea Marine National Monument, a tall order considering that it is one of the largest marine conservation areas in the world. This monument includes an isolated chain of tropical islands, atolls, and reefs hundreds of miles northwest of the main Hawaiian Islands—appropriately known as the Northwestern Hawaiian Islands—as well as nearly 140,000 square miles of surrounding waters. The monument is home to a host of rare and unique species, some found exclusively within its borders, as well as some of the healthiest and least disturbed coral reefs on Earth.

Map of main and Northwestern Hawaiian Islands

Papahānaumokuākea Marine National Monument is the single largest fully protected conservation area under the U.S. flag, and one of the largest marine conservation areas in the world. It encompasses 139,797 square miles of the Pacific Ocean — an area larger than all the country’s national parks combined. (NOAA)

And it is Godwin’s job to keep it that way. Along with climate change and marine debris, invasive species have been identified as one of the top three threats to this very special place, which, in addition to being a national monument, is also a national wildlife refuge and United Nations World Heritage Site. Fortunately, invasive species also happen to be Godwin’s area of expertise.

If new species were to break into the monument’s borders—and in some cases, they already have—the risk is of them exhibiting “invasive” behavior. In other words, outcompeting the native marine life among the coral reefs and taking the lion’s share of the most valuable resources: food and space.

But considering how remote and expansive the area is—the Northwestern Hawaiian Islands stretch across 1,200 nautical miles and are closed to the general public—how would anything find its way there in the first place?

Yet help from humans is how many species arrive in new environments, including the main Hawaiian Islands, where more than 400 non-native marine species are established. That means ships and other human activity coming from Hawaii represent the greatest potential for bringing invasive species into the monument.

Packing List: Bleach, Deep Freezer, and Quarantine Clothes

Dianna Parker of the NOAA Marine Debris Program learned this lesson firsthand. In October 2014, she and colleague Kyle Koyanagi joined a team of NOAA divers from the Pacific Islands Fisheries Science Center (PIFSC) on a mission to Papahānaumokuākea Marine National Monument to remove the tons of old fishing nets that wash up on its coral reefs each year.

In the months leading up to her departure from Honolulu, Parker learned she would need something called “quarantine clothes.” In essence, they were a brand-new set of clothes set aside for each time she would step on dry land in the Northwestern Hawaiian Islands. Furthermore, these new clothes had to be sealed in plastic bags and stored in a walk-in freezer for 48 hours before she could wear them. That made for a chilly start to the day, as Parker recalled.

The quarantine clothes were part of a U.S. Fish and Wildlife Service protocol for limiting both the introduction of foreign species into the monument and the spread of species between islands within it. “Something that’s native to one tiny island could be alien to the next one down the chain,” said Parker. The transmission could happen via a spore on your shoe or a seed stuck to your shirt.

In addition, all of the gear and equipment they were using, such as wet suits, fins, and life vests, had to be soaked in a dilute bleach solution before being used in a new location, a protocol developed by NOAA.

For the roughly month-long mission, Parker brought six full outfits to wear on the six islands the ship planned to visit. In the end, she only visited five islands and was able to turn a t-shirt from the sixth outfit into a makeshift hat to keep the hot sun at bay.

“Having to go through that level of precaution to not bring invasive species into the monument makes you realize just how delicate things are up there,” reflected Parker.

Stowaways Not Welcome

But before Parker and the rest of her team left on their mission, the vessel that would carry them, the NOAA Ship Oscar Elton Sette, first had to undergo a thorough cleaning and inspection before being granted a permit to enter the monument. The hull was scrubbed and checked by specially trained divers for even as much as a rogue barnacle. Ballast water, the water held in tanks on a ship to provide stability, was inspected closely as well because numerous creatures worldwide have been documented hitching a secret ride this way. And, of course, the ship was examined for rats, the perennial stowaways.

However, rats arrived in the monument years ago via the U.S. military activity previously based on Midway Atoll, a strategic naval base during World War II and the Cold War, and French Frigate Shoals, a runway and refueling stop for planes headed to Midway during World War II. While efforts to eradicate rats at these former military bases were successful, attempting a similar project for underwater species would be much more challenging. Marine species spread very quickly and human activities are necessarily limited by the finite amount of time we can spend underwater.

Currently, Godwin has documented about 60 non-native marine species in the Papahānaumokuākea Marine National Monument, mainly at Midway, but these species—the majority of which are marine invertebrates such as tube worms and sea squirts—are not recent arrivals. Most likely harken back to the area’s military days, which ended in 1994. Today the easiest way for a new marine species to get a foothold on these reefs is by colonizing “disturbed habitat,” or areas humans have altered, such as seawalls or docks, as is the case at Midway and French Frigate Shoals.

“Competition with native species is pretty stiff,” admits Godwin. While marine life from outside the monument can become established, they often don’t have the opportunity to become invasive, he said. “But we never say never,” which is why he helps train NOAA divers going to the monument to recognize the aggressive behaviors of marine invasive species.

Marine Debris and Surprises from Japan

Person pulling bio-fouled net out of water into boat with diver's help.

NOAA divers examining the abandoned fishing nets for potentially invasive species, as they were removing them from the Northwestern Hawaiian Islands in October 2014. (NOAA)

Godwin was on high-alert, however, when debris washed away from Japan during the 2011 tsunami began showing up in Hawaii. Most marine debris in the Northwestern Hawaiian Islands comes in the form of fishing nets typically lost in the open ocean—the kind the NOAA PIFSC team was clearing from reefs. Many of the species colonizing these nets are native to the open ocean and generally do not survive in the monument’s coastal environment.

But the boats and other debris from Japan came from the coast, bringing with them the hardy and flexible marine life capable of surviving the transoceanic journey until they found another coastal home. Fortunately, Godwin found that none of the non-native Japanese species showing up on tsunami debris became established in either Hawaii or the monument.

“Marine debris is a vector [for invasive species],” said Godwin, “but we have very little control,” which is why dealing with it in the monument focuses more on response than prevention. Yet with invasive species, prevention is always the goal. And when you get a glimpse of the unique place that is Papahānaumokuākea Marine National Monument, it is not hard to understand the lengths being taken to protect it.


Leave a comment

Untangling Both a Whale and Why Marine Life Get Mixed up With Our Trash

Tail-view of humpback whale tangled in rope and nets underwater.

A humpback whale entangled in fishing gear swims near the ocean’s surface in 2005. (NOAA/Hawaiian Islands Humpback Whale National Marine Sanctuary)

In the United States alone, scientific reports show at least 115 different species of marine life have gotten tangled up—literally—in the issue of marine debris. And when you look across the globe that number jumps to 200 species. Those animals affected range from marine mammals and sea turtles to sea birds, fish, and invertebrates.

Sadly, a humpback whale (Megaptera novaeangliae) swimming in the blue waters off of Maui, Hawaii, got first-hand experience with this issue in February 2014. Luckily, trained responders from the Hawaiian Islands Humpback Whale National Marine Sanctuary were able to remove the long tangle of fishing rope wrapped around the whale’s head, mouth, and right pectoral fin. According to NOAA’s National Marine Sanctuaries:

“A long pole with a specially designed hook knife was used by trained and permitted personnel to cut through the entanglement.

Hundreds of feet of small gauge line were collected after the successful disentanglement. The entanglement was considered life threatening and the whale is confirmed to be totally free of gear.”

Check out these short videos taken by the response team for a glimpse of what it’s like trying to free one of these massive marine mammals from this debris:

Net Results

While this whale was fortunate enough to have some help escaping, the issue of wildlife getting tangled in marine debris is neither new nor going away. Recently, the NOAA Marine Debris Program and National Centers for Coastal Ocean Science reviewed scientific reports of ocean life entangled by marine debris in the United States. You can read the full NOAA report [PDF].

They looked at more than 170 reports reaching all the way back to 1928. However, wildlife entanglements didn’t really emerge as a larger problem until after 1950 and into the 1970s when plastic and other synthetic materials became popular. Before that time, fishing gear and “disposable” trash tended to be made out of materials that broke down in the environment, for example, hemp rope or paper bags. Nowadays, when plastic packing straps and nylon fishing ropes get lost or discarded in the ocean, they stick around for a lot longer—long enough for marine life to find and get wrapped up in them.

One of the findings of the NOAA report was that seals and sea lions (part of a group known as pinnipeds) were the type of marine life most likely to become entangled in nets and other debris in the United States. Sea turtles were a close second.

But why these animals? Is there something that makes them especially vulnerable to entanglement?

Location, Location, Location

The two species with the highest reported numbers of entanglements were northern fur seals (Callorhinus ursinus) and Hawaiian monk seals (Monachus schauinslandi). Both of these seals may live in areas where marine debris tends to build up in higher concentrations, increasing their chances of encountering and getting tangled in it.

For example, Hawaiian monk seals live among the coral reefs of the Northwestern Hawaiian Islands, where some 50 tons of old fishing gear washes up each year. These islands are near the North Pacific Subtropical Convergence Zone, where oceanic and atmospheric forces bring together not only plenty of food for marine life but also lots of debris floating in the ocean. Humpback whales migrate across these waters twice a year, which might be how the humpback near Maui ended up in a tangled mess earlier this year.

Just Behave

Monk sleep sleeping on nets on beach.

An endangered Hawaiian monk seal snuggles up on a pile of nets and other fishing gear in the Northwestern Hawaiian Islands. Between the mid-1950s and mid-1990s, the population declined to one-third of its size due at least in part to entanglement in trawl nets and other debris that drift into the Northwestern Hawaiian Islands from other areas (e.g., Alaska, Russia, Japan) and accumulates along the beaches and in lagoon reefs of atolls. (NOAA)

While being in the wrong place at the wrong time can lead to many unhappily tangled marine animals, behavior also plays into the problem. Some species exhibit particular behaviors that unknowingly put them at greater risk when marine debris shows up.

Not only does the endangered Hawaiian monk seal live on shores prone to the buildup of abandoned nets and plastic trash, but the seals actually seem to enjoy a good nap or lounge on piles of old fishing gear, according to visiting scientists in the Northwestern Hawaiian Islands. The playful, curious nature of young seals and humpback whales also makes them more likely to become entangled in marine debris.

Sea turtles, young and old, are another group whose behaviors evolved to help them survive in a world without human pollution but which in today’s world sometimes place them in harm’s way. Young sea turtles like to hide from predators under floating objects, which too often end up being marine debris. And because sea turtles enjoy munching on the food swirling around ocean convergence zones, such as the one in the North Pacific, they also munch on and get mixed up with the marine debris that gathers there too—especially items with loops and openings to get caught on.

While these animals can’t do much about their behaviors, we humans can. You can:


Leave a comment

The Earth Is Blue and We’d Like to Keep It That Way

Pod of dolphins swimming.

Spinner dolphins in the lagoon at Midway Atoll National Wildlife Refuge in Papahānaumokuākea Marine National Monument. A pod of over 200 spinner dolphins frequent Midway Atoll’s lagoon. (NOAA/Andy Collins)

Often, you have to leave a place to gain some perspective.

Sometimes, that means going all the way to outer space.

When humans ventured away from this planet for the first time, we came to the stunning realization that Earth is blue. A planet covered in sea-to-shining-sea blue. And increasingly, we began to worry about protecting it. With the creation of the National Marine Sanctuaries system in 1972, a very special form of that protection began to be extended to miles of ocean in the United States. Today, that protection takes the form of 14 marine protected areas encompassing more than 170,000 square miles of marine and Great Lakes waters.

Starting October 23, 2014, NOAA’s Office of National Marine Sanctuaries is celebrating this simple, yet profound realization about our planet—that Earth is Blue—on their social media accounts. You can follow along on Facebook, Twitter, YouTube, and now their brand-new Instagram account @NOAAsanctuaries. Each day, you’ll see an array of striking photos (plus weekly videos) showing off NOAA’s—and more importantly, your—National Marine Sanctuaries, in all of their glory. Share your own photos and videos from the sanctuaries with the hashtag #earthisblue and find regular updates at sanctuaries.noaa.gov/earthisblue.html.

You can kick things off with this video:

Marine sanctuaries are important places which help protect everything from humpback whales and lush kelp forests to deep-sea canyons and World War II shipwrecks. But sometimes the sanctuaries themselves need some extra protection and even restoration. In fact, one of the first marine sanctuaries, the Channel Islands National Marine Sanctuary off of southern California, was created to protect waters once imperiled by a massive oil spill which helped inspire the creation of the sanctuary system in the first place.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

To minimize damage to the coastline and marine habitat, federal agencies removed the Japanese dock that turned up on the Washington coast in late 2012. In addition to being located within a designated wilderness portion of Olympic National Park, the dock was also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

At times NOAA’s Office of Response and Restoration is called to this role when threats such as an oil spill, grounded ship, or even huge, floating dock endanger the marine sanctuaries and their incredible natural and cultural resources.

Olympic Coast National Marine Sanctuary

In March 2013, we worked with a variety of partners, including others in NOAA, to remove a 185-ton, 65-foot Japanese floating dock from the shores of Washington. This dock was swept out to sea from Misawa, Japan, during the 2011 tsunami and once it was sighted off the Washington coast in December 2012, our oceanographers helped model where it would wash up.

Built out of plastic foam, concrete, and steel, this structure was pretty beat up by the time it ended up inside NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park. A threat to the environment, visitors, and wildlife before we removed it, its foam was starting to escape to the surrounding beach and waters, where it could have been eaten by the marine sanctuary’s whales, seals, birds, and fish.

Florida Keys National Marine Sanctuary

In an effort to protect the vibrant marine life of the Florida Keys National Marine Sanctuary, NOAA’s Restoration Center began clearing away illegal lobster fishing devices known as “casitas” in June 2014. The project is funded by a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from the sanctuary’s seafloor. Constructed from materials such as metal sheets, cinder blocks, and lumber, these unstable structures not only allow poachers to illegally harvest huge numbers of spiny lobsters but they also damage the seafloor when shifted around during storms.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita in the Florida Keys National Marine Sanctuary. NOAA is removing these illegal lobster fishing devices which damage seafloor habitat. (NOAA)

Also in the Florida Keys National Marine Sanctuary, our office and several partners ran through what it would be like to respond to an oil spill in the sanctuary waters. In April 2005, we participated in Safe Sanctuaries 2005, an oil spill training exercise that tested the capabilities of several NOAA programs, as well as the U.S. Coast Guard. The drill scenario involved a hypothetical grounding at Elbow Reef, off Key Largo, of an 800-foot cargo vessel carrying 270,000 gallons of fuel. In the scenario, the grounding injured coral reef habitat and submerged historical artifacts, and an oil spill threatened other resources. Watch a video of the activities conducted during the drill.

Papahānaumokuākea Marine National Monument

Even hundreds of miles from the main cluster of Hawaiian islands, the Papahānaumokuākea Marine National Monument does not escape the reach of humans. Each year roughly 50 tons of old fishing nets, plastics, and other marine debris wash up on the sensitive coral reefs of the marine monument. Each year for nearly 20 years, NOAA divers and scientists venture out there to remove the debris.

This year, the NOAA Marine Debris Program’s Dianna Parker and Kyle Koyanagi are documenting the effort aboard the NOAA Ship Oscar Elton Sette. You can learn more about and keep up with this expedition on the NOAA Marine Debris Program website.


4 Comments

With Lobster Poacher Caught, NOAA Fishes out Illegal Traps from Florida Keys National Marine Sanctuary

This is a post by Katie Wagner of the Office of Response and Restoration’s Assessment and Restoration Division.

On June 26, 2014, metal sheets, cinder blocks, and pieces of lumber began rising to the ocean’s surface in the Florida Keys National Marine Sanctuary. This unusual activity marked the beginning of a project to remove materials used as illegal lobster fishing devices called “casitas” from sanctuary waters. Over the course of two months, the NOAA-led restoration team plans to visit 297 locations to recover and destroy an estimated 300 casitas.

NOAA’s Restoration Center is leading the project with the help of two contractors, Tetra Tech and Adventure Environmental, Inc. The removal effort is part of a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from sanctuary waters. An organized industry, the illegal use of casitas to catch lobsters in the Florida Keys not only impacts the commercial lobster fishery but also injures seafloor habitat and marine life.

Casitas—Spanish for “little houses”—do not resemble traditional spiny lobster traps made of wooden slats and frames. “Casitas look like six-inch-high coffee tables and can be made of various materials,” explains NOAA marine habitat restoration specialist Sean Meehan, who is overseeing the removal effort.

The legs of the casitas can be made of treated lumber, parking blocks, or cinder blocks. Their roofs often are made of corrugated tin, plastic, quarter-inch steel, cement, dumpster walls, or other panel-like structures.

Poachers place casitas on the seafloor to attract spiny lobsters to a known location, where divers can return to quite the illegal catch.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita. (NOAA)

“Casitas speak to the ecology and behavior of these lobsters,” says Meehan. “Lobsters feed at night and look for places to hide during the day. They are gregarious and like to assemble in groups under these structures.” When the lobsters are grouped under these casitas, divers can poach as many as 1,500 in one day, exceeding the daily catch limit of 250.

In addition to providing an unfair advantage to the few criminal divers using this method, the illegal use of casitas can harm the seafloor environment. A Natural Resource Damage Assessment, led by NOAA’s Restoration Center in 2008, concluded that the casitas injured seagrass and hard bottom areas, where marine life such as corals and sponges made their home. The structures can smother corals, sea fans, sponges, and seagrass, as well as the habitat that supports spiny lobster, fish, and other bottom-dwelling creatures.

Casitas are also considered marine debris and potentially can harm other habitats and organisms. When left on the ocean bottom, casitas can cause damage to a wider area when strong currents and storms move them across the seafloor, scraping across seagrass and smothering marine life.

“We know these casitas, as they are currently being built, move during storm events and also can be moved by divers to new areas,” says Meehan. However, simply removing the casitas will allow the seafloor to recover and support the many marine species in the sanctuary.

There are an estimated 1,500 casitas in Florida Keys National Marine Sanctuary waters, only a portion of which will be removed in the current effort. In this case, a judge ordered the convicted diver to sell two of his residences to cover the cost of removing hundreds of casitas from the sanctuary.

To identify the locations of the casitas, NOAA’s Hydrographic Systems and Technology Program partnered with the Restoration Center and the Florida Keys National Marine Sanctuary. In a coordinated effort, the NOAA team used Autonomous Underwater Vehicles (underwater robots) to conduct side scan sonar surveys, creating a picture of the sanctuary’s seafloor. The team also had help finding casitas from a GPS device confiscated from the convicted fisherman who placed them in the sanctuary.

After the casitas have been located, divers remove them by fastening each part of a casita’s structure to a rope and pulley mechanism or an inflatable lift bag used to float the materials to the surface. Surface crews then haul them out of the water and transport them to shore where they can be recycled or disposed.

For more information about the program behind this restoration effort, visit NOAA’s Damage Assessment, Remediation, and Restoration Program.

Katie Wagner.Katie Wagner is a communications specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. Her work raises the visibility of NOAA’s effort to protect and restore coastal and marine resources following oil spills, releases of hazardous substances, and vessel groundings.