NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


4 Comments

With Lobster Poacher Caught, NOAA Fishes out Illegal Traps from Florida Keys National Marine Sanctuary

This is a post by Katie Wagner of the Office of Response and Restoration’s Assessment and Restoration Division.

On June 26, 2014, metal sheets, cinder blocks, and pieces of lumber began rising to the ocean’s surface in the Florida Keys National Marine Sanctuary. This unusual activity marked the beginning of a project to remove materials used as illegal lobster fishing devices called “casitas” from sanctuary waters. Over the course of two months, the NOAA-led restoration team plans to visit 297 locations to recover and destroy an estimated 300 casitas.

NOAA’s Restoration Center is leading the project with the help of two contractors, Tetra Tech and Adventure Environmental, Inc. The removal effort is part of a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from sanctuary waters. An organized industry, the illegal use of casitas to catch lobsters in the Florida Keys not only impacts the commercial lobster fishery but also injures seafloor habitat and marine life.

Casitas—Spanish for “little houses”—do not resemble traditional spiny lobster traps made of wooden slats and frames. “Casitas look like six-inch-high coffee tables and can be made of various materials,” explains NOAA marine habitat restoration specialist Sean Meehan, who is overseeing the removal effort.

The legs of the casitas can be made of treated lumber, parking blocks, or cinder blocks. Their roofs often are made of corrugated tin, plastic, quarter-inch steel, cement, dumpster walls, or other panel-like structures.

Poachers place casitas on the seafloor to attract spiny lobsters to a known location, where divers can return to quite the illegal catch.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita. (NOAA)

“Casitas speak to the ecology and behavior of these lobsters,” says Meehan. “Lobsters feed at night and look for places to hide during the day. They are gregarious and like to assemble in groups under these structures.” When the lobsters are grouped under these casitas, divers can poach as many as 1,500 in one day, exceeding the daily catch limit of 250.

In addition to providing an unfair advantage to the few criminal divers using this method, the illegal use of casitas can harm the seafloor environment. A Natural Resource Damage Assessment, led by NOAA’s Restoration Center in 2008, concluded that the casitas injured seagrass and hard bottom areas, where marine life such as corals and sponges made their home. The structures can smother corals, sea fans, sponges, and seagrass, as well as the habitat that supports spiny lobster, fish, and other bottom-dwelling creatures.

Casitas are also considered marine debris and potentially can harm other habitats and organisms. When left on the ocean bottom, casitas can cause damage to a wider area when strong currents and storms move them across the seafloor, scraping across seagrass and smothering marine life.

“We know these casitas, as they are currently being built, move during storm events and also can be moved by divers to new areas,” says Meehan. However, simply removing the casitas will allow the seafloor to recover and support the many marine species in the sanctuary.

There are an estimated 1,500 casitas in Florida Keys National Marine Sanctuary waters, only a portion of which will be removed in the current effort. In this case, a judge ordered the convicted diver to sell two of his residences to cover the cost of removing hundreds of casitas from the sanctuary.

To identify the locations of the casitas, NOAA’s Hydrographic Systems and Technology Program partnered with the Restoration Center and the Florida Keys National Marine Sanctuary. In a coordinated effort, the NOAA team used Autonomous Underwater Vehicles (underwater robots) to conduct side scan sonar surveys, creating a picture of the sanctuary’s seafloor. The team also had help finding casitas from a GPS device confiscated from the convicted fisherman who placed them in the sanctuary.

After the casitas have been located, divers remove them by fastening each part of a casita’s structure to a rope and pulley mechanism or an inflatable lift bag used to float the materials to the surface. Surface crews then haul them out of the water and transport them to shore where they can be recycled or disposed.

For more information about the program behind this restoration effort, visit NOAA’s Damage Assessment, Remediation, and Restoration Program.

Katie Wagner.Katie Wagner is a communications specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. Her work raises the visibility of NOAA’s effort to protect and restore coastal and marine resources following oil spills, releases of hazardous substances, and vessel groundings.


10 Comments

Where Are the Pacific Garbage Patches Located?

Microplastics in sand.

Microplastics, small plastics less than 5 millimeters long, are an increasingly common type of marine debris found in the water column (including the “garbage patches”) and on shorelines around the world. Based on research to date, most commonly used plastics do not fully degrade in the ocean and instead break down into smaller and smaller pieces. (NOAA Marine Debris Program)

The Pacific Ocean is massive. It’s the world’s largest and deepest ocean, and if you gathered up all of the Earth’s continents, these land masses would fit into the Pacific basin with a space the size of Africa to spare.

While the Pacific Ocean holds more than half of the planet’s free water, it also unfortunately holds a lot of the planet’s garbage (much of it plastic). But that trash isn’t spread evenly across the Pacific Ocean; a great deal of it ends up suspended in what are commonly referred to as “garbage patches.”

A combination of oceanic and atmospheric forces causes trash, free-floating sea life (for example, algae, plankton, and seaweed), and a variety of other things to collect in concentrations in certain parts of the ocean. In the Pacific Ocean, there are actually a few “Pacific garbage patches” of varying sizes as well as other locations where marine debris is known to accumulate.

The Eastern Pacific Garbage Patch (aka “Great Pacific Garbage Patch”)

In most cases when people talk about the “Great Pacific Garbage Patch,” they are referring to the Eastern Pacific garbage patch. This is located in a constantly moving and changing swirl of water roughly midway between Hawaii and California, in an atmospheric area known as the North Pacific Subtropical High.

NOAA National Weather Service meteorologist Ted Buehner describes the North Pacific High as involving “a broad area of sinking air resulting in higher atmospheric pressure, drier warmer temperatures and generally fair weather (as a result of the sinking air).”

This high pressure area remains in a semi-permanent state, affecting the movement of the ocean below. “Winds with high pressure tend to be light(er) and blow clockwise in the northern hemisphere out over the open ocean,” according to Buehner.

As a result, plastic and other debris floating at sea tend to get swept into the calm inner area of the North Pacific High, where the debris becomes trapped by oceanic and atmospheric forces and builds up at higher concentrations than surrounding waters. Over time, this has earned the area the nickname “garbage patch”—although the exact content, size, and location of the associated marine debris accumulations are still difficult to pin down.

Map of ocean currents, features, and areas of marine debris accumulation (including

This map is an oversimplification of ocean currents, features, and areas of marine debris accumulation (including “garbage patches”) in the Pacific Ocean. There are numerous factors that affect the location, size, and strength of all of these features throughout the year, including seasonality and El Nino/La Nina. (NOAA Marine Debris Program)

The Western Pacific Garbage Patch

On the opposite side of the Pacific Ocean, there is another so-called “garbage patch,” or area of marine debris buildup, off the southeast coast of Japan. This is the lesser known and studied, Western Pacific garbage patch. Southeast of the Kuroshio Extension (ocean current), researchers believe that this garbage patch is a small “recirculation gyre,” an area of clockwise-rotating water, much like an ocean eddy (Howell et al., 2012).

North Pacific Subtropical Convergence Zone

While not called a “garbage patch,” the North Pacific Subtropical Convergence Zone is another place in the Pacific Ocean where researchers have documented concentrations of marine debris. A combination of oceanic and atmospheric forces create this convergence zone, which is positioned north of the Hawaiian Islands but moves seasonally and dips even farther south toward Hawaii during El Niño years (Morishige et al., 2007, Pichel et al., 2007). The North Pacific Convergence Zone is an area where many open-water marine species live, feed, or migrate and where debris has been known to accumulate (Young et al. 2009). Hawaii’s islands and atolls end up catching a notable amount of marine debris as a result of this zone dipping southward closer to the archipelago (Donohue et al. 2001, Pichel et al., 2007).

But the Pacific Ocean isn’t the only ocean with marine debris troubles. Trash from humans is found in every ocean, from the Arctic (Bergmann and Klages, 2012) to the Antarctic (Eriksson et al., 2013), and similar oceanic processes form high-concentration areas where debris gathers in the Atlantic Ocean and elsewhere.

You can help keep trash from becoming marine debris by:

Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, also contributed to this post.

Literature Cited

Bergmann, M. and M. Klages. 2012. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64: 2734-2741.

Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin, 42 (12): 1301-1312.

Eriksson, C., H. Burton, S. Fitch, M. Schulz, and J. van den Hoff. 2013. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Marine Pollution Bulletin, 66: 199-208.

Howell, E., S. Bograd, C. Morishige, M. Seki, and J. Polovina. 2012. On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65: 16-22.

Morishige, C., M. Donohue, E. Flint, C. Swenson, and C. Woolaway. 2007. Factors affecting marine debris deposition at French Frigate Shoals, Northwestern Hawaiian Islands Marine National Monument, 1990-2002. Marine Pollution Bulletin, 54: 1162-1169.

Pichel, W.G., J.H. Churnside, T.S. Veenstra, D.G. Foley, K.S. Friedman, R.E. Brainard, J.B. Nicoll, Q. Zheng and P. Clement-Colon. 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone [PDF]. Marine Pollution Bulletin, 54: 1207-1211.

Young L. C., C. Vanderlip, D. C. Duffy, V. Afanasyev, and S. A. Shaffer. 2009. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE 4 (10).


1 Comment

Japan Confirms Dock on Washington Coast Is Tsunami Marine Debris

A worker uses a 30% bleach spray to decontaminate the Japanese dock which made landfall on Washington’s Olympic Peninsula in December 2012.

January 3, 2013 — A worker uses a 30% bleach spray to decontaminate and reduce the spread of possible marine invasive species on the Japanese dock which made landfall on Washington’s Olympic Peninsula in December 2012. (Washington Department of Fish and Wildlife/Allen Pleus)

The Japanese Consulate has confirmed that a 65-foot, concrete-and-foam dock that washed ashore in Washington’s Olympic National Park in late December 2012 is in fact one of three* docks from the fishing port of Misawa, Japan. These docks were swept out to sea during the earthquake and tsunami off of Japan in March 2011, and this is the second dock to be located. The first dock appeared on Agate Beach near Newport, Ore., in June 2012.

Using our trajectory forecast model, NOAA’s Office of Response and Restoration helped predict the approximate location of the dock after an initial sighting reported it to be floating somewhere off of Washington’s Olympic Peninsula. When the dock finally came aground, it ended up both inside the bounds of NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

In order to minimize damage to the coastline and marine habitat, federal agencies are moving forward with plans to remove the dock. In addition to being located within a designated wilderness portion of Olympic National Park, the dock is also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

According to the Washington State Department of Ecology, representatives from Olympic National Park, Washington State Department of Fish and Wildlife, and Washington Sea Grant Program have ventured out to the dock by land several times to examine, take samples, and clean the large structure.

Initial results from laboratory testing have identified 30-50 plant and animal species on the dock that are native to Japan but not the United States, including species of algae, seaweed, mussels, and barnacles.

In addition to scraping more than 400 pounds of organic material from the dock, the team washed its heavy side bumpers and the entire exterior structure with a diluted bleach solution to further decontaminate it, a method approved by the National Park Service and Olympic Coast National Marine Sanctuary.

Government representatives are examining possible options for removing the 185-ton dock from this remote and ecologically diverse coastal area.

Look for more information and updates on Japan tsunami marine debris at http://marinedebris.noaa.gov/tsunamidebris/.

*[UPDATE 4/5/2013: This story originally stated that four docks were missing from Misawa, Japan and that “the first dock was recovered shortly afterward on a nearby Japanese island.” We now know only three docks were swept from Misawa in the 2011 tsunami and none of them were found on a Japanese island. This dock has now been removed from the Washington coast.]


Leave a comment

Post Hurricane Sandy, NOAA Aids Hazardous Spill Cleanup in New Jersey and New York

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy.

Oil sheen is visible on the waters of Arthur Kill on the border of New Jersey and New York in the wake of Hurricane Sandy. (NOAA)

[UPDATED NOVEMBER 6, 2012] Hurricane Sandy’s extreme weather conditions—80 to 90 mph winds and sea levels more than 14 feet above normal—spread oil, hazardous materials, and debris across waterways and industrial port areas along the Mid Atlantic. NOAA’s Office of Response and Restoration is working with the U.S. Coast Guard and affected facilities to reduce the impacts of this pollution in coastal New York and New Jersey.

We have several Scientific Support Coordinators and information management specialists on scene at the incident command post on Staten Island, N.Y.

Since the pollution response began, we have been dispatching observers in helicopters with the Coast Guard to survey the resulting oil sheens on the water surface in Arthur Kill, N.J./N.Y. This is in support of the response to a significant spill at the Motiva Refinery in Sewaren, N.J., as well as for the cleanup and assessment of several small spills of diesel fuel, biodiesel, and various other petroleum products scattered throughout northern New Jersey’s refinery areas.

One of the challenges facing communities after a devastating weather event is information management. One tool we have developed for this purpose is ERMA, an online mapping tool which integrates and synthesizes various types of environmental, geographic, and operational data. This provides a central information hub for all individuals involved in an incident, improves communication and coordination among responders, and supplies resource managers with the information necessary to make faster and better informed decisions.

ERMA has now been adopted as the official common operational platform for the Hurricane Sandy pollution response, and we have sent additional GIS specialists to the command post.

Species and Habitats at Risk

The most sensitive habitats in the area are salt marshes, which are often highly productive and are important wildlife habitat and nursery areas for fish and shellfish. Though thin sheens contain little oil, wind and high water levels after the storm could push the diesel deep into the marsh, where it could persist and contaminate sediments. Because marshes are damaged easily during cleanup operations, spill response actions will have to take into account all of these considerations.

In addition, diesel spills can kill the many small invertebrates at the base of the food chain which live in tidal flats and salt marshes if they are exposed to a high enough concentration. Resident marsh fishes, which include bay anchovy, killifish, and silversides, are the fish most at risk because they are the least mobile and occupy shallow habitats. Many species of heron nest in the nearby inland marshes, some of the last remaining marshlands in Staten Island. Swimming and diving birds, such as Canada geese and cormorants, are also vulnerable to having their feathers coated by the floating oil, and all waterfowl have the potential to consume oil while feeding.

Based on the risks to species and habitats from both oil and cleanup, we weigh the science carefully before making spill response recommendations to the Coast Guard.

Tracking the Spilled Oil

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012.

Responders face an oily debris field in Sheepshead Bay, N.Y., after Hurricane Sandy. Nov. 2, 2012. (U.S. Coast Guard)

Because no two oils are alike, we train aerial observers to evaluate the character and extent of oil spilled on the water. NOAA performs these aerial surveys, or overflights, of spilled oil like in Arthur Kill to determine the status of the oil’s source and to track where wind and waves are moving spilled oil while also weathering it. The movement of wind and waves, along with sunlight, works to break down oil into its chemical components. This changes the appearance, size, and location of oil, and in return, can change how animals and plants interact with the oil.

When spilled on water, diesel oil spreads very quickly to a thin film. However, diesel has high levels of toxic components which dissolve fairly readily into the water column, posing threats to the organisms living there. Biodiesel can coat animals that come into contact with it, but it breaks down up to four times more quickly than conventional diesel. At the same time, this biodegradation could cause potential fish kills by using up large amounts of oxygen in the water, especially in shallow areas.

Look for photos, maps, and updates on pollution-related response efforts at IncidentNews.

Check the Superstorm Sandy CrisisMap for aggregated information from NOAA, FEMA, and other sources on weather alerts and observations; storm surge and flood water data; aerial damage assessment imagery; and the locations of power outages, food and gas in New Jersey, and emergency shelters.


26 Comments

Abandoned Vessels: Drifting Across the Pacific Ocean Since 1617

Adrift Japanese fishing vessel.

The derelict Japanese fishing vessel RYOU-UN MARU drifts more than 125 miles from Forrester Island in southeast Alaska. The fishing vessel has been drifting unmanned at sea since the 2011 Japanese earthquake and subsequent tsunami more than a year ago (U.S. Coast Guard, Air Station Kodiak).

You might have already heard about the rusted-out, abandoned fishing vessel adrift off British Columbia, Canada. The 170 foot (53 meter) long vessel is the Ryou-Un Maru, a squid boat that broke free from a dock in Hokkaido, Japan, after the March 11, 2011 tsunami. Fortunately, no one was on board when the tsunami happened.

Over the past year it has drifted across the Pacific Ocean and was first observed in Canadian waters. The U.S. Coast Guard is now tracking the drift of the vessel, which entered U.S. waters March 31, 2012, and currently it is about 155 nautical miles away from Baranof Island in southeast Alaska.

The drift of the vessel confirms what generations of beach combers have known for a long time. The Pacific Ocean currents form a giant conveyor belt that carries flotsam (floating items) across the Pacific. Over the years I’ve found glass fish floats, glass bottles, and other Japanese items that have washed up along the coast of Washington state where I live.

But a big fishing vessel—that must be something really unusual—or is it?

In 2003, the 97-foot ship Genei Maru #7 caught fire and was abandoned at sea about halfway between Japan and the United States. This “ghost ship” ran aground on Kodiak, Alaska, after drifting at sea, crewless, for five months. And in 2006, the U.S. Coast Guard found an abandoned coal barge adrift off the Kenai Peninsula of Alaska, which had wandered across the Pacific from Russia.

Cover page of historical record of drifting Japanese vessels.

The document, “Record of Japanese Vessels Driven Upon the North-West Coast of America and its Outlying Islands,” was originally published in 1872.

But there is evidence that vessels have been drifting across the Pacific for a long time. Check out this old document from 1872, “Record of Japanese Vessels Driven Upon the North-West Coast of America and its Outlying Islands.”

Some archaeologists think that Indigenous cultures of the Pacific Northwest Coast have been strongly influenced by the effects of foreign shipwrecks. Artifacts from shipwrecks, including metals and other technologies, may have been used by these tribes (Quimby, G. I. 1985. Japanese Wrecks, Iron Tools, and Prehistoric Indians of the Northwest Coast. Arctic Anthropology 22(2): 7–15.).

And the blog A Blast From the Past has a lengthy discussion on historical and more recent cases of vessels washing across the Pacific.

The oldest record is from 1617, when an abandoned Japanese ship was found near Acapulco, Mexico, but there are likely many other wrecks that went unrecorded because the vessels probably stranded in areas then inhabited only by native tribes.

The March 2011 tsunami certainly added to the amount of debris floating across the Pacific. If you find items you think might be from the tsunami, you can report them to DisasterDebris@noaa.gov.


Leave a comment

Art Can Transform Plastic Pollution into Ocean Conservation

This is a guest post by artist-activist Pam Longobardi and naturalist-photographer Wayne Sentman, originally posted on NOAA’s Marine Debris Blog.

Pam Longobardi’s art installation made from marine debris.

Pam Longobardi’s art piece “Consumption Driftweb,” made from marine debris, in OCEANOMANIA at Nouveau Musée National de Monaco, 2011. Credit: Pam Longobardi.

Art can be premonitory; it can be seen as a red flag or a warning as sensitive artists notice and respond to change and impactful events. More and more artists around the world are responding to the degradation of our ocean systems by human-made plastic pollution. Art created from this material is increasingly being used as a mechanism of environmental education, helping to create an emotional connection to the problem among the viewing public, utilizing marine debris as a material to create awareness among multiple communities.

Creative artists now play a role in both interpreting this environmental challenge to the public and helping to inspire creative solutions to what at times seems like an unsolvable problem. Public art installations can help create a new public consciousness that promotes pro-environmental attitudes and behaviors.

Dead albatross with stomach full of plastic litter.

Laysan albatross carcass with ingested plastic debris. Credit: C. Fackler, NOAA Office of National Marine Sanctuaries.

On Midway Atoll, a remote National Wildlife Refuge in the North Pacific, Wayne has witnessed the effects of plastic marine pollution firsthand for many years. Albatross chicks’ decaying carcasses have filled viewers with a sense of “culpable ignorance.” Seeing these decayed bodies laden with plastic where their stomachs would be reminds us that we are connected to the natural world. That plastic toothbrush that we threw out, those bottle caps that we walk past on the street, and the multitude of plastic that we have not recycled ends up where we least expect it.

Over the years artists have been the messengers of the “un-natural” history of this problem so easily viewed in the field at Midway Atoll. The albatross at Midway are a harbinger of the amount of plastic in the ocean since they happen to feed along one of the largest concentrations of marine debris in the North Pacific. U.S. Fish and Wildlife Service researchers have estimated that each year at least 5 tons of plastic marine debris is brought to (landfilled at) Midway Atoll by albatross regurgitating to their young. Recent studies indicate that marine plastic pollution is also ending up in fish from these same areas and is now integrated into the marine food chain.

Additionally, artists are starting to work collaboratively with scientists and activists to create a synergistic, multi-disciplinary approach to raising public awareness and defining positive actions that can be undertaken to address the issue. The United Nations Environmental Program and NOAA co-sponsored the 5th International Marine Debris Conference in Honolulu, Hawaii, and the conference was a model of this type of relationship.

The unique thing about this conference was the enormous presence of art at what was basically a scientific conference. UNEP and NOAA invited us to put together the art program, and we were able to raise enough funds to hold a professional fine art exhibition within the conference. Pam also put together a digital stream of nearly 40 other artists from around the world working with this issue. The overwhelming response by artists all over the world to her call for artwork was in itself a wonderful and heartening experience.

The conference brought together the plastics industry, scientists, artists, and activists like Surfrider Foundation and Plastics Pollution Coalition—people from all over the world (440 people from 36 countries). Many of these stakeholders are on opposite sides of the issue, but the conference managed to provide a forum that brought everyone to the table. What resulted was the Honolulu Commitment, which we see as the “Kyoto Protocol of plastic.” The artist/activist contingent worked very hard to get specific language about micro-plastics, endocrine disruptors, and heavy metal contamination into the document that all parties agreed to. It felt momentous.

Pam is also working on a project with the Alaska SeaLife Center [leaves this blog] and the Anchorage Museum to send an expedition of artists and scientists to the remote stretch of the Aleutian Islands off Alaska that form the northern rim of the North Pacific Gyre. We had our first planning meeting of all the partners in June and filmed a promotional video that involved a beach landing in Resurrection Bay, with Carl Safina and Pam surveying what was found there. This project is very large scale and still over a year away from being initiated, but Pam and Howard Ferren, Director of Conservation at the Alaska SeaLife Center, have already been working on it for over a year, and it continues to evolve and take shape.

Few people are able to visit remote places such as Midway Atoll or the Aleutian Islands. Art can serve as the bridge to these wildlife populations and the environmental issues that could only otherwise be appreciated through firsthand field experience. When professional artists from around the globe begin to explore the topic of marine debris, the public is made aware that this problem is not simply limited to a remote island group but is global in scale and therefore we all are connected to, and part of, the problem. Once a viewer appreciates this connection, discovered through viewing art, they may become engaged with the marine environment and more invested in finding solutions to reducing marine pollution sources.

Art is a powerful way to increase public participation and awareness of the problems of marine debris by showcasing it in an educational yet judgment-neutral manner across a diverse stakeholder base. When students and community members view and interact with items of collected marine debris in large-scale works of art, the intimacy with the items will facilitate an understanding of individual connectedness to this problem. Art can showcase the problem, helping individuals to become motivated to contribute to solutions without assigning blame to other segments of the community.

–Pam Longobardi and Wayne Sentman

About the guest bloggers:

Pam Longobardi.

Pam Longobardi.

“The first time I came face to face with enormous piles of plastic debris on South Point of the Big Island in 2006, I was amazed at the beautiful colors against the black lava beach, because that’s what plastic does, it charms and seduces us. Then I got closer and I could see what it all was, it was all our JUNK, and it just hit me like a thunderbolt. There was even a toilet seat among the piles, and it was such a sick sad metaphor for how we treat the earth. It changed me right then and there, and I began gathering it up and cleaning beaches, to drag it back and show it, to put it in front of people so we can see what the material legacy of the human race has become. This was the start of the Drifters Project.

Wayne Sentman.

Wayne Sentman.

As an artist, I have always dealt with trying to understand the psychological relationship between humans and nature. We are in a kind of dualistic isolation from it, at once an integral part of it and yet somehow outside of it. I am interested in the idea of the positioning of the ego in an attempt to locate the self amidst the incomprehensibility of the external natural world at large. Culture functions as a way to try to navigate or map this territory.”  –Pam Longobardi

After many years working in remote field locations around the globe, where I witnessed the impacts on wildlife related to marine pollution, I have become very interested in the value of art as a way to interpret “hidden” environmental issues to the public. Art has the power to facilitate an understanding of an individual’s connectedness to this problem. –Wayne Sentman

The NOAA Marine Debris Program, one of three divisions within the Office of Response and Restoration, serves as a centralized program within NOAA, coordinating, strengthening, and promoting marine debris activities within the agency and among its partners and the public.