NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

What Do We Know Today About Microbeads and Microplastics in the Ocean?

Plastic microbeads visible in toothpaste on a toothbrush.

Microbeads are tiny pieces of polyethylene plastic added to health and beauty products, such as some cleansers and toothpastes. They can pass through wastewater treatment processes and end up in the ocean and Great Lakes, posing a potential threat to aquatic life. (NOAA)

Almost four years ago, I was surprised to find out about the presence of plastic microbeads in cosmetic products, such as exfoliating face cleansers and some types of toothpaste.

The problem with these tiny pieces of polyethylene plastic is that once they are washed down the drain, they escape being filtered by wastewater treatment processes, allowing them to enter the ocean and Great Lakes where they could absorb toxic chemicals in the environment and be ingested by animal life.

Microbeads are actually not a recent problem; according to the United Nations Environment Programme (UNEP), plastic microbeads first appeared in personal care products about fifty years ago, with plastics increasingly replacing natural ingredients with the same purpose in these products. But even in 2012, this issue was still relatively unknown, with an abundance of products containing plastic microbeads on the market and not a lot of awareness on the part of consumers.

Microbeads, Macro-attention

For several years, the NOAA Marine Debris Program has been working with researchers that are investigating issues relating to microbeads in our marine environment. In recent years, the issue has received a fair amount of attention in the media and elsewhere.

As a result of increasing overall awareness of the problem, many companies that use microbeads in their products have been phasing them out voluntarily. On December 28, 2015, President Obama signed the Microbead-Free Waters Act of 2015 [PDF], banning plastic microbeads in cosmetics and personal care products.

The law was met with a lot of support, including from the Personal Care Products Council, an industry group who commented during the act’s approval process, which said:

“Solid, plastic microbeads are used in personal care cleansing products because of their safe and effective exfoliating properties. Research by independent scientists and nongovernmental organizations show that microbeads from all types of industrial uses are miniscule contributors to marine plastic debris; cosmetic microbeads are a tiny fraction of that. At the same time, our member companies take very seriously their role as environmental stewards of their products. As a result, companies have voluntarily committed to replace solid plastic microbeads. We look forward to this important bipartisan legislation making its way to President Obama’s desk and being signed into law.”

Under the Microscope

Tiny bits of microplastics litter a sandy patch of beach.

Microplastics, which include microbeads, are less than 5 millimeters long (roughly the size of a sesame seed). Most microplastic in the ocean actually ends up there after breaking down from bigger pieces of plastic on beaches. (NOAA)

After I originally learned about microbeads in cosmetic products, I discussed the issue with Dr. Joel Baker, Port of Tacoma Chair in Environmental Science at the University of Washington Tacoma and the Science Director of the Center for Urban Waters.

At the time, he was leading a project for the NOAA Marine Debris Program focused on detecting microplastics in the marine environment. Microplastics, which include microbeads, are minute pieces of plastic less than 5 millimeters long, or about the size of a sesame seed. More recently, he has conducted a study, “Quantification of Marine Microplastics in the Surface Waters of the Gulf of Alaska,” that examined the quantity and distribution of microplastics at specific locations in Alaskan waters over time.

Following the signing of the Microbead-Free Waters Act of 2015, I checked back in with Dr. Baker to get his thoughts on the issue now. Four years ago, he had told me, “While we don’t yet understand the impacts of microplastics to aquatic organisms, we do know that releasing persistent materials into the ocean will result in ever-increasing concentrations of marine debris.”

Speaking to him now, while Dr. Baker sees the attention given to microbeads in health and beauty products over the last few years as a good way to raise awareness about plastics in the ocean, he cautions that there still is not enough known about the damage that these extremely small particles cause. He further points out that while certainly not insignificant, they represent a very small percentage of total microplastic debris in the ocean.

We need more research to be able to measure accurately the presence of smaller microplastics, including microbeads, in the ocean. While Dr. Baker and his colleagues have developed a manual on laboratory methods for extracting microplastics from water samples, the methods do not yet detect the smallest particles such as the microbeads that exist in some health and beauty products.

Breaking Down the Issues

In addition, Dr. Baker pointed out to me that microbeads are not the largest source of marine plastic or even microplastics. “Most plastic in the ocean is from beach plastics that break down and improper disposal of trash,” he said. Cosmetic microbeads are much smaller, and are considered primary microplastics [PDF], as opposed to secondary microplastics, which are the result of larger pieces of plastic breaking down into smaller pieces.

While Dr. Baker found encouraging the news that we’ll be stopping one of the many ways plastic reaches the ocean, he emphasized there are plenty more that will require a lot of effort. He suggested that more attention needs to be paid to the abundance of plastic bags that end up in the ocean, which he feels represents a larger part of the plastic marine debris problem.

The NOAA Marine Debris Program strives to learn more about the impacts of marine microplastics. In addition to Dr. Baker’s work, the program currently is supporting microplastic research projects that include, but aren’t limited to, measuring microplastics in the marine environment; the presence of microplastics in different geographical regions, such as the coastal mid-Atlantic region and national park beaches; examining juvenile fishes to determine if they are ingesting microplastic; and the effects of microplastics in aquatic food chains.

For more information on these issues, you also can refer to a UNEP 2014 update on plastic debris in the ocean [PDF].


3 Comments

How Beach Cleanups Help Keep Microplastics out of the Garbage Patches

Basket full of faded, old plastic bottles on a beach.

Cleaning up a few plastic bottles on a beach can make a big difference when it comes to keeping microplastics from entering the ocean. (NOAA)

These days plastic seems to be everywhere; unfortunately, that includes many parts of the ocean, from the garbage patches to Arctic sea ice. With this pollution increasingly in the form of tiny plastic bits, picking up a few bottles left on the beach can feel far removed from the massive problem of miniscule plastics floating out at sea.

However, these two issues are more closely connected than you may think.

But how do we get from a large plastic water bottle, blown out of an overfilled trash can on a beach, to innumerable plastic pieces no bigger than a sesame seed—and known as microplastics—suspended a few inches below the ocean surface thousands of miles from land?

The answer starts with the sun and an understanding of how plastic deteriorates in the environment.

The Science of Creating Microplastics

Plastic starts breaking down, or degrading, when exposed to light and high temperatures from the sun. Ultraviolet B radiation (UVB), the same part of the light spectrum that can cause sunburns and skin cancer, starts this process for plastics.

This process, known as photo-oxidation, is a chemical reaction that uses oxygen to break the links in the molecular chains that make up plastic. It also happens much faster on land than in the comparatively cool waters of the ocean.

For example, a hot day at the beach can heat the sandy surface—and plastic trash sitting on it—up to 104 degrees Fahrenheit. The ocean, on the other hand, gets darker and colder the deeper you go, and the average temperatures at its surface in July can range from 45 degrees Fahrenheit near Adak Island, Alaska, to 89 degrees in Cannon Bay, Florida.

Back on that sunny, warm beach, a plastic water bottle starts to show the effects of photo-oxidation. Its surface becomes brittle and tiny cracks start forming. Those larger shards of plastic break apart into smaller and smaller pieces, but they keep roughly the same molecular structure, locked into hydrogen and carbon chains. A brisk wind or child playing on the beach may cause this brittle outer layer of plastic to crumble. The tide washes these now tiny plastics into the ocean.

Once in the ocean, the process of degrading slows down for the remains of this plastic bottle. It can sink below the water surface, where less light and heat penetrate and less oxygen is available. In addition, plastics can quickly become covered in a thin film of marine life, which further blocks light from reaching the plastic and breaking it down.

An Incredible Journey

Lots of tiny pieces of plastic covering rocks.

Microplastics, tiny bits of plastic measuring 5 millimeters or less, are often the result of larger pieces of plastic breaking down on land before making it into the ocean. They can also come from cosmetics and fleece clothing. (NOAA)

In general, plastic breaks down much, much more slowly in the ocean than on land. That means plastic objects that reach the ocean either directly from a boat (say trash or nets from a fishing vessel) or washed into the sea before much degradation has happened are much less likely to break into smaller pieces that become microplastics. This also applies to plastics that sink below the ocean surface into the water column or seafloor.

Instead, plastic that has spent time heating up and breaking down on land is most likely to produce the microplastics eventually accumulating in ocean gyres or garbage patches, a conclusion supported by the research of North Carolina State University professor Anthony Andrady and others.

Of course, microplastics in the form of “microbeads” in face wash and other cosmetics or microfibers in fleece clothing also can reach the ocean by slipping through waste water treatment systems.

However, regularly patrolling your favorite beach or waterway and cleaning up any plastic or other marine debris can go a long way to keeping millions of tiny microplastics—some so tiny they can only be seen with a microscope—from reaching the garbage patches and other areas of the ocean.

The great thing is anyone can do this and you don’t have to wait for the International Coastal Cleanup each September to get started.

Find more tips and resources to help you on your way:


1 Comment

Keep Your Holidays Happy and Your Impact Low

Red bows and evergreen bows on a fence on a beach.

Make sure your holidays leave the coasts clean and bright. (Creative Commons: Susan Smith, Attribution-NonCommercial-NoDerivs 2.0 Generic License)

Across the United States, the winter holiday season is upon us and many people are gathering with family and friends to celebrate. But as you go about trimming trees, lighting candles, and nipping eggnog, keep in mind a few tips for lowering your impact on the ocean.

After all, a clean and healthy environment sounds like a great gift to give others—along with world peace.

  • Host a no- or low-waste holiday soiree. Set out reusable dishes for guests or use recyclable items and have a clearly labeled recycling bin at the ready. Compost napkins, half-eaten gingerbread people, and that fruitcake leftover from last year. Get more tips from the Marine Debris Blog. As they point out, “According to the EPA, the volume of household waste in the United States generally increases 25 percent between Thanksgiving and New Year’s Day—about 1 million extra tons.”
  • Do your holiday shopping with reusable bags. Plastic shopping bags are among the top 10 items collected each year at the International Coastal Cleanup.
  • Consider giving gifts that won’t end up on the shelf or in the trash. It takes a lot of oil (which can spill) to produce and transport the many items for sale starting Black Friday. What about giving the people you care about gifts they can experience, such as tickets to a show or gift certificate to their favorite restaurant? Or something they can use with little or no accompanying waste, such as homemade hand salve or your famous family latke recipe, along with a tasty batch to go with it?
  • Keep your gifts under reusable wraps. Skip the plastic ribbons and bows and wrap your gifts in stylish fabric gift bags (which the recipient can then re-gift). At the very least, save what wrappings you can and use them again next time.
  • Avoid giving gifts that contain tiny plastic microbeads. It may be tempting to give your sister-in-law a bottle of Cinnamon Stick Glitterburst Exfoliating Body Scrub, but check the label first. Personal care items, such as cleansers and body wash, often contain “microscrubbers” made of plastic that go down the drain, most times making it past waste treatment and into rivers, lakes, and the ocean. Look for “polyethylene” or “polypropylene” in the ingredient list.
  • If you have a blast, clean it up. If you use fireworks to ring in the New Year, please do so responsibly. Fireworks can shatter into little plastic bits, which can be swept into storm drains and end up in lakes, rivers, and the ocean. Volunteer for a beach cleanup on January 1, track what you pick up, and make sure marine debris doesn’t pollute 2015.
  • Give public transportation the green light. Holly and mistletoe shouldn’t be the only green part of this season. When possible and safe, opt for lower-impact transportation options: walking, biking, or public transportation. NOAA responded to 138 oil and chemical spills in the past year. Less oil used means less oil transported and potentially spilled.

The U.S. Environmental Protection Agency has more great suggestions for greening your holiday season and all winter long. Do you have any tips? How are you keeping your holiday season happy and light on the planet?


4 Comments

Is There a Garbage Patch in the Great Lakes?

This is a post by Sarah Opfer, NOAA Marine Debris Program Great Lakes Regional Coordinator.

Plastic debris in the form of fragments, bottle caps, food packaging, and smoking products are commonly found on Great Lake beaches. Here, marine debris has washed up at Maumee Bay State Park on the shores of Lake Erie. (NOAA Marine Debris Program)

Plastic debris in the form of fragments, bottle caps, food packaging, and smoking products are commonly found on Great Lake beaches. Here, marine debris has washed up at Maumee Bay State Park on the shores of Lake Erie. (NOAA Marine Debris Program)

The “Great Pacific Garbage Patch“—a purported island of trash twice the size of Texas floating in the Pacific Ocean—receives a lot of media attention. Recent reports suggest that a similar garbage patch may be developing in the Great Lakes as well.

However, based on research we know that the name “garbage patch” is misleading and that there is no island of trash forming in the middle of the ocean. We also know that there is no blanket of marine trash that is visible using current satellite or aerial photography.

Plastic debris is found in Great Lake waters as well. This debris was pulled from a Lake Erie marina during a cleanup. (NOAA Marine Debris Program)

Plastic debris is found in Great Lake waters as well. This debris was pulled from a Lake Erie marina during a cleanup. (NOAA Marine Debris Program)

Yet, there are places in the ocean where currents bring together lots and lots of floatable materials, such as plastics and other trash. While the types of litter gathering in these areas can vary greatly, from derelict fishing nets to balloons, the kind that is capturing the most attention right now are microplastics. These are small bits of plastic often not immediately evident to the naked eye.

While we know about the so-called “garbage patches” in the Pacific Ocean, could there be a similar phenomenon in other parts of the world, including the Great Lakes? Recent research on the distribution of plastics in the Great Lakes has people now asking that very question.

The Great Lakes are no mere group of puddles. They contain nearly 20% of the world’s surface freshwater and have a coastline longer than the East Coast of the United States. Within the Great Lakes system, water flows from Lake Superior and Lake Michigan, the lakes furthest west and highest in elevation, east into Lake Huron. From there, it travels through Lake St. Clair and the Detroit River into Lake Erie. Then, some 6 million cubic feet of water pass over Niagara Falls each minute and into Lake Ontario before flowing through the St. Lawrence River and into the Atlantic Ocean.

Average summer water circulation patterns in the Great Lakes. Beletsky et al. 1999 (NOAA Great Lakes Environmental Research Laboratory)

Average summer water circulation patterns in the Great Lakes. Beletsky et al. 1999 (NOAA Great Lakes Environmental Research Laboratory)

This water flow influences circulation patterns within and between each of the lakes. Currents within the Great Lakes also are powered by wind, waves, energy from the sun, water density differences, the shape of the lakebed, and the shoreline. These circulation currents have the tendency to create aggregations of garbage and debris in certain areas, just like in the oceans. But, just as in the Pacific Ocean, this doesn’t mean the Great Lakes have floating trash islands either.

In an effort to better identify and understand how plastic debris is spread throughout the Great Lakes, researchers at the University of Waterloo in Canada have partnered with COM DEV on an exploratory research project. COM DEV is a designer and manufacturer of space and remote sensing technology. Researchers are working with this industry partner to develop and test the ability of different remote sensors to detect plastics in the Great Lakes.

If they find the task is feasible and the trial runs prove to be effective, this work could be applied beyond the Great Lakes and across the United States. The NOAA Marine Debris Program, part of the Office of Response and Restoration, is engaged with and following the project. We plan to participate in the next steps of this promising effort. You can learn more about the project and a related workshop on plastic pollution in the Great Lakes.

Sarah Opfer

Sarah Opfer

Sarah Opfer received her bachelor’s and master’s degrees in biology from Bowling Green State University and was a Knauss Sea Grant fellow with NOAA in 2009. She is based in Ohio and enjoys having Lake Erie in her back yard! While away from work she enjoys cooking, reading, kayaking, dreaming of places she wants to travel to, and spending time with her family.


Leave a comment

Living in the Age of Plastic: Conserving Plastic vs. Conserving the Environment from Plastic

Plastic spoons.

Plastic of the “disposable” variety. (Alex Smith, Creative Commons Attribution 2.0 Generic License)

Today, we live an era dominated by plastics—versatile, ubiquitous, “disposable” plastics. In this “Age of Plastic,” enter Odile Madden, a research scientist studying historic plastic artifacts at the Smithsonian’s Museum Conservation Institute.

Using her training in materials science, Madden works to understand the materials—from their condition to their chemical composition—used in Smithsonian exhibits. She preserves these materials for as long as possible so that everyone who visits the museums can continue to enjoy these pieces of cultural history. The sensitive nature of the work demands non-invasive techniques that will not harm the artifact. It’s a cool job.

It also stands in stark contrast to environmental conservation, which depends on materials that break down quickly and do not stick around a long time. For example, an abandoned fishing net drifting in the open ocean will have a much lower chance of accidentally ensnaring marine life (“ghost-fishing”) if it breaks down quickly.

As a marine biologist with the NOAA Marine Debris Program, I work on the opposite end of the plastics spectrum from Madden. She and her team of cultural conservationists strive to maintain the integrity of valuable plastic artifacts, while at NOAA we’re trying to conserve marine environments by, for example, getting rid of plastic debris.

Madden’s continued interest in pursuing the technical and philosophical issues surrounding plastic use prompted her to coordinate the recent interdisciplinary symposium, “The Age of Plastic: Ingenuity and Responsibility.” Presentations covered everything from the space program’s use of plastics to the history of synthetic fibers. They also examined the challenges of preserving plastic in museums and of recycling plastics at the end of their lifecycles and had an open look at how plastics are perhaps indispensable in science and human health.

Nancy Wallace, program director for the NOAA Marine Debris Program, participated in an equally engaging panel discussion, where she highlighted the potential hazards of plastics that unintentionally end up as marine debris. (In other words, we brought up the negative side of plastics.)

Still, I walked away with two particularly refreshing perspectives from outside my world of marine debris:

  1. The difference between “conservationists”: Museums use “conservation” to mean saving materials, while environmentalists use “conservation” to mean saving the natural environment. Museums want the material to last as long as possible while we at NOAA would be happy if plastics degraded quickly into its molecular components: carbon, hydrogen, and oxygen. (The scientist in me needs to point out that the word “plastic” captures incredible variation in material type and structure. “Synthetic polymer” is more accurate, but alas, it doesn’t have public cachet.)
  1. The difference in values: The use of a material often defines its value. Materials that are meant to be art are arguably more valuable than materials used in life. Probably few people would disagree that there is an intrinsic difference in a resin sculpture housed at the Smithsonian versus the one-time-use spoon you pick up at the cafeteria. But we must ensure that materials are used and disposed of correctly, in ways that respect their value. Plastics are valuable— they were invented for a reason and serve a lot of fantastic purposes— but have become significantly devalued in today’s throw-away culture.
A cellulose nitrate Victorian Black Comb circa 1890.

A cellulose nitrate Victorian Black Comb (ca 1890). Celluloid novelties made to imitate precious materials such as ivory and tortoise shell were popular from about 1880 to the 1930s. (Smithsonian Institution Collections Search Center)

I’d like to draw attention to another, unfortunately ironic, conservation connection. In his keynote speech, Robert Friedel of the University of Maryland pointed out that in the early days of synthetics, objects were created to imitate natural materials. In part, this was done to stop poaching of hawksbill sea turtles for tortoiseshell and elephant tusks for ivory. I thought, how interesting: Materials once used to conserve nature now occur in such quantity that natural environments are at risk from them.

Nevertheless, it was clear from this symposium that people care: both about preserving museum artifacts and about the baby albatross that chokes on ingested plastic bits. There are so many different, equally valuable perspectives on the use of plastics. All of these perspectives are needed if we are to move forward, as a society, with a more thoughtful approach to material use and conservation.


10 Comments

How Big Is the “Great Pacific Garbage Patch”? Science vs. Myth

While everything may be bigger in Texas, some reports about the “Great Pacific Garbage Patch” would lead you to believe that this marine mass of plastic is bigger than Texas—maybe twice as big as the Lone Star State, or even twice as big as the continental U.S.

For NOAA, a national science agency, separating science from science fiction about the Pacific garbage patch (and other “garbage patches”) is important when answering people’s questions about what it is and how we should deal with the problem. (For the record, no scientifically sound estimates exist for the size or mass of these garbage patches.)

Map of garbage patches and convergence zones in the Pacific Ocean.

Marine debris accumulation locations in the North Pacific Ocean.

The NOAA Marine Debris Program’s Carey Morishige takes down two myths floating around with the rest of the debris about the garbage patches in a recent post on the Marine Debris Blog:

  1. There is no “garbage patch,” a name which conjures images of a floating landfill in the middle of the ocean, with miles of bobbing plastic bottles and rogue yogurt cups. Morishige explains this misnomer:

While it’s true that these areas have a higher concentration of plastic than other parts of the ocean, much of the debris found in these areas are small bits of plastic (microplastics) that are suspended throughout the water column. A comparison I like to use is that the debris is more like flecks of pepper floating throughout a bowl of soup, rather than a skim of fat that accumulates (or sits) on the surface.

She’s not downplaying the significance of microplastics. They are nearly ubiquitous today—degrading into tiny bits from a range of larger plastic items* [PDF] and now turning up in everything from face scrubs to fleece jackets. Yet their impacts on marine life mostly remain a big unknown.

  1. There are many “garbage patches,” and by that, we mean that trash congregates to various degrees in numerous parts of the Pacific and the rest of the ocean. These natural gathering points appear where rotating currents, winds, and other ocean features converge to accumulate marine debris, as well as plankton, seaweed, and other sea life. (Find out more about these “convergence zones” in the ocean and a NOAA study of marine debris concentrations in the North Pacific Subtropical Convergence Zone [PDF].)

Any way you look at these “peppery soups” of plastic in the Pacific, none of the debris should be there. The NOAA Marine Debris website and blog have lots of great information and references if you want to learn more about the garbage patch issue.

Next up, Morishige digs into how feasible it is to clean up the so-called garbage patches.

Looking for more information about the “garbage patches”?

*Updated July 10, 2012. **Updated Jan. 28,  2013 to correct a statement incorrectly identifying the North Pacific Subtropical Convergence Zone as what is referred to as the “Great Pacific Garbage Patch.”


Leave a comment

How Your Fleece Jacket Could Be Contributing to the Degradation of Marine Habitats

All links leave this blog.

When you pull your favorite fleece jacket snugly around you, you probably never think about how it could be contributing to marine pollution.

However, recent research has investigated exactly that, exploring whether synthetic fabric products (such as fleece) could be a potential source of microscopic plastic fibers in the ocean and on beaches.

While at University College Dublin (Ireland), lead researcher Mark Browne conducted an experiment which included washing fleece clothing and then counting the number of fibers left over in the wastewater from the washing machines. He found that one piece of clothing could yield nearly 2,000 plastic fibers in a single wash—which would wind up not only in the wastewater but eventually in the marine environment.

In a complimentary experiment, he explored whether similar plastic fibers end up in beach sediments. His research uncovered that microplastic fibers, mostly polyester and acrylic, are showing up on beaches across the world, whether samples were gathered near sites where wastewater was discharged or not.

In other words, teeny plastic fibers from your synthetic clothing could make their way to the ocean. Because synthetics (plastics) can persist for a long time and travel along ocean currents, the topic of microplastic pollution has emerged in the past five years as a cause for concern.

The premise and conclusions of Dr. Browne’s research are provocative. This study is one of the first of its kind to pinpoint a specific source of microplastic marine debris. Because of the complexity of the topic, we still don’t have good estimates for how much of this debris is out there and how it enters the environment.

Dr. Browne’s work is a good example of a hypothesis-driven research project that has filled important knowledge gaps in our estimation of what kinds of debris end up on beaches. It has implications for how we could prevent this source of microplastic marine pollution. His research is also timely—an international working group (GESAMP) has just taken up the topic of microplastic debris and will be performing a global assessment of its sources and impacts.

More than anything, this research points to the complex nature of marine debris. Who would have thought that plastic particles from our clothing could make their way into the ocean? Unfortunately, there is not a single solution that will fix all the problems associated with marine debris, but good science allows us to find the best options for dealing with them.

For now, wash carefully, and educate yourself and others on the issue of plastics in our ocean.

Follow

Get every new post delivered to your Inbox.

Join 689 other followers