NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Working to Help Save Sea Turtles

Leatherback sea turtle swimming. Image credit: NOAA.

The leatherback is the largest turtle–and one of the largest living reptiles–in the world. Leatherbacks are commonly known as pelagic (open ocean) animals, but they also forage in coastal waters, including the Gulf. Image credit: NOAA.

Sea turtles are among the most popular marine reptiles and have been in Earth’s ocean for more than 100 million years. Unfortunately, today sea turtles struggle to survive. Of the seven species of sea turtles, six are found in United States waters and all of those species are listed as endangered or threatened under the Endangered Species Act.

One of the most devastating incidents to the survival of sea turtles was the 2010 Deepwater Horizon oil spill. Both during the spill and in the aftermath, we worked with the Office of Protected Resources, U.S. Fish and Wildlife Service, and other partners, to understand the extent of harm to sea turtles from the spill in the Gulf of Mexico.

For instance, it’s estimated that between 56,000 to 166,000 sea turtles were killed because of the spill. A special issue of Endangered Species Research features 20 scientific articles summarizing the impacts of the oil spill on protected species such as sea turtles and marine mammals.

The scientific studies, conducted by NOAA and partners, document the unprecedented mortality rate and long-term environmental impacts of the oil’s exposure to sea turtles. Findings from these research studies, in addition to other studies on other parts of the ecosystem, formed the basis of the natural resources damage assessment settlement with BP for up to $8.8 billion.

Additionally, our environmental response management software allows anyone to download the data from a scientific study, and then see that data on a map.

Our studies not only documented the injuries to sea turtles and other Gulf of Mexico plant and animal species, but also helped the entire scientific community understand the effects of oil spills on nature and our coastal communities.

You can learn more about our work with sea turtles and our studies from Deepwater Horizon in the flowing articles:

How Do Oil Spills Affect Sea Turtles?

What’s It Like Saving Endangered Baby Sea Turtles in Costa Rica?

Effects of the Deepwater Horizon Oil Spill on Sea Turtles and Marine Mammals

Hold on to Those Balloons: They Could End Up in the Ocean

Oil and Sea Turtles: Biology, Planning, and Response

ERMA map of sea turtles in the Gulf. Image credit: NOAA.

This view of ERMA® Deepwater Gulf Response, our online mapping tool, displays sea turtle data from response efforts and the Natural Resource Damage Assessment. This site served a critical role in the response to the Deepwater Horizon oil spill and remains a valuable reference. Image credit: NOAA


Leave a comment

Sea Grant Reports: Dolphins, Sea Turtles and the Impacts from Deepwater Horizon

photo of a bottlenose dolphin calf. Image credit: NOAA.

A bottlenose dolphin calf in the Gulf of Mexico. Image credit: NOAA

Two popular marine animals—dolphins and sea turtles—are the focus of new publications from the Sea Grant Oil Spill Science Outreach Team. In the aftermath of the largest oil spill in history, many expressed concern about its impact on these long-lived, slow-to-mature creatures. Now, almost seven years after the spill, scientists have a better understanding of how they fared. The team examined this research, synthesizing peer-reviewed findings into two easy-to-understand outreach bulletins.

Starting in 2010 a month before the Macondo blowout, scientists documented more than 1,000 stranded dolphins and whales along the northern Gulf of Mexico. From 2010 until 2014, they examined the health and stranding patterns of dolphins along the coasts of Louisiana, Mississippi, Alabama, and Florida, discovering that oiled areas had more sick and dead dolphins.

Scientists also found many sick and stranded pre-term and newborn dolphins. Overall, young dolphins in the study area were eight times more likely to have pneumonia or inflamed lungs and 18 times more likely to show signs of fetal distress than those from areas outside the Gulf. The Deepwater Horizon’s impact on bottlenose dolphins report examines all of the factors, including oil that scientists think contributed to dolphin populations’ drop in numbers during this time.

The Sea turtles and the Deepwater Horizon oil spill report details the impacts on threatened or endangered sea turtles species in the Gulf. In total, scientists estimate that the oil spill and related response activities killed between 95,000 and 200,000 sea turtles. Lasting impacts of these losses may take time to become clear. For example, scientists do not fully understand how oil exposure affects sea turtles’ ongoing reproductive abilities. They continue to monitor sea turtle populations by counting numbers of nests, hatchlings, and adult females on beaches.

Sea turtle in water. Image credit: Texas Sea Grant/Pam Plotkin

A healthy green sea turtle swims in the Gulf of Mexico. Image credit: Texas Sea Grant/Pam Plotkin

More articles about the impacts of Deepwater Horizon on marine mammals:

 

Tara Skelton is the Oil Spill Science Outreach Team Communicator for the Mississippi-Alabama Sea Grant Consortium. The Sea Grant Oil Spill Science Outreach Program is a joint project of the four Gulf of Mexico Sea Grant College Programs, with funding from partner Gulf of Mexico Research Initiative. The team’s mission is to collect and translate the latest peer-reviewed research for those who rely on a healthy Gulf for work or recreation. To learn more about the team’s products and presentations, visit gulfseagrant.org/oilspillscience.


Leave a comment

Assessing the Impacts from Deepwater Horizon

Beach with grass.

Beach habitat was part of the Deepwater Horizon oil spill settlement. Image Credit: NOAA

The 2010 Deepwater Horizon disaster spread spilled oil deep into the ocean’s depths and along the shores of the Gulf of Mexico, compromising the complex ecosystem and local economies. The response and the natural resources damage assessment were the largest in the nation’s history.

Ecosystems are comprised of biological, physical, and chemical components, interconnected to form a community. What happens in one location has serious, cascading effects on organisms in other parts of the ecosystem. The Gulf’s coastal wetlands and estuaries support the entire Gulf ecosystem, providing food, shelter, and nursery grounds for a variety of animals. The open waters of the Gulf also provides habitat for fish, shrimp, shellfish, sea turtles, birds, and mammals.

Evaluating impacts from the spill

Considering these interdependencies during the assessment process was important. At the same time, it was impossible to test or examine every injured bird, every sickened dolphin, or every area contaminated with oil. That was cost prohibitive and scientifically impossible.

Instead, NOAA scientists evaluated representative samples of natural resources, habitats, ecological communities, ecosystem processes and linkages.

To do that, scientists made 20,000 trips to the field, to obtain 100,000 environmental samples that yielded 15 million records. This data collection and subsequent series of scientific studies formed the basis for the natural resources damage assessment that led to the largest civil settlement in federal history.

A short summary of the natural resource injuries:

Marshes injured

  • Plant cover and vegetation mass reduced along 350 to 720 miles of shoreline
  • Amphipods, periwinkles, shrimp, forage fish, red drum, fiddler crabs, insects killed

Harvestable oysters lost

  • 4 – 8.3 billion harvestable oysters lost

Birds, fish, shellfish, sea turtles, and dolphins killed

  • Between 51,000 to 84,000 birds killed
  • Between 56,000 to 166,000 small juvenile sea turtles killed
  • Up to 51% decrease in Barataria Bay dolphin population
  • An estimated 2 – 5 trillion newly hatched fish were killed

Rare corals and red crabs impacted

  • Throughout an area about 400 to 700 square miles around the wellhead

Recreational opportunities lost

  • About $527 – $859 million in lost recreation such as boating, fishing, and beach going
Top fish shows no oil bottom fish shows oil.

The top picture is a red drum control fish that was not exposed to oil, while the bottom red drum fish was exposed to Deepwater Horizon oil for 36 hours. The bottom fish developed excess fluid around the heart and other developmental deformities. This is an example of the many scientific studies conducted for the natural resources damage assessment. Image Credit: NOAA/Abt

What we shared

Those studies not only documented the injuries, but also helped the entire scientific community understand the effects of oil spills on nature and our communities. All of the scientific studies, including over 70 peer-reviewed journal articles, as well as all the data collected for the studies, are available to the public and the scientific community. Additionally, our environmental response management software allows anyone to download the data from a scientific study, and then see that data on a map.

We will be publishing new guidance documents regarding sea turtles and marine mammals by the end of 2017. These guides compile best practices and lessons learned and will expedite natural resources damage assessment procedures in the future.

Read more about Deepwater Horizon and the work of NOAA’s Office of Response and Restoration and partners in responding to the spill, documenting the environmental damage, and holding BP accountable for restoring injured resources:

 

Tom Brosnan, Lisa DiPinto, and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Gulf of Mexico Oil Spill Data: New Monitoring Updates

Man on ship with machine about to drop into ocean.

Scientists from Louisiana Universities Marine Consortium deploy a water sensor called a CTD sonde rosette to collect water samples to test for oxygen levels during the 2015 R/V Pelican’s shelf wide hypoxia cruise. (LUMCON)

By  Alexis Baldera 

The 2010 Deepwater oil disaster in the Gulf of Mexico revealed a challenge with the way scientific monitoring information is shared and stored.

At the time, the scientific records of monitoring efforts in the Gulf of Mexico were dispersed across many entities from universities, natural resource management agencies, private industries to non-governmental organizations. In most cases monitoring systems were developed independently, often narrowed to specific questions, such as how many oysters should be harvested and how many should be left in the water?

Monitoring systems are rarely coordinated across states and other agencies, and the scattered nature of these information systems makes it difficult for any one group of scientists or organizations to find and access the full expanse of data available.

To help address this issue Ocean Conservancy produced the 2015 report Charting the Gulf: Analyzing the Gaps in Long-term Monitoring of the Gulf of Mexico. The report compiles an extended inventory of nearly 700 past and existing long-term monitoring efforts in the Gulf. Ocean Conservancy’s goal was to provide scientists, academics, and restoration decision-makers with a cohesive inventory that could save time and money when planning monitoring for restoration projects or programs.

Recently, NOAA’s Office of Response and Restoration, charged with supporting science information needs during oil spills, began hosting Ocean Conservancy’s inventory of monitoring programs through NOAA’s map-based Gulf of Mexico Environmental Response Management Application (ERMA). Combining this monitoring data with ERMA is a great step towards creating sustained visibility of existing data sources in the Gulf.

“Ocean Conservancy’s gap analysis of long-term monitoring programs in the Gulf of Mexico will serve as a valuable resource for the NRDA Trustees as they plan, implement, and monitor restoration progress in the Gulf of Mexico over the next 25 years,” said Melissa Carle, NOAA Monitoring and Adaptive Management Coordinator, Deepwater Horizon Restoration Program.

The new gap analysis dataset in ERMA will allow trustees to visualize the footprint of existing monitoring programs, assisting in the identification and prioritization of gaps that impact planning restoration actions and evaluate restoration progress for the habitats and resources injured by the spill.

Graphic of coastline and the Gulf Of Mexico.

Ocean Conservancy’s gap analysis dataset in ERMA. (NOAA)

Alexis Baldera is the Staff Restoration Scientist for Ocean Conservancy Gulf Restoration Program.


Leave a comment

Bay Long Oil Spill in Louisiana

Woman looking out at water with boom floating in it.

Overseeing cleanup operations on Chenier Ronquille Island. (U.S. Coast Guard)

On September 5, 2016, a marsh excavator operated by Great Lakes Dredge and Dock Company tracked over pipeline while performing restoration activities in Bay Long, a sub-estuary of Barataria Bay, discharging approximately 5,300 gallons of crude oil into the Gulf of Mexico. The pipeline was shut in and is no longer leaking. The incident occurred at an active restoration site for the Deepwater Horizon oil spill. The cause of the incident is still under investigation.

NOAA’s Office of Response and Restoration has been providing scientific support including trajectories and fate of oil, resources at risk, information on tides and currents, and technical guidance towards the response. Other roles provided by NOAA are guidance on Shoreline Cleanup and Assessment Technique (SCAT), a systematic method for surveying an affected shoreline after an oil spill, as well as data management and updates through Environmental Response Management Application (ERMA®). OR&R’s Emergency Response Division has a team of six on site.

For more information, read the September 11, 2016 news release from the U.S. Coast Guard.


2 Comments

Abandoned Vessels of Florida’s Forgotten Coast

This is a post by NOAA Scientific Support Coordinator Adam Davis of the Office of Response and Restoration.

Derelict vessel with osprey nest on top of broken mast.

Along Florida’s Forgotten Coast, a pair of osprey had built a nest on an abandoned vessel. The U.S. Coast Guard called in NOAA for assistance as they were trying to remove fuel from that boat with minimal impact to wildlife. (NOAA)

There is a stretch of the Florida Panhandle east of the more heavily developed beach destinations of Destin and Panama City that some refer to as the “Forgotten Coast.” This area has vast tracts of pine forest including large stands of longleaf pine and savanna, towering dunes and nearly undeveloped barrier islands, seemingly endless coastal marsh, and miles and miles of winding shoreline along its expansive bays and coastal rivers.

It is no coincidence that much of the area is undeveloped; reserves, wildlife refuges, and other federal and state protected lands and waters occupy a large percentage of the area.

However, this flattened landscape of wild greens and blues is occasionally punctuated by the unnatural texture of human influence of a certain type: rusting hulls, broken masts, boats half-submerged in the muddy waters. It was one of these abandoned and decaying vessels that brought me to Florida’s Forgotten Coast.

Birds-Eye View of a Problem

The U.S. Coast Guard as well as state and local agencies and organizations have been working to address potential pollution threats from a number of abandoned and derelict boats sprinkled throughout this region. Vessels like these often still have oils and other hazardous materials on board, which can leak into the surrounding waters, posing a threat to public and environmental health and safety.

Half-sunken boat surrounded by oil containment boom.

Even a small release of marine fuel in sensitive environmental areas like this can have significant negative environmental consequences. Many abandoned vessels still have fuel and other hazardous materials on board. (NOAA)

As a Scientific Support Coordinator for NOAA’s Office of Response and Restoration, I provide assistance to the Coast Guard in their pollution response efforts. This support often involves analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment.

In this case, the Coast Guard called me with an unusual complication in their efforts: A pair of osprey had taken up residence on one of these abandoned vessels. Their nest of sticks was perched atop the ship’s mast, now bent at a precarious 45 degree angle. The Coast Guard needed to know what kind of impacts might result from assessing the vessel’s pollution potential and what might be involved in potentially moving the osprey nest, or the vessel, if needed.

As a federal agency, the Coast Guard must adhere to federal statutes that protect wildlife, such as the Endangered Species Act and the Migratory Bird Treaty Act. Essentially, these statutes require the Coast Guard (or other person or organization) to consider what effect their actions might have on protected species, in this case, osprey.

This is where we Scientific Support Coordinators often can provide some assistance.  A large part of our support in this area involves coordinating with the “trustee” agencies responsible for the stewardship of the relevant natural resources.

My challenge is evaluating the scientific and technical aspects of the planned action (disturbing the chicks and their parents or possibly moving the osprey nest in order to remove the vessel), weighing possible effects of those actions against threats posed by no action, and communicating all of that in an intelligible way to trustees, stakeholders, and the agency undertaking the action in question.

Fortunately, the pollution assessment and removal in the case of the osprey-inhabited vessel proved very straightforward and the abandoned vessels project got off to a good start.

Abandoned But Not Forgotten

Aerial view of abandoned vessels with osprey nest on mast, located in Florida waterway.

NOAA’s Adam Davis helped the U.S. Coast Guard with a project spanning more than 230 miles of Florida coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. (NOAA)

Over the course of eight weeks, I was fortunate to contribute in a number of ways to this project. For example, I joined several aerial overflights of the coast from Panama City to St. Marks, Florida, and participated in numerous boat rides throughout the Apalachicola Bay watershed to identify, assess, and craft strategies for pollution removal from abandoned vessels.

Ultimately, the project spanned more than 230 miles of coastline and resulted in the removal of hundreds of gallons of fuel and other hazardous materials from six abandoned vessels and one shoreline facility. Most of the fuel was removed from vessels located in highly sensitive and valuable habitats, such as those located along the Jackson and Brother’s Rivers.

Portions of both of these rivers are located within the Apalachicola National Estuarine Research Reserve and are designated as critical habitat for Gulf sturgeon, a federally threatened species of fish that, like salmon, migrates between rivers and the ocean.

Even a small release of marine fuel in areas like this can have significant negative environmental consequences. Impacts can be even more severe if they occur during a time when species are most vulnerable, such as when actively spawning, breeding, or nesting.  In addition, spills in these otherwise pristine, protected areas can have negative consequences for important commercial and recreational activities that rely upon the health of the ecosystem as a whole.

People on boats on a Florida coastal river.

When NOAA supports the Coast Guard with abandoned vessels work, our efforts often involve analyzing which natural resources are vulnerable to pollution and the potential fate and effects of oil or chemicals released into the environment. These Coast Guard boats are equipped to remove fuel from abandoned vessels. (NOAA)

While we’d like to be able to remove the entire vessels every time, which can be navigation hazards and create marine debris, funding options are often limited for abandoned vessels. However, the Oil Pollution Act of 1990 enables us to remove the hazardous materials on board and reduce that environmental threat.

I find working in the field directly alongside my Coast Guard colleagues to be invaluable. Inevitably, I come away from these experiences having learned a bit more and increased my appreciation for the uniqueness of both the people and the place. Hopefully, that makes me even better prepared to work with them in the future—and in the beautiful and remote wilds of the Forgotten Coast.

NOAA's Adam Davis, left, on a Coast Guard boat removing oil from a derelict vessel.Adam Davis serves as NOAA Scientific Support Coordinator for U.S. Coast Guard District 8 and NOAA’s Gulf of Mexico Disaster Response Center. He graduated from the University of Alabama at Birmingham before entering the United States Army where he served as a nuclear, biological, and chemical operations specialist. Upon completing his tour in the Army, Adam returned home and completed a second degree in environmental science at the University of West Florida. He comes with a strong background in federal emergency and disaster response and has worked on a wide range of contaminant and environmental issues. He considers himself very fortunate to be a part of NOAA and a resident of the Gulf Coast, where he and his family enjoy the great food, culture, and natural beauty of the coast.


Leave a comment

NOAA Supporting Spill Response in the Green Canyon Oil Reserve Area of the Gulf of Mexico

Vessels skim oil from the surface of the Gulf of Mexico.

Vessels conduct skimming operations, May 14, 2016, in response to an estimated 88,200 gallons of crude oil discharged from a segment of flow line at the Glider Field approximately 90 miles south of Timbalier Island, Louisiana. As of May 15, the vessels have removed a combined total of more than 51,000 gallons of oily-water mixture since the discharge on May 12, 2016. (U.S. Coast Guard)

NOAA’s Office of Response and Restoration is supporting the U.S. Coast Guard response to an oil spill in the Green Canyon oil reserve area in the Gulf of Mexico. We are providing oil spill trajectory analysis and information on natural resources potentially at risk from the oil. The NOAA Scientific Support Coordinator has been on-scene.

The spill occurred at approximately 11:00 a.m. on May 12, 2016 when 2,100 barrels (88,200 gallons) of oil was discharged from a Shell subsea well-head flow line at the Glider Field. Since then, the source has been secured and the pipeline is no longer leaking. The U.S. Coast Guard reports that the spill happened approximately 90 miles south of Timbalier Island, Louisiana.

We are providing scientific support, including consulting with natural resource trustees and environmental compliance requirements, identifying natural resources at risk, coordinating overflight reports, modeling the spill’s trajectory, and coordinating spatial data needs, such as displaying response data in a “common operational picture.” The reported oil trajectory is in a westerly direction with no expected shoreline impact at this time.

For more details, refer to the May 15 U.S. Coast Guard press release or the May 15 Shell Gulf of Mexico Response press release.