NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Using a NOAA Tool to Evaluate Toxic Doses of Pollution at the Hanford Nuclear Reservation

This is a post by Troy Baker, an environmental scientist in NOAA’s Office of Response and Restoration.

Salmon swimming in a river.

NOAA and partners are examining whether chromium released at Washington’s Hanford Nuclear Reservation has affected Chinook salmon eggs and young fishes in the Columbia River. (Department of Energy)

Chromium, manganese, zinc.

Elements like these may show up in a daily multivitamin, but when found in a certain form and concentration in water and soil, these elements can cause serious problems for fish, birds, and wildlife. As assessors of environmental harm from pollution, we see this scenario being played out at hazardous waste sites around the country.

Take chromium, for example, which is an element found in some multivitamins and also naturally in rocks, plants, soil, and animals (and thus at very low concentrations in meat, eggs, and cheese). At the Hanford Nuclear Reservation in eastern Washington, we are evaluating how historical discharges of chromium resulting from nuclear fuel production may have affected soils, river sediments, groundwater, and surface waters along the Columbia River bordering this property.

Of particular concern is whether discharged chromium affected Chinook salmon eggs and young fishes. Hanford’s nuclear reactors, first constructed as part of the top-secret Manhattan Project during World War II, required huge amounts of river water to keep the reactor’s nuclear core cool, and chromium compounds were added to keep this essential equipment from corroding.

A little bit of chromium in the environment is considered part of a baseline condition, but if animals and plants are exposed to elevated amounts during sensitive periods, such as when very young, they may receive harmful doses.

How Much Is Too Much?

Have you heard the saying, “the dose makes the poison?” I wanted to find out how my evaluation of what chemicals may cause harm to aquatic species at Hanford matches up to toxicity data from one of NOAA’s software tools, the Chemical Aquatic Fate and Effects (CAFE) database.

I already knew that chromium in surface waters at the level of parts per billion (ppb) has the potential to cause harm at Hanford, including to migratory Chinook salmon and steelhead. But what does that concentration look like?

A helpful analogy from the Washington State Department of Ecology shows just how small that concentration is: One part per billion would be one kernel of corn sitting in a 45-foot high, 16-foot diameter silo.

Digging Through Data

Government scientists set standards called “injury thresholds” to indicate the pollution concentrations when harm reliably occurs to a certain species of animal or type of habitat. It’s my job to see if we can trace a particular contaminant such as chromium back to a source at the Hanford Nuclear Reservation and then document whether aquatic species were exposed to that contaminant for a certain area and time period and harmed as a result.

I’m currently working with my colleagues to set injury thresholds for the amount of chromium and other harmful materials in soils, sediments, and surface waters at the Hanford Nuclear Reservation.

What’s different in this case is that we are evaluating what short-term harm might have occurred to fishes and other animals from either historical pollution mixtures or existing contamination in the Columbia River. To do that, we need large amounts of toxicity data for aquatic species presented in an easy-to-digest format. That’s where NOAA’s CAFE database comes in.

Graph from the CAFE database showing the level of toxic effects for chromium exposure to a range of fish and aquatic invertebrates.

Example data output from NOAA’s CAFE database showing aquatic invertebrates as the most sensitive freshwater aquatic organism after exposure to chromium for 48 hours in laboratory tests. One microgram per liter (µg/L) is equivalent to one part per billion. (NOAA)

Using this toxicity database for aquatic species, I was able to generate multiple scenarios for chromium exposure to a range of freshwater fish and invertebrates found in the database. I could compare at what concentration chromium becomes toxic to these species and easily see which life stage, from egg to adult, is most affected after 24, 48, and 96 hours of exposure.

The results from CAFE confirmed that setting an injury threshold for chromium somewhere within the “very highly toxic” range of exposure (less than 100 parts per billion of chromium) would be appropriate to protect a wide range of aquatic invertebrates and fish. With the help of CAFE, I was able to quickly double-check whether there is any scientific reason to lower or raise the injury thresholds I’m discussing with my Hanford colleagues.

More Contamination, More Work Ahead

hanford-h-reactor-cocooned-columbia-river_noaa_1946

View of Cocooned H reactor at Hanford Nuclear Facility from Locke Island, Columbia River, Washington. The reactor operated for 15 years and was one of nine along the river. (NOAA)

My colleagues and I have a lot more environmental assessment work to do at the Hanford Nuclear Reservation. Home to nine former nuclear reactors plus processing facilities, that site is one of the nation’s most complex pollution cases.

Part of my work at NOAA is to collaborate with my agency and tribal colleagues through the Natural Resource Damage Assessment process to understand whether harm occurred and ultimately restore the environment in a way that’s equivalent to the scale of the injuries.

We are concerned about more than 40 contaminants at Hanford, but that shouldn’t be a problem for CAFE. This database holds information on environmental fate and effects for about 40,000 chemicals.

The next version of CAFE, due out in 2016, will be able to display information on longer-term effects of chemicals beyond 96 hours, increasing to 28 days if laboratory test data are available. Having toxicity data available for longer durations will be a huge help to my work as it gets translated into decisions about environmental restoration in the future.

Learn more about our environmental assessment and restoration work at the Hanford Nuclear Reservation.


Leave a comment

What Are Our Options for Restoring Lands Around Washington’s Hanford Nuclear Reservation?

Shrub-covered plains next to the Columbia River and bluffs beyond.

The dry shrub-steppe habitat at Washington’s Hanford Nuclear Reservation is rare for the region because it is so extensive, intact, and relatively healthy. (Department of Energy)

Many people might be inclined to write off the wide, dry plains stretching around the Hanford Nuclear Reservation as lost lands. After all, this area in eastern Washington was central to the top-secret Manhattan Project, where plutonium was produced for nuclear bombs used against Japan near the end of World War II. In addition, nuclear production continued at Hanford throughout the Cold War, ending in 1987.

This history left an undeniable legacy of pollution, which is still being studied and addressed today.

Yet this land and the Columbia River that curves in and around it are far from being irredeemable. The Hanford site encompasses 586 square miles. Yes, some parts of Hanford have been degraded by development from its nine (now decommissioned) nuclear reactors and associated processing plants and from chemical and radionuclide contamination.

But the site also includes vast, continuous tracts of healthy arid lands that are rare in a modern reality where little of nature remains untouched by humans.

Where We Are and Where We’re Going

This potential is precisely what encourages Christina Galitsky, who recently joined NOAA’s Office of Response and Restoration to work on the Hanford case. Currently, she is leading a study at Hanford as part of a collaborative effort known as a Natural Resource Damage Assessment, a process which is seeking to assess and make up for the years of environmental impacts at the nuclear site.

“The purpose of our study is to begin to understand habitat restoration options for Hanford,” Galitsky explained. “We are starting with terrestrial habitats and will later move to the aquatic environment.”

A worker drains a pipe that contains liquid chromium next to a nuclear reactor.

From the 1940s to 1980s, the Hanford site was used to produce plutonium in nuclear weapons, and which today is home to the largest environmental cleanup in the United States. Here, a cleanup worker deals with chromium pollution near one of the decommissioned nuclear reactors. (Department of Energy)

NOAA is involved with eight other federal, state, and tribal organizations that make up the Hanford Natural Resource Trustee Council, which was chartered to address natural resources impacted by past and ongoing releases of hazardous substances on the Hanford Nuclear Reservation.

The study, begun in the summer of 2015, will be crucial for helping to inform not only restoration approaches but also the magnitude of the environmental injury assessment.

“We want to understand what habitat conditions we have at Hanford now,” Galitsky said, “what restoration has been done in similar dry-climate, shrub-steppe habitats elsewhere and at Hanford; what restoration techniques would be most successful and least costly over the long term; and how to best monitor and adapt our approaches over time to ensure maximum ecological benefit far into the future.”

The Hanford site is dominated by shrub-steppe habitat. Shrub-steppe is characterized by shrubs, such as big sagebrush, grasses, and other plants that manage to survive with extremely little rainfall. The larger Hanford site, comprised of the Hanford Reach National Monument and the central area where nuclear production occurred, contains the largest blocks of relatively intact shrub-steppe habitat that remain in the Columbia River Basin.

More Work Ahead

Roads and facilities of Hanford next to the Columbia River with bluffs and hills beyond.

The Hanford site, which the Columbia River passes through, encompasses 586 square miles of sweeping plains alongside an atomic legacy. (Department of Energy)

Galitsky’s team includes experts from NOAA, the Washington Department of Fish and Wildlife, and other trustees involved in the damage assessment. For this study, they are reviewing reports, visiting reference and restoration sites in the field, creating maps, and organizing the information into a database to access and analyze it more effectively.

They presented their preliminary results to the trustee council in November. So far, they are finding that limited restoration has been done at Hanford, and, as is fairly common, long-term data tracking the success of those efforts are even more limited. Over the next six months, they will expand their research to restoration of similar shrub-steppe habitats elsewhere in the Columbia Basin and beyond.

Thanks to additional funding that stretches into 2017, the team will begin a second phase of the study later this year. Plans for this phase include recommending restoration and long-term habitat management approaches for the trustee council’s restoration plan and examining the benefits and drawbacks of conducting shrub-steppe restoration both on and off the Hanford site.

Steppe up to the Challenge

Two American White Pelicans fly over the Columbia River and Hanford's shrubby grasslands.

A surprising diversity of plants and animals, such as these American White Pelicans, can be found in the lands and waters of Hanford. (NOAA)

The natural areas around Hanford show exceptional diversity in a relatively small area. More than 250 bird species, 700 plant species, 2,000 insect species, and myriad reptiles, amphibians, and mammals inhabit the site. In addition, its lands are or have been home to many rare, threatened, and sensitive plants, birds, reptiles, and mammals, such as the Pygmy rabbit

Furthermore, the shrub-steppe habitat at Hanford holds special significance because this habitat is so rare in the Columbia Basin. Elsewhere in the region, urban and agricultural development, invasive species, and altered fire regimes continue to threaten what remains of it. As Galitsky points out, “At Hanford there is an opportunity to restore areas of degraded shrub-steppe habitat and protect these unique resources for generations.”

Restoring habitats on or near the Hanford site may create benefits not only on a local level but also more broadly on a landscape scale. These efforts have the potential to increase the connectivity of the landscape, creating corridors for wildlife and plants across the larger Columbia River Basin. The team will be evaluating these potential landscape-scale effects in the second phase of this project. Stay tuned.


Leave a comment

Swimming Upstream: Examining the Impacts of Nuclear-age Pollution on Columbia River Salmon

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it.

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it. (NOAA)

Flowing freely through southeastern Washington is an approximately 50 mile stretch of the Columbia River known as the Hanford Reach. This unique section of river is birthplace and home to many animals at different stages of life, including Chinook salmon, the largest of the river’s Pacific salmon. Yet this same segment of river at one time also served as the birthplace of the nuclear age: at the Hanford Nuclear Reservation. Today, NOAA, other federal and state agencies, and Indian tribes are still trying to determine the full impact of this nuclear legacy on fish, wildlife, and their habitats.

Beginning in 1943, the Hanford Reach, with its steady supply of water and relative isolation, attracted the attention of the U.S. government during World War II. Searching for a location to erect nuclear reactors for the top-secret Manhattan Project, the U.S. was racing to build an atomic bomb and this work took shape at Hanford.

Two of Hanford's nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation.

Two of Hanford’s nine nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation. (NOAA)

The first nuclear reactor built at Hanford—and the first full-scale nuclear production plant in the world—was the B Reactor, which began operating in 1944. This and the other eight reactors eventually constructed at Hanford were located right on the Columbia River, an essential source of water to carry away the extreme heat generated by nuclear fission reactions. In these plants, workers turned uranium (euphemistically referred to as “metal”) into weapons-grade plutonium (known as “product”). The plutonium eventually ended up in the atomic bomb dropped on Nagasaki, Japan, in 1945, as well as in nuclear arms stockpiled during the U.S.-Soviet Cold War. Hanford’s last reactors shut down in 1987.

The River Runs Through It

While the nuclear reactors were operating, however, water was pumped from the Columbia River and aerated at a rate of 70,000 gallons a minute. This was meant to improve its quality as it flowed through a maze of processing equipment—pipes, tubes, and valves—and into the core, the heart of the nuclear reactor. There, in the case of B Reactor, about 27,000 gallons of water gushed through 2,004 process tubes every minute. Each tube held 32 rods of uranium fuel.

The "valve pit" in Hanford's B Reactor, where the thousands of gallons of water that cooled the nuclear reactor's core passed through.

The “valve pit” in Hanford’s B Reactor, where the thousands of gallons of water that cooled the nuclear reactor’s core passed through. (NOAA)

Inside the reactor’s core, where the nuclear reactions were occurring, the water temperature would spike from 56 degrees Fahrenheit to 190 degrees in a single minute. Later in the reactor’s lifespan, the operators would be able to leave the water inside the nuclear reactor core long enough to heat it to 200 degrees before releasing the water into lined but leaky outdoor holding ponds. Once in the holding ponds, the reactor water would sit until its temperature cooled and any short-lived radioactive elements had broken down. Finally, the water would return to the Columbia River and continue its path to the Pacific Ocean.

Water played such an essential role in the nuclear reactor that engineers had four levels of backup systems to keep water constantly pumping through the core. In addition to being aerated, the water was also filtered and chemically treated. To prevent the core’s plumbing equipment from corroding, chromium was added to the water. Hanford’s D Reactor, in particular, handled large quantities of solid hexavalent chromium, a toxic chemical known to cause cancer.

The Salmon Runs Through It

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013.

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013. (NOAA)

Fast-forward to 2013. NOAA and its partners are participating in a natural resource damage assessment, a process determining whether negative environmental impacts resulted from the Department of Energy’s activities at Hanford. As part of that, NOAA is helping look at the places where water leaked or was discharged back into the Columbia River after passing through the reactors.

One goal is to establish at what levels of contamination injury occurs for species of concern at Hanford. Salmon and freshwater mussels living in the Columbia River represent the types of species they are studying. Yet these species may face impacts from more than 30 different contaminants at Hanford, some of which are toxic metals such as chromium while others are radioactive isotopes such as strontium-90.

Many of the Columbia River’s Chinook salmon and Steelhead trout spawn in or migrate through the Hanford Reach. Currently, NOAA and the other trustees are pursuing studies examining the extent of their spawning in this part of the river and determining the intensity of underground chromium contamination welling up through the riverbed. This information is particularly important because salmon build rocky nests and lay their eggs in the gravel on the bottom of the river.

You can learn more about the history of the Hanford Reach and the chromium and other contamination that threatens the river (around minute 8:50-9:03)  in this video from the Department of Energy:

The trustees have many other studies planned, all trying to uncover more information about the natural resources and what they have been experiencing in the context of Hanford’s history. Yet, for the natural resource damage assessment, even if the trustees find salmon experiencing negative impacts, the evidence found needs to be tied directly to exposure to Hanford’s pollution (rather than, for example, the influence of dams or pollution from nearby farms). It is a complicated process of information gathering and sleuthing, but eventually it will culminate in a determination of the restoration required for this critical stretch of habitat on the Columbia River.

For more information, see:


Leave a comment

What Do Hanford’s Latest Nuclear Waste Leaks Mean for Environmental Restoration?

This is a post by Vicki Loe and Charlene Andrade.

Some of the older nuclear waste storage tanks at Hanford in southeast Washington.

Some of the older nuclear waste storage tanks at Hanford in southeast Washington. (U.S. Department of Energy)

This past February, the U.S. Department of Energy confirmed that six additional nuclear waste storage tanks are leaking at the Hanford Nuclear Reservation in southeast Washington. This revelation has drawn attention once again to the ongoing challenges of assessing, cleaning up, and restoring the environment around a massive nuclear waste site.

To understand how these six aging nuclear waste tanks might affect salmon, the sagebrush-filled desert ecosystem, and nearby Columbia River, it helps to understand more about Hanford’s history. In 1943, the Hanford Site was developed by the U.S. Government for the production of plutonium as part of the Manhattan Project that developed atomic bombs during World War II. The site continued to produce plutonium as well as nuclear energy until the last reactor stopped operating in 1987. The weapons production and nuclear energy operations at Hanford left dangerous and environmentally harmful solid and liquid waste, creating one of the largest and most complex cleanup projects in the U.S. That effort has been in progress since 1989.

Hanford’s 177 total storage tanks, some of which date from the 1940s, hold more than 50 million gallons of radioactive waste. These six leaking tanks are among 149 older “single-shell” tanks, which only have one liner. (Tanks constructed more recently feature “double-shells.”) However, these older tanks were designed for a lifespan of only about 20 years. According to Washington Governor Jay Inslee, “This certainly raises serious questions about the integrity of all 149 single-shell tanks with radioactive liquid and sludge at Hanford.”

One of the older waste storage tanks under construction at the Hanford Nuclear Reservation.

One of the older waste storage tanks under construction at the Hanford Nuclear Reservation. (U.S. Department of Energy)

While tanks at the site have leaked in the past, news of these recently discovered leaks again raises concerns about the condition of the tanks and underscores the ongoing complexities of this assessment and cleanup.

The six leaking tanks pose no immediate threat to natural resources because they are located 200–300 feet above the groundwater table. The State of Washington indicates that there is no immediate or near-term health risk as the leaking tanks are located more than five miles from the Columbia River. In addition, measures are being taken to prevent contamination currently in the soil from entering the river.

While this latest discovery affects the ongoing cleanup, it does not change the focus of the Hanford Natural Resource Damage Assessment because the Hanford Natural Resource Trustee Council is already evaluating harm from contamination flowing into the Columbia River, which borders the site and is home to Chinook salmon and sturgeon. The council includes representatives from NOAA, three tribal organizations, the States of Washington and Oregon, and two other federal agencies. It is tasked with characterizing the cumulative impacts from decades of releases and contamination to the fish, wildlife, and the habitats they rely upon, and determining the cumulative restoration needed to replace, restore, and offset the total decades of damage.

Discovery of the additional leaking tanks illustrates the challenge of that task: to be able to measure the harm over time, even as new sources of contamination are discovered and await cleanup. Each source  can add to the cumulative impact and ultimately to the amount of restoration that will eventually be needed to offset damages.

For more information about the work of the Hanford Natural Resource Trustee Council, view the Hanford Natural Resource Damage Assessment Injury Assessment Plan, which describes how the council will characterize and quantify the past, ongoing, and future environmental impacts.


Leave a comment

Submit Your Comments: Studying Decades of Environmental Injuries at the Hanford Nuclear Site

This is a post by OR&R’s Charlene Andrade, Mary Baker, and Vicki Loe.

Nuclear reactors line the riverbank at the Hanford Site along the Columbia River in January 1960.

Nuclear reactors line the riverbank at the Hanford Site along the Columbia River in January 1960. The N Reactor is in the foreground, with the twin KE and KW Reactors in the immediate background. The historic B Reactor, the world’s first plutonium production reactor, is visible in the distance. (U.S. Dept. of Energy)

Interesting things are happening at Hanford. After decades of nuclear production, years of cleanup, and chronic contamination, the time has come to begin restoring the land and natural resources of Hanford, Wash. That’s why NOAA, along with other agencies and tribes, has started a natural resource damage assessment and is now publishing a document for public review. The Draft Injury Assessment Plan [PDF] describes the first phase of the restoration process, which is to quantify harm to natural resources at the Hanford Nuclear Site.

For those of you unfamiliar with the history of the site, between 1944 and 1987, Hanford, located in eastern Washington state, produced plutonium for atomic weapons, starting with the “Fat Man” bomb dropped on Nagasaki, Japan, in 1945. During the Cold War years, the facilities grew to include nine nuclear reactors and associated processing plants. For decades, Hanford produced radioactive materials for Cold War-era military activities, commercial nuclear energy production, and nuclear medicine. These operations led to the release of radionuclides and contaminants into the arid landscape and the Columbia River, which borders the site, injuring the habitats, wildlife, and people’s ability to enjoy the area for recreational and cultural uses.

Cocooned F Reactor surrounded by grassland and hills at Hanford.


F Area is home to F Reactor, the third of Hanford’s nine plutonium production reactors built to produce plutonium for the nation’s defense program during both World War II and the Cold War. The reactor operated from 1945 to 1965 and was placed in interim safe storage in 2003. (U.S. Dept. of Energy)

Cleanup at the site began in 1989 and likely will continue well into the future. However, we are concerned about the chronic environmental impacts and believe there is a need to begin restoration now to offset the more than 30 years of injury. Our efforts are different than cleanup. Cleanup involves removing contaminated materials such as buildings, waste, and soil from the landscape.

Restoration, on the other hand, involves accounting for and offsetting the harm done to natural resources that continue to feel these impacts while waiting for full cleanup at the site. For example, during past operations at Hanford, leaks and overflows caused contaminants from nuclear reactors to flow directly into the Columbia River, and even though the facilities have long since been closed, the contaminants in the groundwater, such as chromium, have continued to leach into the river to the present day. These contaminants have reached Chinook salmon spawning grounds and the forage and resting areas for sensitive young salmon near the shoreline.

This is why NOAA, other agencies, and local tribes believe it is time to begin restoration planning.

The Draft Injury Assessment Plan, which is available for your review, is the first step in planning restoration. We are required by law to describe and quantify harm to impacted habitats and species before we can begin restoration on land or in the river, and we have created a Draft Injury Assessment Plan to accomplish that.

F Reactor sits across the Columbia River at the Hanford Nuclear Site.

The now-remediated F Reactor, a former plutonium productor reactor, sits across the Columbia River at the Hanford Nuclear Site. NOAA and the other natural resource trustees hope to begin reversing the decades of environmental harm at this site. (U.S. Dept. of Energy)

No one has completed this kind of assessment at Hanford before, and it will be a challenging and complex task. First, we will pull from existing scientific studies, Hanford site documents, and historical information to create a picture of what harm has been done to the natural resources. Then, we will plan additional studies only where the picture is not already clear.

Once we fill in these missing pieces with data, we will be better prepared to determine the scale and type of restoration needed and begin the appropriate projects. Assessing past, present, and future environmental injuries will not be easy, which is why we need your input on our plan.

Let us know what you think of our proposed approach. You can find out more about our efforts and obtain copies of the Draft Injury Assessment Plan [PDF] at www.hanfordnrda.org.

Submit your comments by January 4, 2013 to:

Mr. Larry Goldstein (Larry.Goldstein@ecy.wa.gov)
Hanford Natural Resource Trustee Council Chair
Washington State Department of Ecology
Nuclear Waste Program
P.O. Box 47600
Olympia, WA 47600
360-407-6573

Mary Baker.

One of the authors, Mary Baker.

In addition, a public meeting will be held on Wednesday, December 12, 2012 from 6:00 p.m. to 8:30 p.m. in the Richland Public Library’s Gallery Room, 955 Northgate Drive.

Learn more about the Hanford Natural Resource Damage Assessment.

Mary Baker is an environmental toxicologist and the Northwest-Great Lakes Regional Manager in the Office of Response and Restoration’s Assessment and Restoration Division.


Leave a comment

Restoration Amid Nuclear Waste and the Largest Environmental Cleanup in the U.S.

The front face of Hanford's B Reactor, where uranium fuel slugs were loaded into the reactor when it was operating.

The front face of Hanford’s B Reactor, where uranium fuel slugs were loaded into the reactor when it was operating. The reactor began operating in September 1944; it was shut down from 1946-1948, and then went back into service until 1968. (Dept. of Energy)

Recently I had the opportunity to tour the U.S. Department of Energy’s Hanford Nuclear Reservation with a NOAA staffer working on the Hanford Natural Resource Damage Assessment (NRDA). The goal of the Hanford damage assessment is to restore the natural resources affected by contamination from decades of nuclear defense activities at the Hanford Nuclear Site.

Spent fuel rods stored underwater at the Hanford Nuclear Reservation.

Spent fuel rods are stored underwater at the Hanford Nuclear Reservation. (Dept. of Energy)

Between 1944 and 1987, Hanford, located in eastern Washington state, produced plutonium for atomic weapons, starting with the “Fat Man” bomb dropped on Nagasaki in 1945. During the Cold War years, the facilities grew to include nine nuclear reactors and associated processing plants.

While producing plutonium for the U.S. defense program throughout the Cold War, billions of gallons and millions of tons of nuclear waste were generated, contaminating the ground around waste sites, the reactor and processing facility buildings, and groundwater. The site accounts for two-thirds of all the high-level radioactive waste in the entire country (by volume). There are 149 large eroding tanks filled with old nuclear waste that is in the process of being transferred into new tanks and eventually will be mixed with glass, a process called vitrification, for stability and permanent storage.

Since 1989, Hanford has been in cleanup mode and is the largest environmental cleanup in the U.S., employing about 11,000 people. Technicians work to mitigate contaminated groundwater before it reaches the Columbia River, which borders the site for 51 miles. They work on demolishing facilities, encasing (“cocooning”) old reactors, and burying tons of waste material into huge pits that are lined to prevent contaminants from leaching into the soil. A new waste treatment plant is underway that will handle the vitrification process for the nuclear waste currently stored in tanks. The process of cleaning up is likely to continue for decades.

Burned-out shell of Hanford High School.

Hanford High School as it looks today. It is the only building left from the original town of Hanford, Wash. (Dept. of Energy)

While touring Hanford, I was struck by the enormity of the site as well as the magnitude of the problem and the range of cleanup activities in progress. The 586-square-mile area is a desert steppe ecosystem mostly covered in grasses and sagebrush, with very few trees. For the most part nothing breaks the horizon but the now sealed-up, tall, windowless, nuclear reactors.

There are rolling hills and bluffs along the Columbia River, as well as the sites of two former small towns: Hanford, which gave the larger site its name, and White Bluffs. Both towns were evacuated permanently to make way for the top-secret nuclear project in 1943.

Two Hanford High School baseball players in 1925.

Two members of the Hanford High School baseball team in 1925. (Dept. of Energy)

All that’s left of them is the burned-out cement shell of Hanford High School, outlines of where sidewalks and streets once were, and a bank that had been in downtown White Bluffs. Some former residents return in the summer for a picnic on the site of the vanished communities.

For thousands of years before these two small towns existed, the area was inhabited by Native American people who gathered mussels, spear-fished salmon, and hunted the bison that previously roamed there.  The site is still important as a cultural meeting place and fall fishing ground for descendants of the Native people. Also of concern to the Native American people are the more than 600 archeological sites that have been discovered within the Hanford Nuclear site.

Three Tribes, as well as representatives from the states of Washington and Oregon, the U.S. Departments of Energy and Interior, U.S. Fish and Wildlife, and NOAA are all involved in the environmental damage assessment. This collective group of trustees operates by consensus to replace lost or injured resources. They face diverse interests as they continue to collaborate throughout this process. In future blog posts here, we’ll look at a particular challenge of interest to NOAA, which is whether to initiate environmental restoration in the Columbia River before the full cleanup and damage assessment is complete.

For more information on tours of the Hanford Nuclear Site, see the U.S. Department of Energy Hanford Site Tours.


Leave a comment

CSI: Hanford, Complete with Nuclear Superheroes

Like a character out of CSI: Crime Scene Investigation, I investigate legal cases—but mine are cases of pollution, oiling, and chemical mayhem, which are a little less grisly than those featured on CSI. When polluters contaminate our nation’s wildlife, rivers, and ocean, my colleagues and I are there on the scene.

As a scientist with NOAA’s Assessment and Restoration Division in Seattle, Wash., I work alongside teams of scientists to piece together the story of what happened, determining the short- and long-term damage from releases of pollution, and then developing plans to restore what was lost. Sometimes I feel my job is part crime scene investigator, part restoration specialist, and part negotiator. And I love it—it’s always a challenge.

Nuclear explosion

Photo courtesy of National Nuclear Security Administration / Nevada Site Office.

For example, my current case is located at the Hanford Nuclear Reservation in southeastern Washington. Yes, I said it: nuclear. You may know of Hanford as part of the site of the “Manhattan Project,” where America manufactured the plutonium for the first nuclear bomb, as well as for the one detonated over Nagasaki, Japan during World War II. After decades of plutonium and uranium processing, tons of chemicals and radiation have spilled onto the land and into the nearby Columbia River. Some of this has even traveled about 300 miles downstream to the Pacific Ocean.

Can you imagine what decades of pollution have done to the fish, wildlife, and habitat of the Columbia River? Many people have imagined the worst, and there are lots of urban legends, movies, and comic book heroes related to all things Hanford. That includes far-fetched ideas of glowing fish, three-headed monsters, the superhero “Doctor Manhattan,” as well as alleged experiments on alligators and beagles, and even reports of jars of nuclear-laden jam from Hanford fruit trees being sent to Congressional representatives as “gifts” (the jam story is true).

The Columbia River as it travels along the Hanford Nuclear Site.

The Columbia River as it travels along the Hanford Nuclear Site in eastern Washington. Credit: Department of Energy.

But for all the contamination and controversy surrounding this nuclear site, the land and the river still support fish and wildlife. Fifty-one miles of the Columbia River flow along the site, and each fall, Chinook salmon return to spawn in the waters adjacent to Hanford. Sturgeon, too, can still be found in the deep pools of the river.

Despite all the hype and, at times, high levels of contamination, we seek out “just the facts,” hoping to sort out the real story of what happened at Hanford.

We’ll use the best possible science to accomplish that: studying genetics, looking at fish tissue health, comparing fish growth and reproduction, and even using the latest technology to discover if contamination is leaking into the river near salmon eggs or into the deep pools where sturgeon hang out.

As part of NOAA’s team of investigators, we have just begun trying to piece together exactly what contamination entered the river over the past several decades and then figure out what the fish do each year because of that pollution.

It will be difficult to sort out what has happened over so much time: How do we determine if animals are surviving just fine there, or if they are being replaced with new wildlife that move in each year? Our biggest challenge will be to reach into the past to figure out what was polluted and affected each year, and then pull it all together into a complete story, a scientific case.

Ultimately, we will go before the public—and sometimes a judge—with our cases and present that story, complete with evidence and “Exhibit A.” Our story must be logical, reasonable, and as complete as possible.

I’ll let you know how it goes. In future posts I hope to discuss how we search for clues, I’ll ponder what it means to present and future fish generations and habitat, and we’ll even dare to explore restoration options for Hanford.

Follow

Get every new post delivered to your Inbox.

Join 702 other followers