NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

If your house were burning down, who would you want to respond? The local firefighters, armed with hoses and broad training in first aid, firefighting, and crowd management? Or would your panicked neighbors running back and forth with five-gallon buckets of water suffice?

Presumably, everyone would choose the trained firefighters. Why?

Well, because they know what they are doing! People who know what they are doing instill confidence and reduce panic—even in the worst situations. By being prepared for an emergency, firefighters and other responders can act quickly and efficiently, reducing injuries to people and damage to property.

People who have considered the range of risks for any given emergency—from a house fire to a hurricane—and have formed plans to deal with those risks are more likely to have access to the right equipment, tools, and information. When disaster strikes, they are ready and able to respond immediately, moving more quickly from response to recovery, each crucial parts of the resilience continuum. If they prepared well, then the impacts to the community may not be as severe, creating an opportunity to bounce back even faster.

Having the right training and plans for dealing with disasters helps individuals, communities, economies, and natural resources better absorb the shock of an emergency. That translates to shorter recovery times and increased resilience.

This shock absorption concept applies to everything from human health to international emergency response to coastal disasters.

For example, the Department of Defense recognizes that building a culture of resilience for soldiers depends on early intervention. For them, that means using early education and training [PDF] to ensure that troops are “mission ready.” Presumably, the more “mission ready” a soldier is before going off to war, the less recovery will be needed, or the smoother that process will be, when a soldier returns from combat.

Similarly, the international humanitarian response community has noted that “resilience itself is not achievable without the capacity to absorb shocks, and it is this capacity that emergency preparedness helps to provide” (Harris, 2013 [PDF]).

NOAA’s Office of Response and Restoration recognizes the importance of training and education for preparing local responders to respond effectively to coastal disasters, from oil spills caused by hurricanes to severe influxes of marine debris due to flooding.

Coastline of Tijuana River National Estuarine Research Reserve in southern California.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources, helping coasts bounce back to health even more quickly. (NOAA)

In fiscal year 2014 alone, we trained 2,388 emergency responders in oil spill response and planning. With more coastal responders becoming more knowledgeable in how oil and chemicals behave in the environment, more parts of the coast will become better protected against a disaster’s worst effects. In addition to trainings, we are involved in designing and carrying out exercises that simulate an emergency response to a coastal disaster, such as an oil spill, hurricane, or tsunami.

Furthermore, we are always working to collect environmental data in our online environmental response mapping tool, ERMA, and identify sensitive shorelines, habitats, and species before any disaster hits. This doesn’t just help create advance plans for how to respond—including guidance on which areas should receive priority for protection or response—but also helps quickly generate a common picture of the situation and response in the early stages of an environmental disaster response.

After the initial response, NOAA’s Office of Response and Restoration is well-positioned to conduct rapid assessments of impacts to natural resources. These assessments can direct efforts to clean up and restore, for example, an oiled wetland, reducing the long-term impact and expediting recovery for the plants and animals that live there.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. Our years of experience and scientific expertise enable us to complement their trainings on emergency response operations with time-critical environmental science considerations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources. Our popular Science of Oil Spills class, held several times a year around the nation, is just one such example.

Additionally, we are working with coastal states to develop response plans for marine debris following disasters, to educate the public on how we evaluate the environmental impacts of and determine restoration needs after oil and chemical spills, and to develop publicly available tools that aggregate and display essential information needed to make critical response decisions during environmental disasters.

You can learn more about our efforts to improve resilience through readiness at response.restoration.noaa.gov.

Kate Clark.Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

How to Keep Your Belongings From Becoming Trashed by Hurricanes

Destroyed dock and debris along a populated canal in Louisiana.

No matter the size of the storm, you and your family can take steps to reduce the likelihood of your stuff becoming storm debris. (U.S. Coast Guard)

Winds, heavy rains, flooding, storm surge. Hurricanes and other powerful storms can cause a lot of damage, both to people’s lives, of course, but also to the surrounding land and waters.

Docks, storage tanks, and buildings can be ripped off their foundations. Oil drums, shipping containers, and lumber can get swept away in floodwaters. A boat could end up in someone’s living room.

Much of this destruction introduces debris into coastal waterways and wetlands. This is one of several ways NOAA’s Office of Response and Restoration, through the NOAA Marine Debris Program, becomes involved after hurricanes.

While we can’t prevent hurricanes, we can prepare for them. That means doing everything you can to keep you, your family, and your belongings safe, far ahead of any natural disaster.

No matter the size of the storm, you and your family can take steps to reduce the likelihood of your stuff becoming storm debris. It is difficult to prevent buildings or large boats from becoming debris, especially during a large storm, but smaller items be safely stored or secured. After all, no one wants their patio umbrella to knock out a neighbor’s window before it ends up swimming with the fishes.

Here are a few ways to help protect yourself and your belongings in case of a hurricane:

  • Create a plan for your family and home [PDF], practice your evacuation route, and stock an emergency supply kit.
  • Secure yard items before a storm. Make a list of items to bring inside in case of hurricane-force winds or flooding. This could be patio furniture, lawn decorations, tools, trash cans, planters, etc.
  • Invest in storm-resilient building designs, which might include raising the level of your house for areas at high risk of flooding or installing a roof that can withstand high winds.
  • Boaters and fishers: Pull vessels and fishing gear out of the water before a storm. If you’re unable to remove the boat from the water, properly secure it [PDF].

A Boat out of Water

Boat half-sunk in Vermilion Bay, Lousiana.

Finding a safe and secure location for boats during a storm proves to be a huge challenge for many along the coasts, which is how a great deal of boats end up like this one after Hurricanes Katrina and Rita. (U.S. Coast. Guard)

Dealing with the large number of abandoned and derelict vessels after a storm is often a complicated and expensive ordeal. As a result, we should try to keep boats from ending up in this sorry state in the first place. Unfortunately, finding a safe and secure location for boats during a storm proves to be a huge challenge for many along the coasts.

A few areas do show promise in creating safe spaces for vessels during storms. One example is the Clean and Resilient Marina Initiative from the Gulf of Mexico Alliance, a regional partnership made up of the Gulf states. According to the alliance, “This improved program…provides additional recommendations to strengthen local marinas’ ability to withstand natural and man-made disasters.”

The initiative offers best management practices [PDF] for incorporating resilience and environmental responsibility into everything from the design and siting of marinas to strategies for evacuating them during a disaster.

Another example is the concept of “harbors of refuge,” which several organizations in Louisiana are looking to implement on public lands along the coast. A harbor of safe refuge is “a port, inlet, or other body of water normally sheltered from heavy seas by land and in which a vessel can navigate and safely moor.”

Providing resilient infrastructure able to withstand high winds and waters helps better protect boats, and offering these facilities on public lands creates opportunities for public funding to help pay for the upgrades or for salvage after a storm.

Taking on Disasters

The NOAA Marine Debris Program (MDP) is also taking a proactive approach to planning for disasters.

Cover of Alabama Incident Waterway Debris Response Plan, with damaged boats.

The NOAA Marine Debris Program worked with the State of Alabama to release the first in a series of comprehensive plans to help coastal states better prepare for an acute waterway debris release, such as in a hurricane. (NOAA)

In 2012, Congress expanded the program’s responsibilities to include “severe marine debris events,” which formalized their role in preparing for and responding to disaster debris.

This was in the wake of the 2011 Japan earthquake and tsunami, and states were struggling to deal with the tsunami debris—from small boats to massive docks—washing up on U.S. shores. Furthermore, the massive storm known as Sandy had recently hit the East Coast, leaving its own path of destruction along coastal waterways.

As a result, the NOAA MDP has started a proactive planning program for dealing with these types of large, disaster-related debris events. They began by working with the State of Alabama to develop a waterway debris emergency response plan and will now move on to work with other coastal states.

This effort includes both a comprehensive plan and field action guide which spells out information such as which agencies have authorities to remove disaster-related debris if it lands in a given waterway, as well as points of contact at those agencies. The plan is meant to be a broad, useful tool both for the NOAA MDP and the state in case of a natural disaster producing large amounts of debris.

To learn more about how you can prepare for hurricanes, visit NOAA’s National Hurricane Center at www.nhc.noaa.gov/prepare/, and read more about the NOAA Marine Debris Program’s efforts at marinedebris.noaa.gov/current-efforts/emergency-response.


2 Comments

How Beach Cleanups Help Keep Microplastics out of the Garbage Patches

Basket full of faded, old plastic bottles on a beach.

Cleaning up a few plastic bottles on a beach can make a big difference when it comes to keeping microplastics from entering the ocean. (NOAA)

These days plastic seems to be everywhere; unfortunately, that includes many parts of the ocean, from the garbage patches to Arctic sea ice. With this pollution increasingly in the form of tiny plastic bits, picking up a few bottles left on the beach can feel far removed from the massive problem of miniscule plastics floating out at sea.

However, these two issues are more closely connected than you may think.

But how do we get from a large plastic water bottle, blown out of an overfilled trash can on a beach, to innumerable plastic pieces no bigger than a sesame seed—and known as microplastics—suspended a few inches below the ocean surface thousands of miles from land?

The answer starts with the sun and an understanding of how plastic deteriorates in the environment.

The Science of Creating Microplastics

Plastic starts breaking down, or degrading, when exposed to light and high temperatures from the sun. Ultraviolet B radiation (UVB), the same part of the light spectrum that can cause sunburns and skin cancer, starts this process for plastics.

This process, known as photo-oxidation, is a chemical reaction that uses oxygen to break the links in the molecular chains that make up plastic. It also happens much faster on land than in the comparatively cool waters of the ocean.

For example, a hot day at the beach can heat the sandy surface—and plastic trash sitting on it—up to 104 degrees Fahrenheit. The ocean, on the other hand, gets darker and colder the deeper you go, and the average temperatures at its surface in July can range from 45 degrees Fahrenheit near Adak Island, Alaska, to 89 degrees in Cannon Bay, Florida.

Back on that sunny, warm beach, a plastic water bottle starts to show the effects of photo-oxidation. Its surface becomes brittle and tiny cracks start forming. Those larger shards of plastic break apart into smaller and smaller pieces, but they keep roughly the same molecular structure, locked into hydrogen and carbon chains. A brisk wind or child playing on the beach may cause this brittle outer layer of plastic to crumble. The tide washes these now tiny plastics into the ocean.

Once in the ocean, the process of degrading slows down for the remains of this plastic bottle. It can sink below the water surface, where less light and heat penetrate and less oxygen is available. In addition, plastics can quickly become covered in a thin film of marine life, which further blocks light from reaching the plastic and breaking it down.

An Incredible Journey

Lots of tiny pieces of plastic covering rocks.

Microplastics, tiny bits of plastic measuring 5 millimeters or less, are often the result of larger pieces of plastic breaking down on land before making it into the ocean. They can also come from cosmetics and fleece clothing. (NOAA)

In general, plastic breaks down much, much more slowly in the ocean than on land. That means plastic objects that reach the ocean either directly from a boat (say trash or nets from a fishing vessel) or washed into the sea before much degradation has happened are much less likely to break into smaller pieces that become microplastics. This also applies to plastics that sink below the ocean surface into the water column or seafloor.

Instead, plastic that has spent time heating up and breaking down on land is most likely to produce the microplastics eventually accumulating in ocean gyres or garbage patches, a conclusion supported by the research of North Carolina State University professor Anthony Andrady and others.

Of course, microplastics in the form of “microbeads” in face wash and other cosmetics or microfibers in fleece clothing also can reach the ocean by slipping through waste water treatment systems.

However, regularly patrolling your favorite beach or waterway and cleaning up any plastic or other marine debris can go a long way to keeping millions of tiny microplastics—some so tiny they can only be seen with a microscope—from reaching the garbage patches and other areas of the ocean.

The great thing is anyone can do this and you don’t have to wait for the International Coastal Cleanup each September to get started.

Find more tips and resources to help you on your way:


Leave a comment

How Do You Keep Invasive Species out of America’s Largest Marine Reserve?

A young monk seal and birds on the beach of French Frigate Shoals in the Northwestern Hawaiian Islands.

The coral reefs of Papahānaumokuākea Marine National Monument are the foundation of an ecosystem that hosts more than 7,000 species, including marine mammals, fishes, sea turtles, birds, and invertebrates. Many are rare, threatened, or endangered, including the endangered Hawaiian monk seal. At least one quarter are found nowhere else on Earth. (NOAA)

From Honolulu, it takes a day and a half to get there by boat. But Scott Godwin, an expert in the ways “alien” marine life can travel and take hold in new places, knows what is at risk. He understands perfectly well what might happen if a new species manages to make that journey to the remote and incredible area under his watch.

Godwin works for the Resource Protection Program in NOAA’s Office of National Marine Sanctuaries. Along with the U.S. Fish and Wildlife Service and State of Hawaii, he is charged with protecting Papahānaumokuākea Marine National Monument, a tall order considering that it is one of the largest marine conservation areas in the world. This monument includes an isolated chain of tropical islands, atolls, and reefs hundreds of miles northwest of the main Hawaiian Islands—appropriately known as the Northwestern Hawaiian Islands—as well as nearly 140,000 square miles of surrounding waters. The monument is home to a host of rare and unique species, some found exclusively within its borders, as well as some of the healthiest and least disturbed coral reefs on Earth.

Map of main and Northwestern Hawaiian Islands

Papahānaumokuākea Marine National Monument is the single largest fully protected conservation area under the U.S. flag, and one of the largest marine conservation areas in the world. It encompasses 139,797 square miles of the Pacific Ocean — an area larger than all the country’s national parks combined. (NOAA)

And it is Godwin’s job to keep it that way. Along with climate change and marine debris, invasive species have been identified as one of the top three threats to this very special place, which, in addition to being a national monument, is also a national wildlife refuge and United Nations World Heritage Site. Fortunately, invasive species also happen to be Godwin’s area of expertise.

If new species were to break into the monument’s borders—and in some cases, they already have—the risk is of them exhibiting “invasive” behavior. In other words, outcompeting the native marine life among the coral reefs and taking the lion’s share of the most valuable resources: food and space.

But considering how remote and expansive the area is—the Northwestern Hawaiian Islands stretch across 1,200 nautical miles and are closed to the general public—how would anything find its way there in the first place?

Yet help from humans is how many species arrive in new environments, including the main Hawaiian Islands, where more than 400 non-native marine species are established. That means ships and other human activity coming from Hawaii represent the greatest potential for bringing invasive species into the monument.

Packing List: Bleach, Deep Freezer, and Quarantine Clothes

Dianna Parker of the NOAA Marine Debris Program learned this lesson firsthand. In October 2014, she and colleague Kyle Koyanagi joined a team of NOAA divers from the Pacific Islands Fisheries Science Center (PIFSC) on a mission to Papahānaumokuākea Marine National Monument to remove the tons of old fishing nets that wash up on its coral reefs each year.

In the months leading up to her departure from Honolulu, Parker learned she would need something called “quarantine clothes.” In essence, they were a brand-new set of clothes set aside for each time she would step on dry land in the Northwestern Hawaiian Islands. Furthermore, these new clothes had to be sealed in plastic bags and stored in a walk-in freezer for 48 hours before she could wear them. That made for a chilly start to the day, as Parker recalled.

The quarantine clothes were part of a U.S. Fish and Wildlife Service protocol for limiting both the introduction of foreign species into the monument and the spread of species between islands within it. “Something that’s native to one tiny island could be alien to the next one down the chain,” said Parker. The transmission could happen via a spore on your shoe or a seed stuck to your shirt.

In addition, all of the gear and equipment they were using, such as wet suits, fins, and life vests, had to be soaked in a dilute bleach solution before being used in a new location, a protocol developed by NOAA.

For the roughly month-long mission, Parker brought six full outfits to wear on the six islands the ship planned to visit. In the end, she only visited five islands and was able to turn a t-shirt from the sixth outfit into a makeshift hat to keep the hot sun at bay.

“Having to go through that level of precaution to not bring invasive species into the monument makes you realize just how delicate things are up there,” reflected Parker.

Stowaways Not Welcome

But before Parker and the rest of her team left on their mission, the vessel that would carry them, the NOAA Ship Oscar Elton Sette, first had to undergo a thorough cleaning and inspection before being granted a permit to enter the monument. The hull was scrubbed and checked by specially trained divers for even as much as a rogue barnacle. Ballast water, the water held in tanks on a ship to provide stability, was inspected closely as well because numerous creatures worldwide have been documented hitching a secret ride this way. And, of course, the ship was examined for rats, the perennial stowaways.

However, rats arrived in the monument years ago via the U.S. military activity previously based on Midway Atoll, a strategic naval base during World War II and the Cold War, and French Frigate Shoals, a runway and refueling stop for planes headed to Midway during World War II. While efforts to eradicate rats at these former military bases were successful, attempting a similar project for underwater species would be much more challenging. Marine species spread very quickly and human activities are necessarily limited by the finite amount of time we can spend underwater.

Currently, Godwin has documented about 60 non-native marine species in the Papahānaumokuākea Marine National Monument, mainly at Midway, but these species—the majority of which are marine invertebrates such as tube worms and sea squirts—are not recent arrivals. Most likely harken back to the area’s military days, which ended in 1994. Today the easiest way for a new marine species to get a foothold on these reefs is by colonizing “disturbed habitat,” or areas humans have altered, such as seawalls or docks, as is the case at Midway and French Frigate Shoals.

“Competition with native species is pretty stiff,” admits Godwin. While marine life from outside the monument can become established, they often don’t have the opportunity to become invasive, he said. “But we never say never,” which is why he helps train NOAA divers going to the monument to recognize the aggressive behaviors of marine invasive species.

Marine Debris and Surprises from Japan

Person pulling bio-fouled net out of water into boat with diver's help.

NOAA divers examining the abandoned fishing nets for potentially invasive species, as they were removing them from the Northwestern Hawaiian Islands in October 2014. (NOAA)

Godwin was on high-alert, however, when debris washed away from Japan during the 2011 tsunami began showing up in Hawaii. Most marine debris in the Northwestern Hawaiian Islands comes in the form of fishing nets typically lost in the open ocean—the kind the NOAA PIFSC team was clearing from reefs. Many of the species colonizing these nets are native to the open ocean and generally do not survive in the monument’s coastal environment.

But the boats and other debris from Japan came from the coast, bringing with them the hardy and flexible marine life capable of surviving the transoceanic journey until they found another coastal home. Fortunately, Godwin found that none of the non-native Japanese species showing up on tsunami debris became established in either Hawaii or the monument.

“Marine debris is a vector [for invasive species],” said Godwin, “but we have very little control,” which is why dealing with it in the monument focuses more on response than prevention. Yet with invasive species, prevention is always the goal. And when you get a glimpse of the unique place that is Papahānaumokuākea Marine National Monument, it is not hard to understand the lengths being taken to protect it.


Leave a comment

Our Top 10 New Year’s Resolutions for 2015

2014 written in the sand.

Good bye, 2014. Credit: Marcia Conner/CC BY-NC-SA 2.0

While we have accomplished a lot in the last year, we know that we have plenty of work ahead of us in 2015.

As much as we wish it were so, we realize oil and chemical spills, vessel groundings, and marine debris will not disappear from the ocean and coasts in the next year. That means our experts have to be ready for anything, but specifically, for providing scientific solutions to marine pollution.

Here are our plans for doing that in 2015:

  1. Exercise more. We have big plans for participating in oil spill exercises and performing trainings that will better prepare us and others to deal with threats from marine pollution.
  2. Be safer. We work up and down the nation’s coastlines, from tropical to arctic environments. Many of these field locations are remote and potentially hazardous. We will continue to assess and improve our equipment and procedures to be able to work safely anywhere our services are needed.
  3. Keep others safe. We are improving our chemical response software CAMEO, which will help chemical disaster responders and planners get the critical data they need, when and where they need it.
  4. Get others involved. We are partnering with the University of Washington to explore ways average citizens can help contribute to oil spill science.
  5. Communicate more effectively. This spring, we will be hosting a workshop for Alaskan communicators and science journalists on research-based considerations for communicating about chemical dispersants and oil spills.
  6. Be quicker and more efficient. We will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive data in the Arctic to support Natural Resource Damage Assessment and other oil spill science.
  7. Sport a new look. An updated, more mobile-friendly look is in the works for NOAA’s Damage Assessment, Remediation, and Restoration Program website. Stay tuned for the coming changes at http://www.darrp.noaa.gov.
  8. Unlock access to data. We are getting ready to release public versions of an online tool that brings together data from multiple sources into a single place for easier data access, analysis, visualization, and reporting. This online application, known as DIVER Explorer, pulls together natural resource and environmental chemistry data from the Deepwater Horizon oil spill damage assessment, and also for the Great Lakes and U.S. coastal regions.
  9. Clean up our act. Or rather, keep encouraging others to clean up their act and clean up our coasts. We’re helping educate people about marine debris and fund others’ efforts to keep everyone’s trash, including plastics, out of our oceans.
  10. Say farewell. To oil tankers with single hulls, that is. January 1, 2015 marks the final phase-out of single hull tankers, a direct outcome of the 1989 Exxon Valdez oil spill.


1 Comment

Keep Your Holidays Happy and Your Impact Low

Red bows and evergreen bows on a fence on a beach.

Make sure your holidays leave the coasts clean and bright. (Creative Commons: Susan Smith, Attribution-NonCommercial-NoDerivs 2.0 Generic License)

Across the United States, the winter holiday season is upon us and many people are gathering with family and friends to celebrate. But as you go about trimming trees, lighting candles, and nipping eggnog, keep in mind a few tips for lowering your impact on the ocean.

After all, a clean and healthy environment sounds like a great gift to give others—along with world peace.

  • Host a no- or low-waste holiday soiree. Set out reusable dishes for guests or use recyclable items and have a clearly labeled recycling bin at the ready. Compost napkins, half-eaten gingerbread people, and that fruitcake leftover from last year. Get more tips from the Marine Debris Blog. As they point out, “According to the EPA, the volume of household waste in the United States generally increases 25 percent between Thanksgiving and New Year’s Day—about 1 million extra tons.”
  • Do your holiday shopping with reusable bags. Plastic shopping bags are among the top 10 items collected each year at the International Coastal Cleanup.
  • Consider giving gifts that won’t end up on the shelf or in the trash. It takes a lot of oil (which can spill) to produce and transport the many items for sale starting Black Friday. What about giving the people you care about gifts they can experience, such as tickets to a show or gift certificate to their favorite restaurant? Or something they can use with little or no accompanying waste, such as homemade hand salve or your famous family latke recipe, along with a tasty batch to go with it?
  • Keep your gifts under reusable wraps. Skip the plastic ribbons and bows and wrap your gifts in stylish fabric gift bags (which the recipient can then re-gift). At the very least, save what wrappings you can and use them again next time.
  • Avoid giving gifts that contain tiny plastic microbeads. It may be tempting to give your sister-in-law a bottle of Cinnamon Stick Glitterburst Exfoliating Body Scrub, but check the label first. Personal care items, such as cleansers and body wash, often contain “microscrubbers” made of plastic that go down the drain, most times making it past waste treatment and into rivers, lakes, and the ocean. Look for “polyethylene” or “polypropylene” in the ingredient list.
  • If you have a blast, clean it up. If you use fireworks to ring in the New Year, please do so responsibly. Fireworks can shatter into little plastic bits, which can be swept into storm drains and end up in lakes, rivers, and the ocean. Volunteer for a beach cleanup on January 1, track what you pick up, and make sure marine debris doesn’t pollute 2015.
  • Give public transportation the green light. Holly and mistletoe shouldn’t be the only green part of this season. When possible and safe, opt for lower-impact transportation options: walking, biking, or public transportation. NOAA responded to 138 oil and chemical spills in the past year. Less oil used means less oil transported and potentially spilled.

The U.S. Environmental Protection Agency has more great suggestions for greening your holiday season and all winter long. Do you have any tips? How are you keeping your holiday season happy and light on the planet?


Leave a comment

Carrying on a Nearly Fifty Year Tradition, Scientists Examine the Intersection of Pollution and Marine Life

As reliably as the tides, each month biologist Donald J. Reish would wash over the library at California State University, Long Beach, armed with stacks of 3×5 index cards. On these cards, Reish meticulously recorded every scientific study published that month on pollution’s effects on marine life. When he began this ritual in 1967, this did not amount to very many studies.

“There was essentially none at the time,” says Reish, who helped pioneer the study of pollution’s impacts on marine environments in the 1950s.

Nevertheless, after a year of collecting as much as he could find in scientific journals, he would mail the index cards with their handwritten notes to a volunteer crew that often included his former graduate students, including Alan Mearns, now an ecologist with NOAA’s Office of Response and Restoration. Like a wave, they would return to the library to read, review, and send summaries of these studies back to Reish. At his typewriter, he would compile the individual summaries into one comprehensive list, an “in case you missed it” for scientists interested in this emerging field of study. This compilation would then be published in a scientific journal itself.

By the early 2000s, Reish handed off leadership of this annual effort to Mearns, an early recruit to the project. Today, Mearns continues the nearly 50 year tradition of reviewing the state of marine pollution science and publishing it in the journal Water Environment Research. Their 2014 review, “Effects of Pollution on Marine Organisms,” comes together a little differently than in the 1960s and 70s—and covers issues that have changed with the years as well.

Signs of the Times

Man and woman at a desk covered with scientific papers.

NOAA Office of Response and Restoration biologists Alan Mearns and Nicolle Rutherford tackle another year’s worth of scientific studies, part of an effort begun in 1967. (NOAA)

For starters, vastly more studies are being published on marine pollution and its environmental effects. For this year’s publication, Mearns and his six co-authors, who include Reish and NOAA scientists Nicolle Rutherford and Courtney Arthur, reviewed 341 scientific papers which they pulled from a larger pool of nearly 1,000 studies.

The days of having to physically visit a library each month to read the scientific journals are also over. Instead, Mearns can wait until the end of the year to scour online scientific search engines. Emails replace the handwritten 3×5 index cards. And fortunately, typewriters are no longer involved.

The technology the reviewers are using isn’t the only thing to change with the years. In the early days, the major contaminants of concern were heavy metals, such as copper, which were turning up in the bodies of fish and invertebrates. Around the 1970s, the negative effects of the insecticide DDT found national attention, thanks to the efforts of biologist Rachel Carson in her seminal book Silent Spring.

Today, Mearns and Reish see the focus of research shifting to other, often more complicated pollutants, such as nanomaterials, which can be any of a number of materials roughly 100,000 times smaller than the width of a human hair. On one hand, nanotechnology is helping scientists decipher the effects of some pollutants, while, on the other, nanomaterials, such as those found in cosmetics, show potentially serious effects on some marine life including mussels.

Another major trend has been the evolution of the ways scientists evaluate the effects of pollutants on marine life. Researchers in the United States and Western Europe used to study the toxicity of a pollutant by increasing the amount animals are exposed to until half the study animals died. In the 1990s, researchers began exploring pollutants’ finer physiological effects. How does exposure to X pollutant affect, for example, a fish’s ability to feed or reproduce?

Nowadays, the focus is even more refined, zeroing in on the molecular scale to discern how pollutants affect an animal’s genetic material, its DNA. How does the presence of oil change whether certain genes in a fish’s liver are turned on or off? What does that mean for the fish?

A Year of Pollution in Review

With three Office of Response and Restoration scientists working on this effort, it unsurprisingly features a lot on oil spills and marine debris, two areas of our expertise.

Of particular interest to Mearns and Rutherford, as oil spill biologists, are the studies of biodegradation of oil in the ocean, specifically, how microbes break down and eat components of oil, especially the toxic polycyclic aromatic hydrocarbons (PAHs). Scientists are examining collections of genes in such microbes and determining which ones produce enzymes that degrade PAHs.

“That field has really exploded,” says Mearns. “It’s just amazing what they’re finding once they use genomics and other tools to go into [undersea oil spill] plumes and see what these critters are doing and eating.”

Marine debris research in 2013 focused on the effects of eating, hitchhiking on, or becoming entangled in debris. Studies examined the resulting impacts on marine life, including sea birds, fish, crabs, turtles, marine mammals, shellfish, and even microbes. The types of debris that came up again and again were abandoned fishing gear and plastic fragments. In addition, quite a bit of research attempted to fill in gaps in understanding of how plastic debris might take up and then leach out potentially dangerous chemicals.

Attitude Adjustment

A group of men and women stand around Don Reish.

Reish often relied on his former graduate students, including NOAA’s Alan Mearns, to help review the many studies on marine pollution’s effects each year. Shown here in 2004, Reish (seventh from left) is surrounded by a few of his former students who gathered to honor him at the Southern California Academy of Sciences Annual Meeting. Mearns is fifth from left and another contributer, Phil Oshida of the U.S. Environmental Protection Agency, stands between and behind Mearns and Reish. (Alan Mearns)

Perhaps the most significant change over the decades has been a change in attitudes. Reish recalled a presentation he gave at a scientific meeting in 1955. He was discussing his study of how marine worms known as polychaetes changed where they lived based on the effects of pollution in southern California. Afterward, he sat down next to a professor from another college, whose response to his presentation was, “Don, why don’t you go do something important?”

In 2014 attitudes generally skew to the other end of the spectrum when it comes to understanding human impacts on our world and how intertwined these impacts often are with human well-being.

And while there is a lot of bad news about these impacts, Mearns and Reish have seen some bright spots as well. Scientists are starting to observe slow declines in the presence of toxic chemicals, such as DDT from insecticides and PCBs from industrial manufacturing, which last a long time in the environment and build up in the bodies of living things, such as the fish humans like to catch and eat.

The end of the year is approaching and, reliably, Mearns and his colleagues are again preparing to scan hundreds of studies for their annual review of the scientific literature. Reflecting on this effort, Mearns points out another benefit of bringing together such a wide array of research disciplines. It encourages him to cross traditional boundaries of scientific study, enriching his work in the process.

“For me, it inspires out-of-the-box thinking,” says Mearns. “I’ll be looking at wastewater discharge impacts and I’ll spot something that I think is relevant to oil spill studies…We can find out things from these other fields and apply them to our own.”

Follow

Get every new post delivered to your Inbox.

Join 596 other followers