NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Oil Spills, Seeps, and the Early Days of Drilling Oil Along California’s Coast

Black and white photo of early oil derricks and piers at Summerland, California, 1902

Some of the earliest offshore oil wells were located at Summerland in Santa Barbara County, California. Shown here in 1902, you can see the early wharves that extended from the shore out to derricks over the wells. (U.S. Geological Survey)

One of the challenges of the 2015 pipeline oil spill near Santa Barbara, California, was distinguishing between oil released from the pipeline and oil released naturally from the many seeps in the area. This challenge could become even more complicated when you consider the history of oil drilling in southern California [PDF] that dates back to the 1860s.

Unless you are a history buff or study environmental pollution, you probably didn’t realize that the beautiful sand beaches of southern California were once home to some of the earliest offshore oil rigs.

Oil seeps both on the shore and in the ocean were clues to the underground oil reservoirs in the Santa Barbara Channel. Even today, natural seeps in Santa Barbara’s Coal Oil Point area release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011).

Drilling into History

The first offshore wells in the United States were drilled in 1896 in the Summerland region just east of Santa Barbara. Initial wells were built on piers sticking several hundred feet out into the ocean. Over the years, many more wells and offshore platforms were built in the region.

However, oil exploration and drilling was virtually unregulated at the time, and spills were common. California’s first out-of-control oil gusher occurred in February 1892 near Santa Paula, but since no one had a way to store so much oil (1,500 barrels were released per day), much of it eventually flowed into the ocean via the Santa Clara River.

Black and white photo of men building a pier over the ocean to reach oil derricks drilling offshore at Summerland, California, 1900.

A view looking down the Treadwell wharf toward shore and the central portion of the Summerland oil field in Santa Barbara County, California, in 1900. These early oil fields were essentially unregulated, resulting in spills and leaks back then as well as today. (U.S. Geological Survey)

In addition, many of these first flimsy piers and oil platforms at Summerland were destroyed by storms or fires or later abandoned without much thought about preventing spills in the future. The state’s first laws governing oil well abandonment came into place in 1915, in part to protect the oil and gas wells on neighboring properties. (Fortunately, the old and leaky Summerland wells were far enough away from the 2015 pipeline spill location that they didn’t add yet another possible source of oil in the area of the spill.)

By the 1960s offshore oil production began to take off in California, particularly along Santa Barbara County. That is, until January 1969, when Union Oil’s Platform A suffered a blowout six miles off the coast. The result was more than 3.2 million gallons of crude oil were released into the Santa Barbara Channel and on surrounding shorelines.

Public outcry was so great that not only did California ban new leases for offshore drilling in state-owned waters, but it helped catalyze a broader movement to protect the environment and prevent pollution in the United States. Still, natural seeps serve as a reminder of the area’s “Wild West” days of oil exploration.

Seep vs. Spill

Today, the region is much cleaner, but, as we saw after the 2015 pipeline spill at Refugio State Beach near Santa Barbara, that doesn’t mean it’s free of oil, either naturally released or spilled during extraction. While telling the two apart can be complicated, it isn’t impossible.

One clue for distinguishing seep oil from oil coming from production platforms is looking at how “weathered” the oil is. Oil being drilled by a platform is extracted directly from a deep underground reservoir and thus appears “fresher,” that is, less weathered by environmental processes.

The seep oil, on the other hand, generally appears more weathered, having migrated up through the seafloor and ocean depths. Seep oil is more weathered because many of its less stable compounds have been dissolved into the water column, oxidized by sunlight or evaporated into the atmosphere at the surface, or broken down by microbes that naturally metabolize hydrocarbon molecules.

Another method for distinguishing among oils is a process known as “fingerprinting,” which uses analytical chemistry to compare the relative quantities of hydrocarbons unique to petroleum in the spilled oil versus another oil.

Even though seeps release a lot of oil into the ocean, oil spills such as the 2015 pipeline spill near Santa Barbara have different and more significant impacts on the nearshore environment than the slower, steadier release of natural oil seeps. Spills often release relatively large volumes of oil suddenly into an area, which can overwhelm the ability of the environment (such as its oil-eating microbes) to adapt to the influx of oil.

That doesn’t mean seeps don’t have any environmental impacts themselves. Oil from seeps can be toxic to marine life, including fish, sea stars, shrimp, and seabirds, with impacts largely concentrated in the immediate area around a seep. While our job is to use science to minimize and evaluate potential environmental impacts during oil spills (and not seeps), knowing the history of an area like Santa Barbara can go a long way to helping us do just that.

NOAA environmental scientist Greg Baker also contributed to this post.


7 Comments

At the U.S.-Canadian Border, Surveying a World War II Shipwreck for History and Oil

Historical photo of the Coast Trader at port in San Francisco.

The Coast Trader, first launched in 1920, was sunk by a Japanese torpedo in 1942. (San Francisco Maritime National Historical Park)

On June 2, 2016, an underwater survey team is looking at what they believe to be the wreck of the 324-foot-long Coast Trader, a U.S. Army-chartered freight ship sunk somewhere off the Washington coast during World War II. The shipwreck being surveyed is located near the entrance to the Strait of Juan de Fuca just across the border of Washington state and British Columbia in Canadian waters.

The Coast Trader sank on June 7, 1942 after the Imperial Japanese Navy’s deadly I-26 submarine torpedoed it on its journey between Port Angeles, Washington, and San Francisco, California. Its precise location on the seafloor remained unknown until a 2010 survey by the Canadian Hydrographic Service. A wreck with the same dimensions and basic shape as the Coast Trader lies in 450 feet of water just two miles from where the ship’s master reported his ship was attacked.

The survey team is led by archaeologist James Delgado, director of maritime heritage for NOAA’s Office of National Marine Sanctuaries, and Michael Brennan, archaeological director for the Ocean Exploration Trust, which was founded by underwater explorer Robert Ballard, who years ago discovered the wreck of the Titanic.

Joining the team at the University of Rhode Island’s Inner Space Center is Frank Cantelas, archaeologist for NOAA’s Office of Ocean Exploration Research, along with naval architects, corrosion and oil spill response experts from the U.S. Coast Guard, and a Canadian historian from the Vancouver Maritime Museum. While the Coast Trader appears to rest in Canadian waters, it is just north of Washington’s Olympic Coast National Marine Sanctuary.

Natuical chart showing approximate location of Coast Trader wreck between Washington state and Vancouver Island.

A map of what was believed to be the approximate location of the wreck of the Coast Trader, on the border of the Olympic Coast National Marine Sanctuary and Canada. The likeliest scenario of oil release from most sunken wrecks, including the Coast Trader, is a small, episodic release that may be precipitated by disturbance of the vessel in storms. However, NOAA’s modeling shows that a worst-case scenario spill would oil shorelines on the southern coast of Canada’s Vancouver Island. (NOAA)

Why the interest in a 74-year-old wreck? History and the threat of oil pollution. While the Coast Trader was a pretty typical ship of its era, the wreck is now considered historically significant for being one of a handful of ships sunk on this side of the Pacific during World War II.

In addition, in 2013, it was one of the priority shipwrecks NOAA’s Office of Response and Restoration, along with the National Marine Sanctuaries program, identified for its potential risk of spilling oil. While the Coast Trader was carrying a cargo of newsprint when it sank, it was also loaded with more than 7,000 barrels of a heavy fuel oil known as Bunker C.

The marine archaeologists looking at the wreck will be trying to confirm that it is in fact the Coast Trader, and they’ll be searching for clues as to whether the ship’s hull is still intact and likely still holding its fuel.

Our 2013 assessment of the Coast Trader’s pollution potential [PDF] reports the following about the ship’s sinking and its potential condition:

The explosion blew the hatch covers off the cargo hold and sent rolls of newsprint flying through the air. Survivors of the attack reported looking down into the hatches and seeing a “sea of oil and water” in and around the damaged portion of the ship and that “quite a bit of fuel oil surrounded ship.” The vessel eventually sank by the stern and the survivors watched as each of the hatch covers were blown off in succession as the ship sank.

Based on the large degree of inaccuracy in the reported sinking location and the depths of water the ship was lost in, it is unlikely that the shipwreck will be intentionally located. Although the survivor reports of the sinking make it sound like substantial amounts of oil was lost when the vessel sank, it is not possible to determine with any degree of accuracy what the current condition of the wreck is and how likely the vessel is to contain oil since the shipwreck has never been discovered.

The only way to conclusively determine the condition of the shipwreck will be to examine the site after it is discovered.

Hopefully, we’ll soon find out if this wreck actually is the long-lost Coast Trader. You can watch video of the underwater survey as it takes place at http://www.nautiluslive.org/.

UPDATED JUNE 2, 2016: The survey team has confirmed that this wreck is, with very little doubt, the Coast Trader. Here are a few photos of the livestream exploration of the wreck:


Leave a comment

Remembering the Veterans That Served America and the Historic Shipwrecks They Left Behind

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that over 20,000 shipwrecks rest on the ocean floor off our coasts? The past century of commerce and warfare has left us with this legacy of sunken vessels dotting the seafloor around the United States.

While some of these are naval vessels, a large proportion are merchant vessels destroyed during war time. These wrecks are skewed heavily to World War II casualties such as those fallen during the “Battle of the Atlantic.” Some wrecks, such as the Civil War casualty, the USS Monitor, have been listed as National Historic Landmarks or on the National Register of Historic Places. Many of them, such as the USS Arizona at Pearl Harbor, Hawaii, are either civilian or military grave sites.

Beyond their military and historic significance, these wrecks also represent an enormous human toll. Today—on Veterans Day in the United States, Armistice Day or Remembrance Day in other nations—we honor the men and women who have served in the armed forces of all nations, as well as those serving in the Merchant Marine, and commemorate those who gave their lives in that service.

The Terrible Cost of the Battle of the Atlantic

During World War II’s Battle of the Atlantic, which lasted from September 1939 until the defeat of Germany in 1945, German U-boats and warships (and later Italian submarines) were pitted against Allied convoys transporting military equipment and supplies across the Atlantic to Great Britain and the Soviet Union. This battle to control Atlantic shipping lanes involved thousands of ships and stretched across thousands of square miles of ocean.

A Coast Guard ship's crew watches an explosion in the water ahead.

On April 17, 1943, Coast Guardsmen on the deck of the U.S. Coast Guard Cutter Spencer watch the explosion of a depth charge that blasted a Nazi U-boat’s hope of breaking into the center of a large convoy of ships. World War II left thousands of Allied and Axis ships — and soldiers — on the bottom of the ocean. (U.S. Coast Guard)

The losses in the battle were staggering. Between January and June 1942 alone, this battle resulted in the sinking of almost 500 ships. Historians estimate that more than 100 convoy battles took place during the war, costing Britain’s Merchant Navy more than 30,000 men and around 3,000 ships. The terrible cost for the Germans was 783 U-boats and 28,000 sailors, about 75% of the U-boat force. Although casualty statistics vary, we know that the U.S. Merchant Mariners suffered the highest rate of marine casualties of any service in World War II.

While many of these sunken vessels in U.S. waters rest in the Atlantic Ocean or Gulf of Mexico, numerous wrecks, such as the S/S Montebello, can be found in the Pacific. And of course, the wartime toll was spread across the world’s oceans, touching nearly all parts of the globe.

NOAA’s Role with Undersea Wrecks

NOAA is involved with shipwrecks in a number of ways. The agency’s role ranges from offering scientific guidance to the U.S. Coast Guard during pollution responses, to stewarding the diverse natural and cultural resources including shipwrecks in national marine sanctuaries, to creating navigational charts that show the precise locations of wrecks that could hinder maritime traffic. Most of the 20,000 wrecks resting off our coasts are old and did not carry oil as fuel or hazardous cargo; however, some of the more recent wrecks have the potential to contain—and sometimes leak—oil.

In 2002, for example, the decaying wreck of the S/S Jacob Luckenbach (carrying supplies to support the Korean War) was identified as the source of mysterious, recurring oil spills that had killed thousands of seabirds and other marine life along California’s coast. Our office joined with the U.S. Coast Guard and other agencies to remove the approximately 100,000 gallons of oil remaining in the wreck, protect the resources of the Great Farallones National Marine Sanctuary, and restore critical seabird breeding habitat in the U.S. and Canada to make up for the harm caused by the oil releases.

Two divers and a shark swim next to a large shipwreck.

Knowing how shipwreck sites formed helps explain why sunken vessels, like the Dixie Arrow which initially carried approximately 86,136 barrels of crude oil, but was demolished during World War II, no longer remain intact and are no longer potentially polluting shipwrecks. (NOAA)

Leaking wrecks like the Jacob Luckenbach are one reason NOAA maintains a large database of shipwrecks, dumpsites, navigational obstructions, underwater archaeological sites, and other underwater cultural resources, known as the Resources and Undersea Threats (RUST) database.

Beginning in 2010, NOAA’s Office of Response and Restoration and Office of National Marine Sanctuaries systematically analyzed a subset of those wrecks which could pose a substantial threat of leaking oil still on board. This work is part of NOAA’s Remediation of Underwater Legacy Environmental Threats (RULET) project. (Read more about the work conducted and the final report (PDF).) After the report was completed in 2013, the U.S. Coast Guard has worked to incorporate the information and recommendations into their regional contingency plans.

NOAA also has the privilege of protecting shipwrecks and naval battlefields though its National Marine Sanctuaries office. The first NOAA national marine sanctuary was designated in 1975 to protect the U.S. Navy warship USS Monitor, and other sanctuaries have followed in these footsteps of preserving historic wrecks. Today, you can explore fascinating undersea wrecks at Florida Keys National Marine Sanctuary, Thunder Bay National Marine Sanctuary in the Great Lakes, and at other sanctuaries.

Wrecks and Reefs

Sometimes these submerged shipwrecks can serve as artificial reefs. Sunken wrecks are actually the most prevalent type of artificial reef. As artificial reefs, shipwrecks can create both amazing homes for a diversity of marine life and popular attractions for commercial and recreational fishers, divers, and snorkelers.

Occasionally, vessels are even sunk intentionally for this purpose. However, it can be very costly to prepare the vessels to become artificial reefs, which requires removing paints and other hazardous materials in the hull. Another consideration is the stability of the vessel and its danger to living things around it. For example, if the vessel is in shallow water, will it flip over in a storm and crush the new coral growing there? Could people or marine life get caught inside it? These considerations are why artificial reefs are often found in deep water and why establishing an artificial reef requires special review and permitting processes.

Through the study, protection, and promotion of our diverse legacy of undersea wrecks, national marine sanctuaries help us learn more about and celebrate our merchant marine and military history.

Explore Shipwrecks While Staying Dry

You can learn more about NOAA expeditions between 2008 and 2011, which explored the World War II wrecks in the “Graveyard of the Atlantic.”

You also can watch a video of researchers first discovering the long-lost location of the USS Monitor’s wreck in 1973 off the coast of North Carolina:

See what it’s like to dive among the many wrecks at the bottom of Lake Huron in Thunder Bay’s “Shipwreck Alley”:

Take a video tour of the wreck of the USS Arizona, sunk by Japanese planes on December 7, 1941, and pay homage to the members of the U.S. armed forces who gave their lives.

Video frame of a diver exploring a shipwreck.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


Leave a comment

Three and a Half Things You Didn’t Know About the History of Oil Spills

Lakeview oil gusher surrounded by sandbags.

The largest oil spill in the United States actually took place in 1910 in Kern county, California. The Lakeview #1 gusher is seen here, bordered by sandbags and derrick removed, after the well’s release had started to subside. (U.S. Geological Survey)

Like human-caused climate change and garbage in the ocean, oil spills seem to be another environmental plague of modern times. Or are they?

The human relationship with oil may be older than you think. In California’s San Joaquin Valley, that relationship may date back more than 13,000 years. Archaeologists have discovered a long history of Native Americans using oil from the area’s natural seeps, including the Yokut Indians creating dice-like game pieces out of walnut shells, asphalt, and abalone shells. At an archaeological site in Syria, the timeline extends back even further: bitumen oil was used to affix handles onto Middle Paleolithic flint tools dating to around 40,000 BC.

As history has a tendency to repeat itself, we can benefit from occasional glimpses back in time to place what is happening today into a context beyond our own fast-moving lives. When it comes to oil spills, you may be surprised to learn that this history goes far beyond—and is much more complicated than—simply the 2010 Deepwater Horizon and 1989 Exxon Valdez oil spills.

Based on the research of NOAA oil spill biologist Gary Shigenaka, here we present three and a half things you probably didn’t know about the history of oil spills.

1. Oil spills have been happening for more than 150 years, but society has only recently started considering them “disasters.”

If you look back in time for historical accounts of oil spills, you may have a hard time finding early reports. When the first oil prospectors in Pennsylvania would hit oil and it almost inevitably gushed into the nearby soil and streams, people at the time saw this not as “environmental degradation” but as a natural consequence of the good fortune of finding oil. In an 1866 account of Pennsylvania’s oil-producing Venango County, this attitude of acceptance becomes apparent:

When the first wells were opened…there was little or no tankage ready to receive it, and the oil ran into the creek and flooded the land around the wells until it lay in small ponds.  Pits were dug in the ground to receive it, and dams constructed to secure it, yet withal the loss was very great…the river was flooded with oil, and hundreds of barrels were gathered from the surface as low down as Franklin, and prepared as lubricating oil.  Even below this point oil could be gathered in the eddies and still water along the shore, and was distinctly perceptible as far down as Pittsburgh, one hundred and forty miles below.

2. The largest oil spill in the United States didn’t take place in the Gulf of Mexico in 2010 but in the California desert a hundred years earlier.

But similar to the Deepwater Horizon, this oil spill also stemmed from a runaway oil well. In Maricopa, California, the people drilling Lakeview Well No. 1 lost control of the well, which would eventually spew approximately 378 million gallons of oil into the sandy soil around it. The spill lasted more than a year, from March 14, 1910 until September 10, 1911, and only ceased after the well collapsed on itself, leaving a crater in the desert surrounded by layers of oil the consistency of asphalt.

3. The Alaskan Arctic is not untouched by oil spills; the first one happened in 1944.

The Naval ship S.S. Jonathan Harrington surrounded by Arctic sea ice.

The Naval ship S.S. Jonathan Harrington surrounded by Arctic sea ice. This ship likely caused the first major oil spill in Alaskan Arctic waters in August 1944. (U.S. Navy)

NOAA and many others are doing a lot of planning in case of an oil spill in the Alaskan Arctic. But whatever may happen in the future, in August of 1944, Alaska Native Thomas P. Brower, Sr. witnessed what was likely the first oil spill in the Alaskan Arctic. The U.S. Navy cargo ship S.S. Jonathan Harrington grounded on a sandbar near Barrow, Alaska. To lighten the ship enough to get off the sandbar, the crew apparently chose to release some of the oil it was carrying. In a 1978 interview, Brower describes the scene and its impacts on Arctic wildlife:

About 25,000 gallons of oil were deliberately spilled into the Beaufort Sea…the oil formed a mass several inches thick on top of the water. Both sides of the barrier islands in that area…became covered with oil.  That first year, I saw a solid mass of oil six to ten inches thick surrounding the islands.

…I observed how seals and birds who swam in the water would be blinded and suffocated by contact with the oil.  It took approximately four years for the oil to finally disappear. I have observed that the bowhead whale normally migrates close to these islands in the fall migration … But I observed that for four years after that oil spill, the whales made a wide detour out to sea from these islands.

And because the last point refers more to oil than oil spills, we’re counting it as item three and a half:

3½. The oil industry probably saved the whales.

Cartoon of whales throwing a ball with banners.

On April 20, 1861, this cartoon appeared in an issue of Vanity Fair in the United Kingdom. It hails the “Grand ball given by the whales in honor of the discovery of the oil wells in Pennsylvania.” (Public Domain)

The drilling of the first oil well in Pennsylvania in 1859 touched off the modern oil industry in the United States and beyond—and likely saved the populations of whales, particularly sperm whales, being hunted to near-extinction for their own oil, which was used for lighting and lubrication. The resulting boom in producing kerosene from petroleum delivered what would eventually be a lethal blow to the whaling industry, much to the whales’ delight.


Leave a comment

Two Unlikely Neighbors, Orphans and Industry, Share a Past Along the Delaware River

Sign in a grassy field, in front of an old brick building.

An EPA sign marking the Metal Bank Superfund Site stands near the old St. Vincent’s Orphanage building. (EPA)

When NOAA environmental scientist Alyce Fritz talks about her first visit to the Metal Bank Superfund Site back in 1986, she always mentions the orphanage next door. St. Vincent’s Orphans Asylum, as it was named when it was opened by the Catholic Archdiocese of Philadelphia in 1857, is separated from the Metal Bank site by a stormwater outfall that drains into the Delaware River just north of the former orphanage.

The Metal Bank Superfund Site and St. Vincent’s are located several miles north of the center of Philadelphia, Pennsylvania, on the banks of the Delaware River in an industrial district that is part of the historic Tacony neighborhood. Located on 29 acres along the river, St. Vincent’s looks like a beautiful old park. What Fritz remembers clearly on that first visit was the children’s playground equipment placed near the river’s edge.

Large brick building with St. Vincint's over the door.

St. Vincent’s, as it appears today on the Delaware River in the Tacony neighborhood of Philadelphia.

On the adjacent 10 acre Metal Bank site, a company called Metal Bank of America, Inc., owned and operated a salvage facility where scrap metal and electric transformers were recycled for over 60 years. Part of the recycling process used by Metal Bank of America, Inc. involved draining oil—loaded with toxic compounds including PCBs—from the used transformers to reclaim copper parts. PCBs are considered a probable cause of cancer in humans and are harmful to clams and fish found in the mudflats and river next to the site.

In the 1970s the U.S. Coast Guard discovered oil releases in the Delaware River and traced them back to the site. Throughout the 1980s, the Metal Bank site’s owners used an oil recovery system to clear the groundwater of PCB-laced oil. However, oil continued to seep from an underground tank at the site. As a result, PCBs and other hazardous substances were left in the soil, groundwater, and river bed sediments at the Metal Bank site and adjacent to St. Vincent’s.

In 1983 the Metal Bank site was placed on the National Priorities List (the Superfund program) and slated for federal cleanup. During the course of the federal cleanup process, various parties were identified as being liable for the contamination at the site, including a number of utility companies that transported their used electrical transformers to the Metal Bank site for disposal or otherwise arranged to dispose of their used electrical transformers at the Metal Bank site.

Federal and local agencies collaborated on a design for cleanup of multiple contaminants of concern at the Metal Bank site. Found in the soil, sediment, groundwater, and surface water, these contaminants included but were not limited to:

  • PCBs.
  • polynuclear aromatic hydrocarbons (a toxic component of oil).
  • semi-volatile organic compounds.
  • pesticides.
  • metals.

The cleanup, which began in 2008, included excavating soils and river sediments contaminated with PCBs, capping some areas of river sediment, installing a retaining wall near the river, and removing an old transformer oil storage tank. Most of this work was completed in 2010.

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

As part of the required 5-year review period, monitoring of the Metal Bank site continues. This is to ensure the cleanup is still protecting human health and the environment, including endangered Atlantic Sturgeon and Shortnose Sturgeon. Through successful coordination among the EPA, other federal and state agencies, and some of the potentially responsible parties (PRPs) during the Superfund process, the cleanup has reduced the threat to natural resources in the river and enhanced the recovery of the habitat along the site and St. Vincent’s property.

Over the years, the role of St. Vincent’s has evolved too, from serving as a long-term home for orphans toward one of providing short-term shelter and care to abused and neglected children. Prior to the early 1990s, children who came to St. Vincent’s spent a significant part of their childhood as residents of the institution. In a 1992 article in the Philadelphia Daily News, Sister Kathleen Reilly explained that the children currently cared for by St. Vincent’s range in age from two to 12 years of age and are placed at the home temporarily through an arrangement between the City of Philadelphia Department of Human Services and Catholic Social Services. Today St. Vincent’s serves young people mostly through day programs. One thing hasn’t changed though—the lush grounds along the river are still beautiful.

Playground swings at St. Vincent's. Statue of St. Vincent with a child in front of large brick building. Elaborate locked iron gate with a cross. Pavilion with trees and river view.

From top left: A recent photo of part of the play area behind St. Vincent’s on the grounds facing the Delaware River. (NOAA) An old photo of a statue in front of St. Vincent’s Orphan Asylum, as it was originally named. (U.S. Library of Congress) The main building of the historic institution in Northeast Philadelphia that first opened its gates in 1857 as St. Vincent’s Orphans Asylum. Photo was taken in 2013. (NOAA) An old photo of a pavilion in the recreational area behind St. Vincent’s main building. The Delaware River and playground equipment is visible in the background. (U.S. Library of Congress)

The federal and state co-trustees for the ongoing Natural Resource Damage Assessment at the Metal Bank site include NOAA’s Damage Assessment, Remediation, and Restoration Program; the U.S. Fish and Wildlife Service; and multiple Pennsylvania state agencies. Collectively, the trustees are working together to further engage with the potentially responsible parties and build upon what has been accomplished at the site by the cleanup.

The trustees have invited the potentially responsible parties to join them in a cooperative effort to improve habitat for the injured natural resources (such as habitat along the river and wetlands) that support the clams, fish, and birds using the Delaware River. In addition, there is the potential for a trail to be routed through the property to a scenic view of St. Vincent’s and the river (an area which is now safe for recreational use). The trustees hope that the natural resources at the Metal Bank site can evolve to become a vibrant part of the historic Tacony neighborhood once again too.


Leave a comment

Over a Century after Texas Strikes Oil, Marsh Restoration Completed for an Old Refinery’s Pollution

This is a post by the Office of Response and Restoration’s Jessica White.

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

About five miles from the Texas-Louisiana border sits what was once the Gulf Oil Company’s refinery. It’s now owned by Valero, by way of Chevron. But this century-old refinery in Port Arthur, Texas, has been operating since a year after the famous discovery of oil at Spindletop in 1901, which came in the form of a more than 100-foot-high, nine-day-long oil gusher.

Spindletop is the salt dome oil field that sparked the oil boom in Texas, ushering in the exploration of oil in the region that has persisted to this day. It also paved the way for oil to become a significant energy source.

Oil Boom not Necessarily a Boon

With the oil boom came a number of hazardous substances to the former Gulf Oil refinery site and its surrounding areas. Historically, the refinery produced jet fuel, gasoline, petrochemicals, and a variety of other oil and chemical products. But this took a toll on the site’s soil, water, and aquatic habitats. Ecological risk assessment studies led by the state of Texas have revealed the presence of polycyclic aromatic hydrocarbons (PAHs, a toxic component of oil), lead, zinc, nickel, cadmium, copper, and more in the water and sediment on the site.

In 2004, NOAA, U.S. Fish and Wildlife Service, and the Texas natural resource trustees, working cooperatively with Chevron, determined that the public was owed ecological restoration for the contaminated surface water, soil, and sediments at the former Gulf Oil refinery [PDF]. Our assessment showed that we could accomplish this by constructing 83 acres of tidal wetland and 30 acres of coastal wet prairie and improving 1,332 acres of coastal wetlands via new water control structures in the Sabine Lake/Neches River basin.

A black-necked Stilt and Snowy Egrets in the restored wetland habitat. (Photo provided courtesy of Chevron.)

A black-necked Stilt and Snowy Egrets in the restored wetland habitat.
(Photo provided courtesy of Chevron.)

Based on this information, the natural resource trustees negotiated with Chevron (which assumed the legal responsibility of the former Gulf Oil site) a $4.4 million settlement of state and federal natural resource damage claims related to the site. This money would go toward implementing the environmental restoration.

The settlement included three projects meant to restore coastal habitat to compensate the public for natural resources lost or injured by historical contamination from the refinery. Two of the projects involved restoring a natural hydrology to coastal wetlands by installing water flow enhancement structures and berms. The third project aimed to create intertidal estuarine marsh and coastal wet prairie by using nearby dredge material.

These projects were a significant undertaking for Chevron and their contractors. They involved several different restoration techniques, some of which had to be modified in the middle of construction to adapt to changes in the field.

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/National Marine Fisheries Service/Jamie Schubert)

Building Marsh out of Mud Pancakes

In 2002, Chevron set up a pilot project to determine the feasibility of constructing marsh habitat by placing local dredge material into open-water habitat. The resulting constructed marsh terrace was able to maintain the necessary elevation for native marsh vegetation to take root.

Based on the successful pilot, the full-scale project for building marsh planned to mix dredge material with water, forming slurry that could then be pumped into open water to form mounds and terraces. Once they reached the suitable elevation, the mounds and terraces would later be planted with native marsh grasses. On the other hand, the coastal wet prairie would be constructed by removing dredged sediment to lower the elevation and make it suitable for supporting vegetation found in that habitat type.

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Full-scale construction for the projects kicked off in 2007. This timeline was pushed back a few years from the pilot project because in 2005 Hurricanes Katrina and Rita increased demand for the heavy equipment used in the marsh environment and also damaged habitat and vegetation at the project site.

Another challenge came after Chevron pumped the dredged sediments into the open water to create marsh mounds. Unlike during the pilot project, when the pumped-in sediment stacked well, the sediment used in the marsh construction spread out and formed pancakes instead of the desired mounds. To prevent the sediment from spreading, the restoration team tried changing the pump’s spout, but spraying the dredge slurry into mounds was still a challenge. The mounds became mudflats.

Changing the construction technique again, they next pumped in dredged sediments and then excavated mounds and terraces. This technique had greater success, but in the end, it was still necessary to pump in additional sediment to some areas to achieve the necessary elevations. Because the team was using so much more dredge material than originally planned, they had to find an alternative sediment source from a nearby canal. If they continued taking sediment from the original source, they would have risked lowering the elevation of the area, which was adjacent to the coastal wet prairie and could affect its hydrology.

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Despite a number of setbacks, the restoration projects were finished in 2009 and after a monitoring period, the trustees certified them as successfully completed in February of 2013. These projects will improve the fish and shellfish abundance in this part of southeast Texas, provide habitat for wildlife and fish, increase recreational opportunities for bird watching and fishing, and improve the habitat for waterfowl (a benefit for hunters).

The area is also highly visible for anyone driving south through the Beaumont-Port Arthur area. Just look out your window as you cross the Neches River and you’ll see the marsh mounds, coastal wet prairie, and maybe even a few Snowy Egrets on display.

Jessica White.

Jessica White.

Jessica White is a Regional Resource Coordinator with the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She has been working with NOAA in the Gulf since 2003 and recently relocated to the Gulf of Mexico Disaster Response Center. Jessica has assessed and restored Superfund sites in Texas and Louisiana and has supported oil spill and marine debris cleanup. She has a B.S. in Biology from Texas Tech University and a M.S. in Environmental Science from the University of North Texas.