NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


8 Comments

NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate

Shoal grass seagrass on a sandy ocean floor.

Seagrass beds serve as important habitat for a variety of marine life, and understanding their growth patterns better can help fisheries management and restoration efforts. (NOAA)

Amy Uhrin was sensing a challenge ahead of her. As a NOAA scientist working on her PhD, she was studying the way seagrasses grow in different patterns along the coast, and she knew that these underwater plants don’t always create lush, unbroken lawns beneath the water’s surface.

Where she was working, off the North Carolina coast near the Outer Banks, things like the churning motion of waves and the speed of tides can cause seagrass beds to grow in patchy formations. Clusters of bigger patches of seagrass here, some clusters of smaller patches over there. Round patches here, elongated patches over there.

Uhrin wanted to be able to look at aerial images showing large swaths of seagrass habitat and measure how much was actually seagrass, rather than bare sand on the bottom of the estuary. Unfortunately, traditional methods for doing this were tedious and tended to produce rather rough estimates. These involved viewing high-resolution aerial photographs, taken from fixed-wing planes, on a computer monitor and having a person digitally draw lines around the approximate edges of seagrass beds.

While that can be fairly accurate for continuous seagrass beds, it becomes more problematic for areas with lots of small patches of seagrass included inside a single boundary. For the patchy seagrass beds Uhrin was interested in, these visual methods tended to overestimate the actual area of seagrass by 70% to more than 1,500%. There had to be a better way.

Seeing the Light

Patches of seagrass beds of different sizes visible from the air.

Due to local environmental conditions, some coastal areas are more likely to produce patchy patterns in seagrass, rather than large beds with continuous cover. (NOAA)

At the time, Uhrin was taking a class on remote sensing technology, which uses airborne—or, in the case of satellites, space-borne—sensors to gather information about the Earth’s surface (including information about oil spills). She knew that the imagery gathered from satellites (i.e. Landsat) is usually not at a fine enough resolution to view the details of the seagrass beds she was studying. Each pixel on Landsat images is 30 meters by 30 meters, while the aerial photography gathered from low-flying planes often delivered resolution of less than a meter (a little over three feet).

Uhrin wondered if she could apply to the aerial photographs some of the semi-automated classification tools from imagery visualization and analysis programs which are typically used with satellite imagery. She decided to give it a try.

First, she obtained aerial photographs taken of six sites in the shallow coastal waters of North Carolina’s Albemarle-Pamlico Estuary System. Using a GIS program, she drew boundaries (called “polygons”) around groups of seagrass patches to the best of her ability but in the usual fashion, which includes a lot of unvegetated seabed interspersed among seagrass patches.

Six aerial photographs of seagrass habitat off the North Carolina coast, with yellow boundary lines drawn around general areas of seagrass habitat.

Aerial photographs show varying patterns of seagrass growth at six study sites off the North Carolina coast. The yellow line shows the digitally drawn boundaries around seagrass and how much of that area is unvegetated for patchy seagrass habitat. (North Carolina Department of Transportation)

Next, Uhrin isolated those polygons of seagrass beds and deleted everything else in each image except the polygon. This created a smaller, easier-to-scan area for the imagery visualization program to analyze. Then, she “trained” the program to recognize what was seagrass vs. sand, based on spectral information available in the aerial photographs.

Though limited compared to what is available from satellite sensors, aerial photographs contain red, blue, and green wavelengths of light in the visible spectrum. Because plants absorb red and blue light and reflect green light (giving them their characteristic green appearance), Uhrin could train the computer program to classify as seagrass the patches where green light was reflected.

Classify in the Sky

Amy Uhrin stands in shallow water documenting data about seagrass inside a square frame of PVC pipe.

NOAA scientist Amy Uhrin found a more accurate and efficient approach to measuring how much area was actually seagrass, rather than bare sand, in aerial images of coastal North Carolina. (NOAA)

To Uhrin’s excitement, the technique worked well, allowing her to accurately identify and map smaller patches of seagrass and export those maps to another computer program where she could precisely measure the distance between patches and determine the size, number, and orientation of seagrass patches in a given area.

“This now allows you to calculate how much of the polygon is actually seagrass vegetation,” said Uhrin, “which is good for fisheries management.” The young of many commercially important species, such as blue crabs, clams, and flounder, live in seagrass beds and actively use the plants. Young scallops, for example, cling to the blades of seagrass before sliding off and burrowing into the sediment as adults.

In addition, being able to better characterize the patterns of seagrass habitat could come in handy during coastal restoration planning and assessment. Due to local environmental conditions, some areas are more likely to produce patchy patterns in seagrass. As a result, efforts to restore seagrass habitat should aim for restoring not just cover but also the original spatial arrangement of the beds.

And, as Uhrin noted, having this information can “help address seagrass resilience in future climate change scenarios and altered hurricane regimes, as patchy seagrass areas are known to be more susceptible to storms than continuous meadows.”

The results of this study, which was done in concert with a colleague at the University of Wisconsin-Madison, have been published in the journal Estuarine, Coastal and Shelf Science.


3 Comments

How Do You Keep Killer Whales Away From an Oil Spill?

This is a guest post by Lynne Barre of NOAA Fisheries.

Two killer whales (orcas) breach in front a boat.

NOAA developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly to keep these endangered animals away from a spill. (NOAA)

I sleep better at night knowing that we have a plan in place to keep endangered Southern Resident killer whales away from an oil spill. Preventing oil spills is key, but since killer whales, also known as orcas, spend much of their time in the busy waters around Seattle, the San Juan Islands, and Vancouver, British Columbia, there is always a chance a spill could happen.

The Southern Residents are a small and social population of killer whales, so an oil spill could have major impacts on the entire population if they were in the wrong place at the wrong time.

We’ve learned from past experience with the 1989 Exxon Valdez oil spill that killer whales and other marine mammals don’t avoid oiled areas on their own and exposure to oil likely can affect their populations. New information on impacts from the 2010 Deepwater Horizon oil spill on bottlenose dolphins (a close relative of killer whales) gives us a better idea of how oil exposure can affect the health and reproduction of marine mammals.

Oil spills are a significant threat to the Southern Resident population, which totals less than 90 animals, and the 2008 recovery plan [PDF] calls for a response plan to protect them. We brought experts together in 2007 to help us identify tools and techniques to deter killer whales from oil and develop a response plan so that we’d be prepared in case a major oil spill does happen.

The Sound of Readiness

Killer whales are acoustic animals. They use sound to communicate with each other and find food through echolocation, a type of biosonar. Because sound is so important, using loud or annoying sounds is one way that we can try to keep the whales away from an area contaminated with oil. We brainstormed a variety of ideas based on experience with killer whales and other animals and evaluated a long list of ideas, including sounds, as well as more experimental approaches, such as underwater lights, air bubble curtains, and hoses.

After receiving lots of input and carefully evaluating each option, we developed an oil spill response plan for killer whales that includes three main techniques to deploy quickly if the whales are headed straight toward a spill. Helicopter hazing, banging pipes (oikomi pipes), and underwater firecrackers are on the short list of options. Here’s a little more about each approach:

  • Helicopters are often available to do surveillance of oil and look for animals when a spill occurs. By moving at certain altitudes toward the whales, a helicopter creates sound and disturbs the water’s surface, which can motivate or “haze” whales to move away from oiled areas.
  • Banging pipes, called oikomi pipes, are metal pipes about eight feet long which are lowered into the water and struck with a hammer to make a loud noise. These pipes have been used to drive or herd marine mammals. For killer whales, pipes were successfully used to help move several whales that were trapped in a freshwater lake in Alaska.
  • Underwater firecrackers can also be used to deter whales. These small explosives are called “seal bombs” because they were developed and can be used to keep seals and sea lions away [PDF] from fishing gear. These small charges were used in the 1960s and 1970s to help capture killer whales for public display in aquaria. Now we are using historical knowledge of the whales’ behavior during those captures to support conservation of the whales.

In addition, our plan includes strict safety instructions about how close to get and how to implement these deterrents in order to prevent injury of oil spill responders and the whales. In the case of an actual spill, the wildlife branch within the Incident Command (the official response team dealing with the spill, usually led by the Coast Guard) would direct qualified responders to implement the different techniques based on specific information about the oil and whales.

Planning in Practice

Several killer whales break the surface of Washington's Puget Sound.

Killer whales use sound to communicate with each other and find food through echolocation. That’s why NOAA’s plan for keeping these acoustic animals away from oil spills involves using sound as a deterrent. (NOAA)

After incorporating the killer whale response plan into our overall Northwest Area Contingency Plan for oil spills, I felt better but knew we still had some work to do.

Since finalizing the plan in 2009, we’ve been focused on securing equipment, learning more about the techniques, and practicing them during oil spill drills. Working with the U.S. Coast Guard and local hydrophone networks (which record underwater sound), we’ve flown helicopters over underwater microphones to record sound levels at different distances and altitudes.

With our partners at the Washington Department of Fish and Wildlife and the Island Oil Spill Association, we built several sets of banging pipes and have them strategically staged around Puget Sound. In 2013 we conducted a drill with our partners and several researchers to test banging pipes in the San Juan Islands. It takes practice to line up several small boats, coordinate the movement of the boats, and synchronize banging a set of the pipes to create a continuous wall of sound that will discourage whales from getting close to oil. We learned a few critical lessons to update our implementation plans and to incorporate into plans for future drills.

A large oil spill in Southern Resident killer whale habitat would be a nightmare. I’m so glad we have partners focused on preventing and preparing for oil spills, and it is good to know we have a plan to keep an oil spill from becoming a catastrophe for endangered killer whales. That knowledge helps me rest easier and focus on good news like the boom in killer whale calves born to mothers in Washington’s Puget Sound.

You can find more information on our killer whale response plan and our recovery program for Southern Resident killer whales.

Lynne Barre in front of icy waters and snowy cliffs.Lynne Barre is a Branch Chief for the Protected Resources Division of NOAA Fisheries West Coast Region. She is the Recovery Coordinator for Southern Resident killer whales and works on marine mammal and endangered species conservation and recovery.


1 Comment

Working to Reverse the Legacy of Lead in New Jersey’s Raritan Bay

Person standing at a fenced-off beach closed to the public.

Some of the beach front at Old Bridge Waterfront Park in New Jersey’s Raritan Bay Slag Superfund site is closed to fishing, swimming, and sunbathing due to lead contamination leaching from metal slag used in the construction of a seawall and to fortify a jetty. (NOAA)

Once lined with reeds, oysters, and resort towns, New Jersey’s Raritan Bay, like many other bodies of water, today is feeling the effects of industrial transformation begun decades ago.

Around 1925, the National Lead Company became the largest lead company in the United States. The company is perhaps best known for their white-lead paints, sold under the Dutch Boy label. One of its many facilities was located in Perth Amboy, a town on the western edge of Raritan Bay, where it operated a lead smelter that generated wastes containing lead and other hazardous substances.

A Toxic Toll

Illustration of a little boy painting used in Dutch Boy paints logo.

This image was adopted by the National Lead Company in 1913 for its Dutch Boy paints. A version of it still is in use today. (New York Public Library Digital Collections/Public domain)

During the late 1960s and early 1970s, slag from National Lead’s lead smelter in Perth Amboy was used as building material to construct a seawall along the southern shoreline of Raritan Bay, several miles to the south of the facility.

Slag is a stony waste by-product of smelting or refining processes containing various metals. Slag, battery casings, and demolition debris were used to fill in some areas of a nearby marsh and littered the marsh and beaches along the bay.

In September 1972, the New Jersey Department of Environmental Protection received a tip that the slag being placed along Raritan Bay at the Laurence Harbor beachfront contained lead.

Over time, contamination from the slag and other wastes began leaching into the water, soil, and sediments of Raritan Bay, which is home to a variety of aquatic life, including flounder, clams, and horseshoe crabs, but evidence of the pollution only became available decades later.

Cleaner Futures

By 2007 the New Jersey Department of Environmental Protection had confirmed high levels of lead and other metals in soils of Old Bridge Waterfront Park on Raritan Bay’s south shore. State and local officials put up temporary fencing and warning signs and notified the public about health concerns stemming from the lead in the seawall.

The following year, New Jersey asked the U.S. Environmental Protection Agency (EPA) to consider cleaning up contaminated areas along the seawall because of the elevated levels of metals. By November 2009, the EPA confirmed the contamination and declared this polluted area in and near Old Bridge Waterfront Park a Superfund site (called Raritan Bay Slag Superfund site). They installed signs and fencing at a creek, marsh, and some beaches to restrict access and protect public health.

In May 2013 EPA selected a cleanup strategy, known as a “remedy,” to address risks to the public and environment from the pollution, and in January 2014 they ordered NL Industries, which in 1971 had changed its name from the National Lead Company, to conduct a $79 million cleanup along Raritan Bay.

Cleanup will involve digging up and dredging the slag, battery casings, associated waste, and sediment and soils where lead exceeds 400 parts per million. An EPA news release from January 2014 emphasizes the concern over lead:

“Lead is a toxic metal that is especially dangerous to children because their growing bodies can absorb more of it than adults. Lead in children can result in I.Q. deficiencies, reading and learning disabilities, reduced attention spans, hyperactivity and other behavioral disorders. The order requires the removal of lead-contaminated material and its replacement with clean material in order to reduce the risk to those who use the beach, particularly children.”

Identifying Impacts

Public health hazard sign about lead contamination on a beach and jetty.

A jetty and surrounding coastal area on Raritan Bay is contaminated with lead and other hazardous materials from slag originating at the National Lead Company’s Perth Amboy, New Jersey, facility. (NOAA)

After the Raritan Bay Slag site became a Superfund site in late 2009, NOAA’s Office of Response and Restoration worked with the EPA to determine the nature, extent, and effects of the contamination. Under a Natural Resource Damage Assessment, NOAA’s Damage Assessment, Remediation, and Restoration Program and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, have been assessing and quantifying the likely impacts to the natural resources and the public’s use of those resources that may have occurred due to the contamination along Raritan Bay.

As part of this work, we are identifying opportunities for restoration projects that will compensate for the environmental harm as well as for people’s inability to use the affected natural resources, for example, due to beach closures and restricted access to fishing.

“The south shore of Raritan Bay is an important ecological, recreational, and economic resource for the New York-New Jersey Harbor metropolitan area,” said NOAA Regional Resource Coordinator Lisa Rosman. “Cleanup and restoration are key to improving conditions and allowing public access to this valuable resource.”

Watch for future updates on progress toward restoration on Raritan Bay.


Leave a comment

For Oil and Chemical Spills, a New NOAA Tool to Help Predict Pollution’s Fate and Effects

Dead crab on a beach with oily water and debris.

NOAA has released the software program CAFE to help responders dealing with pollution answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it? (Beckye Stanton, California Department of Fish and Wildlife)

Accidents happen. Sometimes, they happen at places with big consequences, such as at a fertilizer factory that uses the chemical ammonia as an active ingredient.

An accident in a place like that can lead to situations in which thousands of gallons of this chemical could, for example, be released into a drainage ditch leading to a nearby salt marsh.

When oil or chemicals are released into the environment like this, responders dealing with the pollution are often trying to answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it?

To help responders answer these questions, NOAA has just released to the public a new software program known as CAFE.

The Chemical Aquatic Fate and Effects Database

NOAA’s Chemical Aquatic Fate and Effects (CAFE) database allows anyone to determine the fate and toxicological effects of thousands of chemicals, oils, and dispersants when released into fresh or saltwater environments. CAFE has two major components: the Fate module, which predicts how a contaminant will behave in the environment, and the Effects module, which determines the chemical’s potential toxicity to different species.

In the Fate module, CAFE contains data, such as chemical properties, useful in understanding and predicting chemical behavior in aquatic environments.

For example, in our ammonia-in-water scenario, CAFE’s chemical property data would tell us that ammonia has a low volatilization rate (it doesn’t readily change in form from liquid or solid to gas) and is very soluble in water. That means if spilled into a body of water, ammonia would dissolve in the water and stay there.

In the Effects module, CAFE contains data about the acute toxicity—negative, short-term impacts from short-term exposure—of different chemicals. This module plots that data on graphs known as “Species Sensitivity Distributions.” These graphs show a curved line ranking the relative sensitivity of individual species of concern, from the most sensitive to the least sensitive, to a particular chemical over a given period of exposure (ranging from 24 to 96 hours).

Graph showing the range in sensitivity of aquatic species to 48 hour exposure to ammonia.

The reactions of different species to chemicals can vary widely. The CAFE database produces these species sensitivity graphs showing the range in sensitivity of select aquatic species to certain chemicals after a given length of exposure. (NOAA)

Again turning to our scenario of an ammonia spill in a salt marsh, the graph here shows how a range of aquatic species, which the user selects from the program, would be affected by a 48 hour exposure to ammonia. The Taiwan abalone (a type of aquatic snail) is the most sensitive species because many of these snails would be affected at lower concentrations of ammonia, falling into the orange, highly toxic zone.

On the other hand, the brine shrimp is the least sensitive of this group because these shrimp would have to be exposed to much higher concentrations of ammonia to be affected. Thus the brine shrimp falls into the green, practically nontoxic zone. However, most of the data in this graph seem to fall into the moderately or slightly toxic zones, meaning that ammonia is a toxic chemical of concern.

Using these data from CAFE, you then assess the potential impact of the ammonia spill to the aquatic environment.

Download the Software

You can download version 1.1 of the Chemical Aquatic Fate and Effects (CAFE) database from NOAA’s Office of Response and Restoration website at http://response.restoration.noaa.gov/cafe.

Adding to our collection of spill response resources, CAFE will serve as a one-stop, rapid response tool to aid spill responders in their assessment of environmental impacts from chemical and oil spills.


Leave a comment

NOAA Update on the Santa Barbara Oil Spill

Clumps of oil on a sandy beach.

Clumps of oil soon after the pipeline spill at Refugio State Beach. (Nick Schooler, all rights reserved.)

NOAA’s Office of Response and Restoration is continuing to respond to the oil spill that resulted from a pipeline break at Refugio State Beach, near Santa Barbara, California, on May 19, 2015.

A reported 500 barrels (21,000 gallons) of crude oil flowed from the shore side of Highway 101 into the Pacific Ocean.

The source was secured shortly after the spill last week. Floating oil from the spill in the ocean has diminished but oil from the natural oil seeps in the area is always present. Natural oil seeps are somewhat like springs that leak oil and gas, instead of water, through fractures in the Earth’s crust.

The Office of Response and Restoration’s Jordan Stout, NOAA Scientific Support Coordinator, has continued to work on-scene throughout the response. According to Stout, any oil substantially east of Santa Barbara at this time is likely not related to the pipeline release.

OR&R has been providing overflight observations of the spill, information on fate and effects of the crude oil, potential environmental impacts both in the water and on the shore, and observation and data management for the Natural Resource Damage Assessment.

Oiled rocks below cliffs on a beach.

Oiled rocks in the area of the oil spill on May 27, 2015. (NOAA)

Cleanup efforts continue. According to the Unified Command, “The responsible party, Plains All-American Pipeline, is working closely with the Coast Guard, U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, California Department of Fish and Wildlife, and Santa Barbara Office of Emergency Management.”

The Unified Command also reports that they are collecting and analyzing oil samples to determine whether the source is from natural seeps or spilled oil.

The Unified Command has reported that nearly all recoverable floating oil has been removed, but that skimmers and boom continue to be deployed to capture any remaining sheen. In addition, local experts have suggested that some sheen is associated with the area’s natural seeps.

According to Refugio Response Information, website of the Unified Command’s Joint Information Center, on May 27, 2015:

  • 956 people are working in support of the response.
  • As of May 26, over 10,000 gallons of oily water have been collected from the ocean. This is a mixture of 10 to 30 percent oil mixed with seawater.
  • There are 16 boats working on cleanup operations.
  • Shoreline assessment teams have combed 24.6 miles of shoreline to date, with 21.3 miles of shoreline impacted by oil.

The spill has caused harm to some area wildlife. According to the Unified Command, as of the end of the day May 26, there have been 49 birds collected, primarily brown pelicans, with 33 birds live and 16 dead. Of the 27 marine mammals collected—mostly California sea lions—18 are alive and 9 are dead. Several dolphins, none of which showed visible signs of oil, have been collected during this response and are being investigated. In addition, there have been a large number of invertebrates affected by the oil.

For scientists that are interested in conducting research on the spill site, or researchers that have ongoing projects in the spill area that need access to their field sites, please contact joe.stewart@wildlife.ca.gov.

The Refugio and El Capitan beaches will remain closed to the public until June 4, 2015.

For information on volunteering, call California Spill Watch at 1-800-228-4544 or visit the volunteer page of their website for details.

For further information, see the Joint information Center website: Refugio Response Information.