NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Protecting the Great Lakes After a Coal Ship Hits Ground in Lake Erie

The coal ship CSL Niagara got stuck in Lake Erie's soft, muddy bottom at the entrance to Sandusky Bay in November 2013.

The coal ship CSL Niagara got stuck in Lake Erie’s soft, muddy bottom at the entrance to Sandusky Bay in November 2013. (U.S. Coast Guard)

In the course of a year, from October 2012 to October 2013, the Emergency Response Division of NOAA’s Office of Response and Restoration responded to 138 oil spills, chemical accidents, and various other threats to coastal environments and communities. Many of these responses required considerable time from the scientific team to estimate where spills might spread, analyze chemical hazards, and assess whether natural resources are at risk. Sometimes, however, we’re called into some incidents that end well, with minimum help needed on our part and no oil spilled.

Last November, LCDR John Lomnicky received a call from the U.S. Coast Guard with an example of an accident that had the potential to be much worse. LCDR Lomnicky is our Scientific Support Coordinator for the Great Lakes region and is based in Cleveland, Ohio.

When Staying Grounded Is a Bad Thing

On November 17, just after 10:00 in the morning, the vessel master of the CSL Niagara reported to the U.S. Coast Guard that his ship had run aground while leaving Sandusky Bay through Moseley Channel to Lake Erie. Aboard the ship were 33,000 metric tons (36,376 U.S. tons) of coal, headed to Hamilton, Ontario, and about 193 metric tons of intermediate fuel oil (a blend of gasoil and heavy fuel oil) and marine diesel. The concern in a situation like this would be that the grounded ship might leak oil. Its stern was stuck in the soft mud at the bottom of Lake Erie. At the time, the vessel master reported there were no injuries, flooding, or visible pollution.

This ship, the CSL Niagara, has a long history of transporting coal in Lake Erie. Launched in April of 1972 for Canada Steamship Lines, Ltd., the new ship was 730 feet long and even then was carrying coal to Hamilton, Ontario. During over 40 years of sailing in the Great Lakes, the Niagara has also carried cargos of grain, coke, stone, and iron ore.

NOAA chart of Lake Erie.

Lake Erie has an average depth of 62 feet, but its western basin, where the CSL Niagara grounded, averages only 24 feet deep. (NOAA Chart)

Even though the vessel hadn’t released any oil, the Coast Guard Marine Safety Unit, who had responders at the scene very shortly after the accident, put in a call to the Office of Response and Restoration’s LCDR Lomnicky for scientific support. As a precaution, they requested that we model the trajectory of oil in a worst case scenario if 145 metric tons of intermediate fuel oil and 48 metric tons of diesel fuel were released all at once into the water. We also provided a prediction of when the lake’s lower-than-usual water level would return to normal so a salvage team could refloat the stuck vessel. After gathering all of this information for the Coast Guard, LCDR Lomnicky continued to stand by for further requests.

In the hours that followed the ship’s grounding, the winds grew stronger, hampering efforts to free the vessel. The wind was causing the water level in the lake to drop and NOAA’s National Weather Service in Detroit predicted a 7.5 foot drop in levels for western Lake Erie. By 8:30 p.m., with 30 knot winds in two-to-three foot seas, the three tugboats contracted by the ship’s owner to dislodge the Niagara were making some progress. By midnight, however, with weather conditions worsening, salvage operations were suspended and scheduled to resume at first light.

But the next morning, November 18, the water level had dropped another two feet, and the three tugs still had had no luck freeing the stern of the Niagara from the lake bottom. The ship’s owner was now working on plans for lightering (removing the fuel) and containing any potentially spilled oil. Fortunately, there were still no reports of damage to the vessel or oil discharged into the water. The ship was just stuck.

By 4:00 that afternoon the water conditions had improved and another attempt to free the vessel was planned. Also, a combined tug-barge was en route should lightering become necessary.

Later that evening, shortly after 10:00, the ship was pulled free by two of the tugs and was back on its way early the next morning.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA's online mapping tool for coastal pollution cleanup, restoration, and response.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA’s online mapping tool for coastal pollution cleanup, restoration, and response. (NOAA)

Keeping the Great Lakes Great

Lake Erie is the shallowest of the five Great Lakes, with an average depth of 62 feet. Yet its western basin, where this ship grounding occurred, has an average depth of only 24 feet. The lake is an important source of commerce for both the U.S and Canada, who depend on it for shipping, fishing, and hydroelectric power. These industries place environmental pressure on the lake’s ecosystems, which  are also threatened by urban and agricultural runoff.

Happily, quick responders, sound information, and a break in the weather may have prevented this incident from becoming something much worse. A spill into Lake Erie could be devastating, especially considering its shallow waters, but this time, like many other times along the nation’s coasts, an oil spill was avoided.

Didn’t know that NOAA works in the Great Lakes? Nicknamed “the third coast,” the Great Lakes are a major U.S. water body, with a shoreline that stretches longer than the East Coast and Gulf Coast combined. Learn more about the Great Lakes and NOAA’s efforts there in this Great Lakes regional snapshot.


8 Comments

Investigating Environmental Impacts: Oil on the Kalamazoo River

Posted sign closing river activity due to oil spill response.

The Kalamazoo River has been closed to the public since the spill in 2010. We’re examining how this has affected public recreation and tribal cultural uses. (Terry Heatlie, NOAA)

In late summer of 2010, while the nation was fixated on the massive oil spill in the Gulf of Mexico, an underground pipeline in Michigan also began gushing oil. My job has been to help investigate the environmental damage that spill caused when the oil flowed into the Kalamazoo River.

The Situation
More than 800,000 gallons of crude oil** poured out of the leaking pipeline before it was eventually shut off. It oozed through the soft, wet ground just outside of Marshall, Mich., before washing into the Kalamazoo River, one of the largest rivers in southern Michigan.

I was at a meeting in Milwaukee with my suitcase full of sandals and skirts — not exactly dressed for an oil spill — when I got called to the scene. I drove nearly nonstop to Marshall, with only a quick detour in Indiana to buy steel-toed boots and work pants.

The Challenges
When I arrived, the other scientists and I made plans to collect data on the oil’s damage. Heavy rains had caused the river to flood over its banks, and as the oil flowed approximately forty miles* down the Kalamazoo, it was also carried up onto the banks and into trees. As the flood waters receded, oil was left on overhanging branches and in floodplains.

As the flood water receded, oil was left behind on river vegetation and overhanging tree branches, as well as in yards and forested floodplains. Yellow containment boom is in the foreground. (Gene Suuppi, State of Michigan)

The river’s floodplains, full of forests and wetlands, are also home to sensitive seasonal ponds, which provide valuable habitat for fish and macroinvertebrates (aquatic “bugs” at the base of the food chain). Therefore, we needed to find out: how far did the oil make it into the floodplain, what did it contact while there, and how much oil was left?

The smell of oil was sickeningly strong at first. Residents evacuated the houses nearest to the leak, and workers within half a mile of the pipeline break had to wear respirators to protect them from inhaling fumes. Even a dozen miles downstream, I could smell the oil and feel the fumes irritating my eyes. These fumes were the light components of the oil evaporating into the air. The heavy components of the oil were left behind on the banks or gradually sank to the bottom of the river.

The sunken oil has proven difficult to clean up. This winter, spill responders have been working to quantify how much sunken oil is left and to develop and test techniques for cleaning it up.

The Science
Along with my team from NOAA’s Office of Response and Restoration, the U. S. Fish and Wildlife Service, the State of Michigan, and the Huron Band and Gun Lake Tribe of the Potawatomi joined together as trustees to assess damages that the spill caused to natural resources.

We’ve conducted a variety of studies to collect information on the impacts of the spill and repeated some of the studies to see how the environment is recovering. Now we’re gathering all this data for the official damage assessment. We’ve examined samples of fish, mussels, water, and sediments for evidence of oil-related chemicals. We’ve collected observations of oiled vegetation and records of the number and condition of animals brought to the wildlife rehab center.

Talmadge Creek cleanup crews on Aug 6, 2010.

Cleanup crews place absorbent pads to sop up oil at Talmadge Creek, near the source of the spill, on Aug 6, 2010. We also take into account the effect cleanup has on the environment. (Chuck Getter)

Unfortunately, cleanup-related activities have an environmental impact too. For example, extra boat traffic on the river during cleanup led to some riverbank erosion and crushed freshwater mussels. Our studies include these factors too. We’ll also look into the effect the spill had on public recreation (the river has been closed to the public since the spill) and on tribal cultural uses.

What Next?
We and the other trustees will seek out restoration projects that address the impacts caused by the spill, being careful to balance the projects with the results of our studies. We’ll take project ideas from the public and from watershed organizations to make sure that we choose projects that fit in well with other restoration work being done across the broader Kalamazoo River watershed.

Enbridge Energy, as the owner of the pipeline, will have the option to implement the projects themselves with oversight from us trustees, or could pay for the cost of these projects as part of a larger legal settlement.

Stay tuned and we’ll keep you updated as this story unfolds.

*Correction: This originally stated that the oil flowed thirty miles down the Kalamazoo River.

**This was later discovered to be an oil sands (or tar sands) product.


4 Comments

Remembering the Wreck of the Edmund Fitzgerald

S/S Edmund Fitzgerald.

The S/S Edmund Fitzgerald. Credit: NOAA.

Today, November 10, is the anniversary of the wreck of the S/S Edmund Fitzgerald, the largest shipwreck in the Great Lakes. The ship and entire crew of 29 men were lost in a storm on Lake Superior on November 10, 1975. I remember listening to Gordon Lightfoot’s 1976 hit song about the wreck, and it still catches my attention when I hear it playing.

The sinking of the Edmund Fitzgerald, a ship measuring 729 feet long and 26,000 tons, is one of the most well-known disasters in the history of Great Lakes shipping. The ship’s remains lie just over the border in Canadian waters at a depth of 530 feet.

Over the years many ships have sunk in the Great Lakes, and the region is home to a number of maritime museums. NOAA’s Thunder Bay National Marine Sanctuary in Lake Huron helps preserve and protect the maritime history of the lakes and is home to dozens of shipwrecks, some of which you can now explore online in 3-D.

My connection to the Edmund Fitzgerald comes from my work on historic ships that may still pose a threat of oil pollution. The ship was designed to carry taconite (iron ore) pellets, but it carried fuel oil for its engines.

Based on the condition and damage of the ship’s hull and the large heaps of taconite around the wreckage, it is unlikely to contain much oil, but we have the ship in our database of potentially polluting wrecks.

The Edmund Fitzgerald is a reminder that our maritime history is not limited to the marine waters. The Great Lakes are very much a coastline (and shipping hub) of the United States, and just like along our saltwater shorelines, NOAA is active in charting, weather, research, and coastal management there as well.