NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Below Zero: Partnership between the Coast Guard and NOAA

Red and white large ship on ocean with ice.

Coast Guard icebreaker Cutter Healy perches next to a shallow melt pond on the ice in the Chukchi Sea, north, of the Arctic Circle July 20, 2016. During Cutter Healy’s first of three missions during their West Arctic Summer Deployment, a team of 46 researchers from the University of Alaska-Anchorage and the National Oceanic and Atmospheric Administration (NOAA) studied the Chukchi Sea ecosystem. U.S. Coast Guard photo by Ensign Brian P. Hagerty/CGC Healy

By Lt. Cmdr. Morgan Roper, U.S. Coast Guard

For more than 200 years, the U.S. Coast Guard and National Oceanic and Atmospheric Administration have partnered together in maritime resiliency, environmental sustainability and scientific research. In fact, a variety of NOAA projects encompassed over 50 percent of Coast Guard Cutter Healy operations for 2016, including a Coast Guard and NOAA collaborative effort to chart the extended continental shelf and survey marine habitats and biodiversity. Today, more than ever in the past, the Coast Guard and NOAA are working together on numerous levels of profession in the U.S. Arctic Region, which happens to be Coast Guard Alaska‘s northern area of responsibility, or AOR. From daily sector operations and district-led full scale exercises to partnering on the national level in workgroups under the Arctic Council, Coast Guard and NOAA have a strong working relationship supporting and representing the U.S. in cold weather operations and Arctic initiatives.

In a recent search and rescue case off the coast of the Pribilof Islands, where the fishing vessel Destination sank suddenly in the frigid seas, NOAA’s National Weather Service (NWS) Regional Operations Center was the Coast Guard’s ‘first call’ to get current weather information in support of search plan development. NOAA and NWS also played a role in setting the stage for the potential cause of the incident by providing sea state information and the dangerous effects of sea spray icing on vessels. For SAR planning and other mission support, NOAA’s NWS Ice Program also works with the Port of Anchorage on a daily basis with regards to ice conditions all along the coastline of Alaska, and provides bi-weekly regional weather briefs for the district and sector command centers; they are part of the ‘team’ when it comes to response planning and preparation. NOAA and the Coast Guard continue to work diligently together to ensure all possible capabilities from the U.S. Government enterprise are available to support homeland security and Arctic domain awareness on a broader, high level position.

On a national level, personnel from Coast Guard and NOAA headquarters partner together as members of the Arctic Council’s Emergency Prevention Preparedness and Response  working group. This group addresses various aspects of prevention, preparedness and response to environmental emergencies in the Arctic. The Coast Guard and NOAA jointly play a large role in ensuring operational support and training mechanisms are in place for vital response capacities and capabilities.

Man on ship deck launching mini aircraft.

National Oceanographic and Atmospheric Administration scientist Kevin Vollbrecht launches a Puma unmanned aerial vehicle from the bow of the Coast Guard Cutter Healy July 11, 2015. The Puma is being tested for flight and search and rescue capabilities. (U.S. Coast Guard photo)

The Coast Guard also fully employs the use of NOAA’s Environmental Response Management Application (ERMA) in the Arctic. ERMA is NOAA’s online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a common operational picture for environmental responders and decision makers to use during incidents. Also used for full scale exercises, in 2016, the Healy employed ERMA onboard to help provide a centralized display of response assets, weather data and other environmental conditions for the incident response coordinators. In the same exercise, NOAA tested unmanned aerial systems for use with Coast Guard operations in the Arctic. Furthermore, NOAA and the Coast Guard are working together with indigenous communities to learn how ERMA can best be used to protect the natural resources and unique lifestyle of the region. ERMA has been in use by the Coast Guard in other major response events, such as Deepwater Horizon; where it was the primary tool providing Coast Guard and other support agency leadership a real-time picture of on-scene environmental information.

Among a number of future projects, the Coast Guard and NOAA are developing a focused approach on how to best handle the damage of wildlife in the areas of subsistence living in the northern Arctic region of Alaska during and following a spill event. The Coast Guard and NOAA are also collaborating on how to better integrate environmental information and intelligence to proactively support Arctic marine traffic safety as a whole.

The partnership between Coast Guard and NOAA continues to thrive and grow stronger as maritime and environmental conditions, caused by both natural and man-made effects, shift and change over time.

 

This story was first posted Feb. 17, 2017, on Coast Guard Compass, official blog of the U.S. Coast Guard as part of  a series about all things cold weather – USCG missions, operations, and safety guidance. Follow the Coast Guard on FacebookTwitter and Instagram, and look for more #belowzero stories, images, and tips!


Leave a comment

Gulf of Mexico Oil Spill Data: New Monitoring Updates

Man on ship with machine about to drop into ocean.

Scientists from Louisiana Universities Marine Consortium deploy a water sensor called a CTD sonde rosette to collect water samples to test for oxygen levels during the 2015 R/V Pelican’s shelf wide hypoxia cruise. (LUMCON)

By  Alexis Baldera 

The 2010 Deepwater oil disaster in the Gulf of Mexico revealed a challenge with the way scientific monitoring information is shared and stored.

At the time, the scientific records of monitoring efforts in the Gulf of Mexico were dispersed across many entities from universities, natural resource management agencies, private industries to non-governmental organizations. In most cases monitoring systems were developed independently, often narrowed to specific questions, such as how many oysters should be harvested and how many should be left in the water?

Monitoring systems are rarely coordinated across states and other agencies, and the scattered nature of these information systems makes it difficult for any one group of scientists or organizations to find and access the full expanse of data available.

To help address this issue Ocean Conservancy produced the 2015 report Charting the Gulf: Analyzing the Gaps in Long-term Monitoring of the Gulf of Mexico. The report compiles an extended inventory of nearly 700 past and existing long-term monitoring efforts in the Gulf. Ocean Conservancy’s goal was to provide scientists, academics, and restoration decision-makers with a cohesive inventory that could save time and money when planning monitoring for restoration projects or programs.

Recently, NOAA’s Office of Response and Restoration, charged with supporting science information needs during oil spills, began hosting Ocean Conservancy’s inventory of monitoring programs through NOAA’s map-based Gulf of Mexico Environmental Response Management Application (ERMA). Combining this monitoring data with ERMA is a great step towards creating sustained visibility of existing data sources in the Gulf.

“Ocean Conservancy’s gap analysis of long-term monitoring programs in the Gulf of Mexico will serve as a valuable resource for the NRDA Trustees as they plan, implement, and monitor restoration progress in the Gulf of Mexico over the next 25 years,” said Melissa Carle, NOAA Monitoring and Adaptive Management Coordinator, Deepwater Horizon Restoration Program.

The new gap analysis dataset in ERMA will allow trustees to visualize the footprint of existing monitoring programs, assisting in the identification and prioritization of gaps that impact planning restoration actions and evaluate restoration progress for the habitats and resources injured by the spill.

Graphic of coastline and the Gulf Of Mexico.

Ocean Conservancy’s gap analysis dataset in ERMA. (NOAA)

Alexis Baldera is the Staff Restoration Scientist for Ocean Conservancy Gulf Restoration Program.


Leave a comment

Bay Long Oil Spill in Louisiana

Woman looking out at water with boom floating in it.

Overseeing cleanup operations on Chenier Ronquille Island. (U.S. Coast Guard)

On September 5, 2016, a marsh excavator operated by Great Lakes Dredge and Dock Company tracked over pipeline while performing restoration activities in Bay Long, a sub-estuary of Barataria Bay, discharging approximately 5,300 gallons of crude oil into the Gulf of Mexico. The pipeline was shut in and is no longer leaking. The incident occurred at an active restoration site for the Deepwater Horizon oil spill. The cause of the incident is still under investigation.

NOAA’s Office of Response and Restoration has been providing scientific support including trajectories and fate of oil, resources at risk, information on tides and currents, and technical guidance towards the response. Other roles provided by NOAA are guidance on Shoreline Cleanup and Assessment Technique (SCAT), a systematic method for surveying an affected shoreline after an oil spill, as well as data management and updates through Environmental Response Management Application (ERMA®). OR&R’s Emergency Response Division has a team of six on site.

For more information, read the September 11, 2016 news release from the U.S. Coast Guard.


Leave a comment

Using NOAA Tools to Help Deal with the Sinking Problem of Wrecked and Abandoned Ships

Workers direct the lifting of a rusted boat from a waterway onto a barge.

Clearing a derelict vessel from the Hylebos Waterway in Tacoma, Washington. NOAA has created several tools and resources for mapping, tracking, and dealing with shipwrecks and abandoned vessels. (Washington Department of Natural Resources/ Tammy Robbins) Used under Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic license.

Walk along a waterfront in the United States and wherever you find boats moored, you won’t be hard pressed to find one that has been neglected or abandoned to the point of rusting, leaking, or even sinking. It’s a sprawling and messy issue, one that is hard to fix. When you consider the thousands of shipwrecks strewn about U.S. waters, the problem grows even larger.

How do these vessels end up like this in the first place? Old ships, barges, and recreational vessels end up along coastal waters for a number of reasons: they were destroyed in wartime, grounded or sunk by accident or storm, or just worn out and left to decay. By many estimates shipping vessels have a (very approximate) thirty-year lifetime with normal wear and tear. Vessels, both large and small, may be too expensive for the owner to repair, salvage, or even scrap.

So, wrecked, abandoned, and derelict ships can be found, both invisible and in plain sight, in most of our marine environments, from sandy beaches and busy harbors to the deep ocean floor.

As we’ve discussed before, these vessels can be a serious problem for both the marine environment and economy. While no single comprehensive database exists for all wrecked, abandoned, and derelict vessels (and if it did, it would be very difficult to keep up-to-date), efforts are underway to consolidate existing information in various databases to get a larger view of the problem.

NOAA has created several of these databases and resources, each created for specific needs, which are used to map and track shipwrecks and abandoned vessels. These efforts won’t solve the whole issue, but they are an important step along that path.

Solution to Pollution

Black and white photo of a steam ship half sinking in the Great Lakes.

The S/S America sank after hitting rocks in Lake Superior in 1928, but the wreck was found close to the water surface in 1970. This ship has become the most visited wreck in the Great Lakes, where divers can still see a Model-T Ford on board. (Public domain)

NOAA’s Remediation of Underwater Legacy Environmental Threats (RULET) project identifies the location and nature of potential sources of oil pollution from sunken vessels. These include vessels sunk during past wars, many of which are also grave sites and now designated as national historic sites. The focus of RULET sites are wrecks with continued potential to leak pollutants.

Many of these wrecks begin to leak years, even decades, after they have sunk. An example of such a wreck is Barge Argo, recently rediscovered and found to be leaking as it lay 40 feet under the surface of Lake Erie. The barge was carrying over 4,500 barrels of crude oil and the chemical benzol when it sank in 1937. It had been listed in the NOAA RULET database since 2013. U.S. Coast Guard crews, with support from NOAA’s Office of Response and Restoration, are currently working on a way to safely remove the leaking fuel and cargo.

As in the Barge Argo case, the RULET database is especially useful for identifying the sources of “mystery sheens” —slicks of oil or chemicals that are spotted on the surface of the water and don’t have a clear origin. NOAA’s Office of National Marine Sanctuaries and Office of Response and Restoration jointly manage the RULET database.

Information in RULET is culled from a larger, internal NOAA Sanctuaries database called Resources and Undersea Threats (RUST). RUST lists about 30,000 sites of sunken objects, of which about 20,000 are shipwrecks. Other sites represent munitions dumpsites, navigational obstructions, underwater archaeological sites, and other underwater resources.

Avoiding Future Wrecks

The NOAA Office of Coast Survey’s Wrecks and Obstructions Database contains information on submerged wrecks and obstructions identified within U.S. maritime boundaries, with a focus on hazards to navigation. Information for the database is sourced from the NOAA Electronic Navigational Charts (ENC®) and Automated Wrecks and Obstructions Information System (AWOIS).

The database contains information on identified submerged wrecks and obstructions within the U.S. maritime boundaries, including position (latitude and longitude), and, where available, a brief description and attribution.

Head to the Hub

Recently, the NOAA Marine Debris Program developed and launched the Abandoned and Derelict Vessels (ADV) InfoHub to provide a centralized source of information on cast-off vessels that contribute to the national problem of marine debris. Hosted on the NOAA Marine Debris Program website, the ADV InfoHub will allow users to find abandoned and derelict vessel publications, information on funding to remove them, case studies, current projects, related stories, and FAQs.

Each coastal state (including states bordering the Great Lakes) will have a dedicated page where users can find information on state-specific abandoned and derelict vessel programs, legislation, and funding as well as links to case studies from that particular state and relevant publications and legal reviews. Each state page will also provide the name of the department within that state government that handles abandoned and derelict vessel issues along with contact information.

Power Display

In select parts of the country, the Office of Response and Restoration is now using its Environmental Response Management Application (ERMA®) to map the locations of and key information for abandoned and derelict vessels. ERMA is our online mapping tool that integrates data, such as ship locations, shoreline types, and environmental sensitivity, in a centralized format. Here, we use it to show abandoned and derelict vessels within the context of related environmental information displayed on a Geographic Information System (GIS) map. In Washington’s Puget Sound, for example, the U.S. Coast Guard and Washington Department of Natural Resources can use this information in ERMA to help prioritize removing the worst offenders and raise awareness about the issue.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

Now part of both Pacific Northwest ERMA and Southwest ERMA (coastal California), our office highlighted ERMA at a May 2015 NOAA Marine Debris Program workshop for data managers. This meeting of representatives from 15 states, four federal agencies, and Canada showcased ERMA as an efficient digital platform for displaying abandoned vessel information in a more comprehensive picture at a regional level.

Once again, removing abandoned vessels or reducing their impacts can be very difficult and costly. But we have been seeing more and more signs of progress in recent years, which requires an increasing amount of collaboration among local, state, and federal agencies and education among the public. By providing more detailed and comprehensive information, NOAA is hoping to help resource managers prioritize and make more informed decisions on how to address the various threats these vessels pose to our coasts.

The Office of Response and Restoration’s Doug Helton also contributed to this post.

Photo of derelict vessel used under Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic license.


Leave a comment

NOAA’s Online Mapping Tool ERMA Opens up Environmental Disaster Data to the Public

Six men looking at a map with a monitor in the background.

Members of the U.S. Coast Guard using ERMA during the response to Hurricane Isaac in 2012. (NOAA)

This is a post by the NOAA Office of Response and Restoration’s Jay Coady, Geographic Information Systems Specialist.

—-

March 15-21, 2015 is Sunshine Week, an “annual nationwide celebration of access to public information and what it means for you and your community.” Sunshine Week is focused on the idea that open government is good government. We’re highlighting NOAA’s Environmental Response Management Application (ERMA) as part of our efforts to provide public access to government data during oil spills and other environmental disasters.    

Providing access to data is a challenging task during natural disasters and oil spill responses—which are hectic enough situations on their own. Following one of these incidents, a vast amount of data is collected and can accumulate quickly. Without proper data management standards in place, it can take a lot of time and effort to ensure that data are correct, complete, and in a useful form that has some kind of meaning to people. Furthermore, as technology advances, responders, decision makers, and the public expect quick and easy access to data.

NOAA’s Environmental Response Management Application (ERMA®) is a web-based mapping application that pulls in and displays both static and real-time data, such as ship locations, weather, and ocean currents. Following incidents including the 2010 Deepwater Horizon oil spill and Hurricane Sandy in 2012, this online tool has aided in the quick display of and access to data not only for responders working to protect coastal communities but also the public.

From oil spill response to restoration activities, ERMA plays an integral part in environmental data dissemination. ERMA reaches a diverse group of users and maintains a wide range of data through a number of partnerships across federal agencies, states, universities, and nations.

Because it is accessible through a web browser, ERMA can quickly communicate data between people across the country working on the same incident. At the same time, ERMA maintains a public-facing side which allows anyone to access publically available data for that incident.

ERMA in the Spotlight

During the Deepwater Horizon oil spill in the Gulf of Mexico, ERMA was designated as the “common operational picture” for the federal spill response. That meant ERMA displayed response-related activities and provided a consistent visualization for everyone involved—which added up to thousands of people.

Screen grab of ERMA map.

ERMA map showing areas of dispersant application during the response to the Deepwater Horizon oil spill in 2010. (NOAA)

To date, the ERMA site dedicated solely to the Deepwater Horizon spill contains over 1,500 data layers that are available to the public. Data in ERMA are displayed in layers, each of which is a single set of data. An example of a data layer is the cumulative oil footprint of the spill. This single data layer shows, added together, the various parts of the ocean surface the oil spill affected at different times over the entire course of the spill, as measured by satellite data. Another example is the aerial dispersant application data sets that are grouped by day into a single data layer and show the locations of chemical dispersant that were applied to oil slicks in 2010.

Even today, ERMA remains an active resource during the Natural Resource Damage Assessment process, which evaluates environmental harm from the oil spill and response, and NOAA releases data related to these efforts to the public as they become available. ERMA continues to be one of the primary ways that NOAA shares data for this spill with the public.

ERMA Across America

While the Deepwater Horizon oil spill may be one ERMA’s biggest success stories, NOAA has created 10 other ERMA sites customized for various U.S. regions. They continue to provide data related to environmental response, cleanup, and restoration activities across the nation’s coasts and Great Lakes. These 10 regional ERMA sites together contain over 5,000 publicly available data layers, ranging from data on contaminants and environmentally sensitive resources to real-time weather conditions.

For example, in 2012, NOAA used Atlantic ERMA to assist the U.S. Coast Guard, Environmental Protection Agency, and state agencies in responding to pollution in the wake of Hurricane Sandy. Weather data were displayed in near real time as the storm approached the East Coast, and response activities were tracked in ERMA. The ERMA interface was able to provide publically available data, including satellite and aerial imagery, storm inundation patterns, and documented storm-related damages. You can also take a look at a gallery of before-and-after photos from the Sandy response, as viewed through Atlantic ERMA.

Screen grab of an ERMA map.

An ERMA map showing estimated storm surge heights in the Connecticut, New York and New Jersey areas during Hurricane Sandy. (NOAA)

In addition, the ERMA team partnered with NOAA’s Marine Debris Program to track Sandy-related debris, in coordination with state and local partners. All of those data are available in Atlantic ERMA.

Looking to the north, ERMA continues to be an active tool in Arctic oil spill response planning. For the past two years, members of the ERMA team have provided mapping support using Arctic ERMA during the U.S. Coast Guard’s Arctic Technology Evaluation exercises, which took place at the edge of the sea ice north of Barrow, Alaska. During these exercises, the crew and researchers aboard a Coast Guard icebreaker tested potential technologies for use in Arctic oil spill response, such as unmanned aircraft systems. You can find the distributions of sensitive Alaskan bird populations, sea ice conditions, shipping routes, and pictures related to these Arctic exercises, as well as many more data sets, in Arctic ERMA.

Screen grab of an Arctic ERMA map.

ERMA is an active tool in Arctic oil spill response planning. (NOAA)

To learn more about the online mapping tool ERMA, visit http://response.restoration.noaa.gov/erma.

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch and is based in Charleston, South Carolina. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy.


Leave a comment

When Planning for Disasters, an Effort to Combine Environmental and Human Health Data

Two men clean up oil on a beach.

Workers clean oil from a beach in Louisiana following the 2010 Deepwater Horizon spill. (NOAA)

Immediately following the Deepwater Horizon oil spill of 2010, there was a high demand for government agencies, including NOAA, to provide public data related to the spill very quickly. Because of the far-reaching effects of the spill on living things, those demands included data on human health as well as the environment and cleanup.

In mid-September of 2014, a group of scientists including social and public health experts, biologists, oceanographers, chemists, atmospheric scientists, and data management experts convened in Shepherdstown, West Virginia, to discuss ways they could better integrate their respective environmental and health data during disasters. The goal was to figure out how to bring together these usually quite separate types of data and then share them with the public during future disasters, such as oils spills, hurricanes, tornadoes, and floods.

The Deepwater Horizon spill experience has shown government agencies that there are monitoring opportunities which, if taken, could provide valuable data on both the environment and, for example, the workers that are involved in the cleanup. Looking back, it was discovered that at the same time that “vessels of opportunity” were out in the Gulf of Mexico assisting with the spill response and collecting data on environmental conditions, the workers on those vessels could have been identified and monitored for future health conditions, providing pertinent data to health agencies.

A lot of environmental response data already are contained in NOAA’s online mapping tool, the Environmental Response Management Application (ERMA®), such as the oil’s location on the water surface and on beaches throughout the Deepwater Horizon spill, chemicals found in sediment and animal tissue samples, and areas of dispersant use. ERMA also pulls together in a centralized format and displays Environmental Sensitivity Index data, which include vulnerable shoreline, biological, and human use resources present in coastal areas; ship locations; weather; and ocean currents. Study plans developed to assess the environmental impacts of the spill for the Natural Resource Damage Assessment and the resulting data collected can be found at www.gulfspillrestoration.noaa.gov/oil-spill/gulf-spill-data.

Screen shot of ERMA mapping program showing Gulf of Mexico with Deepwater Horizon oil spill data.

ERMA Deepwater Gulf Response contains a wide array of publicly available data related to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Here, you can see cumulative levels of oiling on the ocean surface throughout the spill, shorelines affected, and the location of the damaged wellhead. (NOAA)

Health agencies, on the other hand, are interested in data on people’s exposure to oil and dispersants, effects of in situ burning on air quality, and heat stress in regard to worker health. They need information on both long-term and short-term health risks so that they can determine if impacted areas are safe for the communities. Ideally, data such as what are found in ERMA could be imported into health agencies’ data management systems which contain human impact data, creating a more complete picture.

Putting out the combined information to the public quickly and transparently will promote a more accurate representation of a disaster’s aftermath and associated risks to both people and environment.

Funded by NOAA’s Gulf of Mexico Disaster Response Center and facilitated by the University of New Hampshire’s Coastal Response Research Center, this workshop sparked ideas for better and more efficient collaboration between agencies dealing with environmental and human health data. By setting up integrated systems now, we will be better prepared to respond to and learn from man-made and natural disasters in the future. As a result of this workshop, participants formed an ongoing working group to move some of the best practices forward. More information can be found at crrc.unh.edu/workshops/EDDM.

Dr. Amy Merten, of OR&R’s Assessment and Restoration Division co-authored this blog.


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

View more photos from this mission to the edge of Arctic sea ice.

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during Arctic Shield’s Technology Evaluations and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013’s Technology Evaluation, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the evaluation. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.