NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

How Does NOAA Model Oil Spills?

Dark oil drifts near the populated shores of Berkeley and Emerville, California.

After the cargo ship M/V Cosco Busan struck the San Francisco-Oakland Bay Bridge in 2007, NOAA oceanographers modeled how wind, waves, tides, and weather would carry the ship’s fuel oil across San Francisco Bay. Here, dark oil drifts near the shores of Berkeley and Emerville, California, on November 9, 2007. (NOAA)

One foggy morning in 2007, a cargo ship was gliding across the gray waters of San Francisco Bay when it ran into trouble, quite literally. This ship, the M/V Cosco Busan, struck the Bay Bridge, tearing a hundred-foot-long gash in its hull and releasing 53,000 gallons of thick, sticky fuel oil into the bay.

When such an oil spill, or even the threat of a spill, happens in coastal waters, the U.S. Coast Guard asks the oceanographers at NOAA’s Office of Response and Restoration for an oil spill trajectory.

Watch as NOAA’s Ocean Service breaks down what an oil spill trajectory is in a one-minute video, giving a peek at how we model the oil’s path during a spill.

Using a specialized NOAA computer model, called GNOME, our oceanographers forecast the movement of spilled oil on the water surface. With the help of data for winds, tides, weather, and ocean currents, they model where the oil is most likely to travel and how quickly it may come ashore or threaten vulnerable coastal resources, such as endangered seabirds or a busy shipping lane.

During the Deepwater Horizon oil spill, we produced dozens of oil spill trajectory maps, starting on April 21 and ending August 23, 2010, when aerial surveys and satellite analyses eventually showed no recoverable oil in the spill area. You can download the trajectory maps from that spill.

Swirls of oil on the surface of San Francisco Bay west of the Golden Gate Bridge.

Specially trained observers fly over oil spills to gather information that is fed back into NOAA’s trajectory model to improve the next forecast of where the oil is going. (NOAA)

Learn more about how we model and respond to oil spills:

Attempting to Answer One Question Over and Over Again: Where Will the Oil Go?

“Over the duration of a typical spill, we’ll revise and reissue our forecast maps on a daily basis. These maps include our best prediction of where the oil might go and the regions of highest oil coverage, as well as what is known as a “confidence boundary.” This is a line encircling not just our best predictions for oil coverage but also a broader area on the map reflecting the full possible range in our forecasts [PDF].

Our oceanographers include this confidence boundary on the forecast maps to indicate that there is a chance that oil could be located anywhere inside its borders, depending on actual conditions for wind, weather, and currents.”

A Bird’s Eye View: Looking for Oil Spills from the Sky

“Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water … Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.”

Five Key Questions NOAA Scientists Ask During Oil Spills

“Responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.”


1 Comment

Looking Back: Six Years Since Deepwater

beach-grasses (4)Wednesday, April 20, is the six-year anniversary of the blowout on the Deepwater Horizon oil rig in the Gulf of Mexico.  That terrible incident was the start of a three month-long oil spill that spilled millions of gallons per day until the well was capped on July 15, 2010.    The cleanup took years to complete, the natural resource damage assessment was just finalized this spring, and restoration activities will take decades to complete.  Many long-term research projects are underway and we are still learning about the effects of the spill on the environmental and the coastal communities of the Gulf of Mexico.

On April 4, 2016, the court approved a settlement with BP for natural resource injuries stemming from the Deepwater Horizon oil spill. This settlement concludes the largest natural resource damage assessment ever undertaken. It is safe to say that scientists will be publishing papers and results for decades.  For many of the people involved, the Deepwater Horizon oil spill is considered THE SPILL, the same way the generation of scientists that worked on the Exxon Valdez Spill in Alaska almost 30 years ago consider that event.  We even keep track of events in a rough vernacular based on those incidents.  Post-Deepwater, or Pre-OPA (the Oil Pollution Act, passed in 1990, the summer after the Exxon Valdez spill).  But while those spills generate most of the publicity, policy interest, and research, responders in NOAA and the U.S. Coast Guard and other agencies know that spills are a routine occurrence.  Since the Deepwater Horizon spill, NOAA’s Office of Response and Restoration has responded to over 800 other incidents.  Most are ones that you’ve probably never heard off, but here are a few of the larger incidents since Deepwater.

Enbridge Pipeline Leak, Kalamazoo, Michigan:  On July 25, 2010, while the nation was fixated on the spill in the Gulf of Mexico, an underground pipeline in Michigan also began gushing oil. More than 800,000 gallons of crude oil poured out of the leaking pipeline and flowed along 38 miles of the Kalamazoo River, one of the largest rivers in southern Michigan. The spill impacted over 1,560 acres of stream and river habitat as well as floodplain and upland areas, and reduced recreational and tribal uses of the river. A natural resource damage assessment was settled in 2015 that will result in multiple resource restoration projects along the Kalamazoo River.

Two kayakers on the river with vegetation visible on the water in foreground.

Kayaking on the Kalamazoo River. (NOAA)

Exxon Mobil Pipeline Rupture, Yellowstone River, Montana:  On July 1, 2011, an ExxonMobil Pipeline near Billings, Montana, ruptured, releasing an estimated 31,500 to 42,000 gallons of oil into the iconic river, which was at flood-stage level at the time of the spill.  Oil spread downstream affecting sensitive habitats.

Paulsboro, New Jersey Rail Accident and Release: On November 30, 2012, a train transporting the chemical vinyl chloride derailed while crossing a bridge that collapsed over Mantua Creek, in Paulsboro, N.J., near Philadelphia. Four rail cars fell into the creek, breaching one tank and releasing approximately 23,000 gallons of vinyl chloride. A voluntary evacuation zone was established for the area, and nearby schools were ordered to immediately take shelter and seal off their buildings.

Molasses Spill, Honolulu, Hawaii: On September 8, 2013, a faulty pipeline operated by Matson Shipping Company leaked 233,000 gallons (1,400 tons) of molasses into Hawaii’s Honolulu Harbor.  A large fish kill resulted.

Texas “Y” collision, Galveston, Texas:  On March 22, 2014, the 585 foot bulk carrier ‘M/V Summer Wind’ collided with an oil tank-barge, containing 924,000 gallons of fuel oil.  The collision occurred at the intersection or “Y” in Lower Galveston Bay, where three lanes of marine traffic converge: vessels from the Port of Texas City, the Houston Ship Channel and the Gulf Intracoastal Waterway.   The collision breached the hull of the tank barge, spilling about 168,000 gallons of fuel oil spilled into the waterway. A natural resource damage assessment is underway, evaluating impacts to shoreline habitats, birds, bottlenose dolphins, and recreational uses.

Refugio State Beach Pipeline Rupture, California:   On May 19, 2015, a 24-inch crude pipeline ruptured near Refugio State Beach in Santa Barbara County, California. Of the approximately 100,000 gallons of crude oil released, some was captured and some flowed into the Pacific Ocean.  The spill raised many challenges. The spill occurred in an especially sensitive region of the coast, known for its incredible diversity of marine life and home to the Channel Islands National Marine Sanctuary. The Refugio spill site is also the site of one of the most historically significant spills in U.S. history. Just over 46 years ago, off the coast of Santa Barbara, a well blowout occurred, spilling as much as 4.2 million gallons of oil into the ocean. A natural resource damage assessment for the Refugio spill is underway, focusing on impacts to wildlife, habitat, and lost recreational uses.

Two people in cleanup suits with a shovel stand on a beach with oiled rocks.

Two cleanup crew members work to remove oil from the sand along a portion of soiled coastline near Refugio State Beach, on May 23, 2015. (U.S. Coast Guard)

Barge APEX 3508 Collision, Columbus, Kentucky:  On September 2, 2015, two tug boats collided on the Mississippi River near Columbus, Kentucky, spilling an estimated 120,500 gallons of heavy oil.  The oil sank to the river bottom and had to be recovered by dredge.

Train Derailment, West Virginia:  On February 16, 2015, a CSX oil train derailed and caught fire in West Virginia near the confluence of Armstrong Creek and the Kanawha River. The train was hauling 3.1 million gallons of Bakken crude oil from North Dakota to a facility in Virginia. Of the 109 train cars, 27 of them derailed on the banks of the Kanawha River, but none of them entered the river. Much of the oil they were carrying was consumed in the fire, which affected 19 train cars, and an unknown amount of oil reached the icy creek and river.

Each year NOAA’s Office of Response and Restoration is asked to respond to an average of 150 incidents, and so far this year we have been asked for help with 43 incidents. Most of these were not huge, and include groundings in Alaska, Oregon, Washington, and Hawaii; five sunken vessels, fires at two marinas, a burning vessel, and an oil platform fire; nine oil spills and a chemical spill; and multiple “mystery sheens”—slicks of oil or chemicals that are spotted on the surface of the water and don’t have a clear origin. Since 1990, we have responded to thousands of incidents, helping to guide effective cleanups and protect sensitive resources. Also since 1990 and with our co-trustees, we have settled almost 60 spills for more than $9.7 billion for restoration. We hope that we will never have to respond to another “Deepwater” or “Exxon Valdez”, but should a large disaster occur, we will be ready. In the meantime, smaller accidents happen frequently and we are ready for those, too.

Doug Helton and Vicki Loe contributed to this post.


Leave a comment

During the Chaos of Oil Spills, Seeking a System to Test Potential Solutions

This is a post by Ed Levine of NOAA’s Office of Response and Restoration.

Response workers load oil containment boom onto a supply ship in Louisiana.

NOAA helped develop a systematic approach to vetting new and non-traditional spill response products and techniques during the fast-paced atmosphere of an oil spill. We helped implement this system during the 2010 Deepwater Horizon oil spill to evaluate the tens of thousands of ideas proposed during the spill. (U.S. Coast Guard)

In the pre-dawn hours of January 7, 1994, the tank barge Morris J Berman ran aground near San Juan, Puerto Rico, damaging coral and spilling more than 800,000 gallons of a thick, black fuel oil. Strong winds and waves battered the barge as it continued to leak and created dangerous conditions for spill responders.

During the hectic but organized spill response that followed [PDF] the barge’s grounding, a number of vendors appeared at the command post with spill cleanup products which they assured responders would fix everything. This scenario had played out at many earlier oil spills, and nearly every time, these peddled products were treated differently, at various times sidelined, ignored, tested, or put to use.

It’s not unexpected for the initial situation at any emergency response—be it medical, natural disaster, fire, or oil spill—to be chaotic. Responders are dealing with limited resources, expertise, and information at the very beginning.

As the situation progresses, additional help, information, and experts typically arrive to make things more manageable. Usually, in the middle of all this, people are trying to be helpful, or make a buck, and sometimes both.

At the spill response in Puerto Rico, the responders formed an official ad hoc group charged with cataloging and evaluating each new suggested cleanup product or technology. The group involved local government agencies, NOAA, and the U.S. Coast Guard. It began to develop a systematic approach to what had typically been a widely varying process at previous oil spills.

The methodology the group developed for this case was rough and quickly implemented for the situation at hand. Over the course of the several months required to deal with the damaged barge and oil spill, the ad hoc group tested several, though not all, of the potential cleanup products.

Approaching Order

A few years later, another group took this process a step further through the Regional Response Team III, a state-federal entity for response policy, planning, and coordination for West Virginia, Maryland, Delaware, Pennsylvania, Virginia, and the District of Columbia.

This working group set out to develop a more organized and systematic way to deal with alternative oil spill response techniques and technologies, those which aren’t typically used during oil spill responses. After many months of working collaboratively, this multi-agency working group, which included me and other colleagues in NOAA’s Office of Response and Restoration, produced the approach known as the Alternative Response Tools Evaluation System (ARTES).

This system allows a special response team to rapidly evaluate a proposed response tool and provide feedback in the form of a recommendation to the on-scene coordinator, who directs spill responses for a specified area. This coordinator then can make an informed decision on the use of the proposed tool.

artes-process-flow-chart_noaa_720

The Alternative Response Tools Evaluation System (ARTES) process is designed for use both before and after a spill. “OSC” stands for on-scene coordinator, the person who directs a spill response, and “RRT” stands for Regional Response Team, the multi-agency group charged with spill response policy, planning, and coordination for different regions of the United States.

The ARTES process is designed for two uses. First, it can be used to assess a product’s appropriateness for use during a specific incident, under specific circumstances, such as a diesel spill resulting from a damaged tug boat on the Mississippi River. Second, the process can serve as a pre-evaluation tool during pre-spill planning to identify conditions when a proposed product would be most effective.

One advantage of the ARTES process is that it provides a management system for addressing the numerous proposals submitted by vendors and others during a spill. Subjecting all proposals to the same degree of evaluation also ensures that vendors are considered on a “level playing field.”

Although developed for one geographic region, the ARTES process quickly became adopted by others around the country and has been included in numerous local and regional response plans.

Once the ARTES process was codified, several products including an oil solidifier and a bioremediation agent underwent regional pre-spill evaluations. Personally, I was involved in several of those evaluations as well as one during an actual spill.

A Flood of Oil … and Ideas

A super tanker ship with a large slit in the bow anchored in the Gulf of Mexico.

The super tanker “A Whale” after testing during the Deepwater Horizon oil spill. The skimming slits on its bow are being sealed because it was not able to perform as designed. This vessel design was one of more than 80,000 proposals for surface oil spill response submitted during the spill. (NOAA)

Another defining moment for the ARTES process came in 2010 during the Deepwater Horizon oil spill. Within the first week of the spill, the unified command, the multi-agency organization which coordinates the response and includes those responsible for the spill, was inundated with suggestions to cap the leaking well and clean up the oil released into the Gulf of Mexico.

At one of the morning coordination meetings, the BP incident commander shared his frustration in keeping up with the deluge of offers. He asked if anyone had a suggestion for dealing with all of them. My hand shot up immediately.

After the meeting I spoke with leaders from both BP and the U.S. Coast Guard and described the ARTES process to them. They gave me the go-ahead to implement it. Boy, did I not know what we were in for!

As the days went by, the number of submissions kept growing, and growing, and growing. What started out as a one-person responsibility—recording submissions by phone and email—was soon taken over by a larger group staffed by the Coast Guard and California Office of Spill Prevention and Response and which eventually grew into a special unit of the response.

A dedicated website was created to receive product proposals and ideas, separate them into either a spill response or well capping method, track their progress through the evaluation system, and report the final decision to archive the idea, test it, or put it to use during the spill.

People who submitted ideas were able to track submissions and remain apprised of each one’s progress. Eventually, 123,000 individual ideas were submitted and tracked, 470 made the initial cut, 100 were formally evaluated, and about 30 were implemented during response field operations. Of the original 123,000 submissions, there were 80,000 subsurface and 43,000 surface oil spill response ideas.

One of the many proposals for cleaning up the oil took the form of the ship A Whale. It was a super tanker with a large slit in the bow at the waterline that was meant to serve as a huge skimmer, pulling oil off the ocean surface. Unfortunately, testing revealed that it didn’t work.

Some other examples of submissions included sand-cleaning machines and a barge designed to be an oil skimming and storage device (nicknamed the “Bubba Barge”) that actually did work. On the other hand, popular proposals such as human hair, feathers, and pool “noodles” didn’t perform very well.

Even under the weight of this incredible outpouring of proposals, the ARTES process held up, offering a great example of how far pre-planning can go.

Ed Levine.

Ed Levine is the Response Operations Supervisor – East for NOAA’s Office of Response and Restoration, managing Scientific Support Coordinators from Maine to Texas.

 


Leave a comment

How Do We Use Satellite Data During Oil Spills?

This is a post by NOAA’s George Graettinger with Amy MacFadyen.

A view of the Deepwater Horizon oil spill from NASA's Terra Satellites.

A view of the Deepwater Horizon oil spill from NASA’s Terra Satellites on May 24, 2010. When oil slicks are visible in satellite images, it is because they have changed how the water reflects light, either by making the sun’s reflection brighter or by dampening the scattering of sunlight, which makes the oily area darker. (NASA)

Did you know satellites measure many properties of the Earth’s oceans from space? Remote sensing technology uses various types of sensors and cameras on satellites and aircraft to gather data about the natural world from a distance. These sensors provide information about winds, ocean currents and tides, sea surface height, and a lot more.

NOAA’s Office of Response and Restoration is taking advantage of all that data collection by collaborating with NOAA’s Satellite and Information Service to put this environmental intelligence to work during disasters such as oil spills and hurricanes. Remote sensing technology adds another tool to our toolbox as we assess and respond to the environmental impacts of these types of disasters.

In these cases, which tend to be larger or longer-term oil spills, NOAA Satellites analyzes earth and ocean data from a variety of sensors and provides us with data products such as images and maps. We’re then able to take that information from NOAA Satellites and apply it to purposes ranging from detecting oil slicks to determining how an oil spill might be impacting a species or shoreline.

Slick Technology

During an oil spill, observers trained to identify oil from the air go out in helicopters and planes to report an oil slick’s exact location, shape, size, color, and orientation at a given time. Analogous to this “remote sensing” done by the human eye, satellite sensors can help us define the extent of an oil slick on the ocean surface and create a target area where our aerial observers should start looking for oil.

In the case of a large oil spill over a sizable area such as the Gulf of Mexico, this is very important because we can’t afford the time to go out in helicopters and look everywhere or sometimes weather conditions may make it unsafe to do so.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA. (NOAA)

Satellite remote sensing typically provides the aerial footprint or outline of the surface oil (the surface oiling extent). However, oil slicks are patchy and vary in the thickness of the oil, which means having the outline of the slick is useful, but we still need our observers to give us more detailed information. That said, we’re starting to be able to use remote sensing to delineate not just the extent but also the thickest parts of the slicks.

Armed with information about where spilled oil may be thickest allows us to prioritize these areas for cleanup action. This “actionable oil” is in a condition that can be collected (via skimmers), dispersed, or burned as part of the cleanup process.

You can see how we mapped the surface oiling extent during the Deepwater Horizon spill based on data analyses from NOAA Satellites into our online response mapping program ERMA.

A Model for the Future

A common use of remotely sensed data in our work is with our oil spill models. Reports of a slick’s extent from both satellite sensors and aerial observers, who report additional information about constantly changing oil slicks, helps our oceanographers improve the forecasts of where the oil will be tomorrow.

Just as weather forecasters continually incorporate real-time observations into their models to improve accuracy, our oceanographers update oil spill trajectory models with the latest overflights and observations of the surface oiling extent (the area where oil is at a given moment). These forecasts offer critical information that the Coast Guard uses to prioritize spill response and cleanup activities.

A Sense of Impact

Oil at the water's surface in a boat wake.

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. One use was detecting the outline of oil slicks on the ocean surface. (NOAA)

Over the course of an oil spill, knowing the surface oiling extent and where that oil is going is important for identifying what natural resources are potentially in harm’s way and should be protected during the spill response.

In addition, the data analyses from remote sensing technology directly support our ability to determine how natural resources, whether salt marshes or dolphins, are exposed to spilled oil. Both where an oil slick is and how often it is there will affect the degree of potential harm suffered by sensitive species and habitats over time.

In recent years, we’ve been learning how to better use the remote sensing data collected by satellite and aircraft to look at how, where, and for how long coastal and marine life and habitats are impacted by oil spills and then relate this oil exposure to actual harm to these resources.

Large amounts of oil that stay in the same place for a long time have the potential to cause a lot more harm. For example, dolphins in a certain impacted area might breathe fumes from oil and ingest oil from food and water for weeks or months at a time. Without remotely sensed data, it would be nearly impossible to accomplish this task of tying the exact location and timing of oil exposure to environmental harm.

Remote Opportunities

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. For example, we used this technology to examine the large scale features of the circulation patterns in the Gulf of Mexico, such as the fast-moving Loop Current and associated eddies. The Loop Current is a warm ocean current that flows northward between Cuba and Mexico’s Yucatán Peninsula, moves north into the Gulf of Mexico, then loops east and south before exiting through the Florida Straits and ultimately joining the Gulf Stream.

During this oil spill, there were concerns that if the oil slick entered the Loop Current, it could be transported far beyond the Gulf to the Caribbean or up the U.S. East Coast (it did not). NOAA used information from satellite data to monitory closely the position of the slick with respect to the Loop Current throughout the Deepwater Horizon oil spill.

Our partnership with NOAA’s Satellite and Information Service has been a fruitful one, which we expect to grow even more in the future as technology develops further. In January, NOAA Satellites launched the Jason-3 satellite, which will continue to collect critical sea surface height data, adding to a satellite data record going back to 1992. One way these data will be used is in helping track the development of hurricanes, which in turn can cause oil spills.

We hope ongoing collaboration across NOAA will further prepare us for the future and whatever it holds.


Leave a comment

Our Top 10 New Year’s Resolutions for 2016

2015 written on a sandy beach with an approaching wave.

So long, 2015. Hello, 2016!

Another year has gone by, and we’ve stayed plenty busy: responding to a leaking California pipeline, examining the issue of wrecked and abandoned ships, preparing a natural resource damage assessment and restoration plan for the Gulf of Mexico, and removing 32,201 pounds of marine debris from Hawaii’s Midway Atoll.

You can read more about what we accomplished in the last year, but keep in mind we have big goals for 2016 too. We’re aiming to:

  1. Be better models. This spring, we are planning to release an overhaul of our signature oil spill trajectory forecasting (GNOME) and oil weathering (ADIOS) models, which will be combined into one tool and available via an online interface for the first time.
  2. Tidy up. Our coasts, that is. In the next year, we will oversee marine debris removal projects in 17 states and territories, empowering groups to clean up coastal areas of everything from plastics to abandoned fishing gear.
  3. Use or lose. Nature and wildlife offer a lot of benefits to people, and we make use of them in a number of ways, ranging from recreational fishing to birdwatching to deep-seated cultural beliefs. In 2016 we’ll examine what we lose when nature and wildlife get harmed from pollution and how we calculate and make up for those losses.
  4. Get real. About plastic in the ocean, that is. We’ll be turning our eye toward the issue of plastic in the ocean, how it gets there, what its effects are, and what we can do to keep it out of the ocean.
  5. Explore more. We’ll be releasing an expanded, national version of our DIVER data management tool, which currently holds only Deepwater Horizon data for the Gulf of Mexico, allowing us and our partners to better explore and analyze ocean and coastal data from around the country.
  6. Get artistic. Through our NOAA Marine Debris Program, we are funding projects to create art from ocean trash to raise awareness of the issue and keep marine debris off our coasts and out of our ocean.
  7. Break ground on restoration. Finalizing the draft comprehensive restoration plan for the Gulf of Mexico, following the 2010 Deepwater Horizon oil spill, will bring us one step closer to breaking ground on many restoration projects over the next several years.
  8. App to it. We are working on turning CAMEO Chemicals, our popular database of hazardous chemicals, into an application (app) for mobile devices, making access to critical information about thousands of potentially dangerous chemicals easier than ever.
  9. Train up. We pride ourselves on providing top-notch training opportunities, and in 2016, we already have Science of Oil Spill classes planned in Mobile, Alabama, and Ann Arbor, Michigan (with more to come). Plus, we’ve introduced a brand-new Science of Chemical Releases class, designed to provide information and tools to better manage and plan for responses to chemical incidents.
  10. Get strategic. We are updating our five year strategic plan, aligning it with NOAA’s Ocean Service strategic priorities [PDF], which are coastal resilience (preparedness, response, and recovery), coastal intelligence, and place-based conservation.


Leave a comment

Explore Oil Spill Data for Gulf of Mexico Marine Life With NOAA GIS Tools

In the wake of the Deepwater Horizon oil spill, the sheer amount of data scientists were gathering from the Gulf of Mexico was nearly overwhelming. Everything from water quality samples to the locations of oiled sea turtles to photos of dolphins swimming through oil—the list goes on for more than 13 million scientific records.

So, how would anyone even start to dig through all this scientific information? Fortunately, you don’t have to be a NOAA scientist to access, download, or even map it. We have been building tools to allow anyone to access this wealth of information on the Gulf of Mexico environment following the Deepwater Horizon oil spill.

We’re taking a look at two of our geographic information systems tools and how they help scientists, emergency responders, and the public navigate the oceans of environmental data collected since the 2010 Deepwater Horizon oil spill.

When it comes to mapping and understanding huge amounts of these data, we turn to our GIS-based tool, the Environmental Response Management Application, known as ERMA®. This online mapping tool is like a Swiss army knife for organizing data and information for planning and environmental emergencies, such as oil spills and hurricanes.

ERMA not only allows pollution responders to see real-time information, including weather information and ship locations, but also enables users to display years of data, revealing to us broader trends.

View of Environmental Response Management Application showing map of Gulf of Mexico with varying probabilities of oil presence and sea turtle oiling during the Deepwater Horizon oil spill with data source information.

In the “Layer” tab on the right side of the screen, you can choose which groups of data, or “layers,” to display in ERMA. Right click on a data layer, such as “Turtle Captures Probability of Oiling (NOAA) (PDARP),” and select “View metadata” to view more information about the data being shown. (NOAA)

For instance, say you want to know the likelihood of sea turtles being exposed to heavy oil during the Deepwater Horizon oil spill. ERMA enables you to see where sea turtles were spotted during aerial surveys or captured by researchers across the Gulf of Mexico between May and September 2010. At the same time, you can view data showing the probability that certain areas of the ocean surface were oiled (and for how long), all displayed on a single, interactive map.

View of Environmental Management Application map of Gulf of Mexico showing varying probabilities of oil presence and sea turtle exposure to oil during the Deepwater Horizon oil spill with map legend.

Clicking on the “Legend” tab on the right side of the screen shows you basic information about the data displayed in ERMA. Here, the red area represents portions of the Gulf of Mexico which had the highest likelihood of exposing marine life to oil. Triangles show sea turtle sightings and squares show sea turtle captures between May and September 2010. The color of the symbol indicates the likelihood of that sea turtle receiving heavy exposure to oil. (NOAA)

Perhaps you want to focus on where Atlantic bluefin tuna were traveling around the Gulf and where that overlaps with the oil spill’s footprint. Or compare coastal habitat restoration projects with the degree of oil different sections of shoreline experienced. ERMA gives you that access.

You can use ERMA Deepwater Gulf Response to find these data in a number of ways (including search) and choose which GIS “layers” of data to turn on and off in the map. To see the most recently added data, click on the “Recent Data” tab in the upper left of the map interface, or find data by browsing through the “Layers” tab on the right. Or look for data in special “bookmark views” on the lower right of the “Layers” tab to find data for a specific topic of interest.

Now, what if you not only want to see a map of the data, what if you also want to explore any trends in the data at a deeper level? Or download photos, videos, or scientific analyses of the data?

That’s where our data management tool DIVER comes in. This tool serves as a central repository for environmental impact data from the oil spill and was designed to help researchers share and find scientific information ranging from photos and field notes to sample data and analyses.

As Ocean Conservancy’s Elizabeth Fetherston put it:

Until recently, there was no real way to combine all of these disparate pixels of information into a coherent picture of, for instance, a day in the life of a sea turtle. DIVER, NOAA’s new website for Deepwater Horizon assessment data, gives us the tools to do just that.

Data information and integration systems like DIVER put all of that information in one place at one time, allowing you to look for causes and effects that you might not have ever known were there and then use that information to better manage species recovery. These data give us a new kind of power for protecting marine species.

One of the most important features of DIVER, called DIVER Explorer, is the powerful search function that allows you to narrow down the millions of data pieces to the precise set you’re seeking. You do it one step, or “filter,” at a time.

DIVER software dialog box showing how to build a query by workplan topic area for marine mammals studied during the Deepwater Horizon oil spill.

A view of the step-by-step process of building a “query,” or specialized search, in our DIVER tool for Deepwater Horizon oil spill environmental impact data. (NOAA)

For example, when you go to DIVER Explorer, click on “Guided Query” at the top and then “Start to Explore Data,” choose “By Workplan Topic Area,” hit “Next,” and finally select “Marine Mammals” before clicking “Run Query” to access information about scientific samples taken from marine mammals and turtles. You can view it on a map, in a table, or download the data to analyze yourself.

An even easier way to explore these data in DIVER, however, is by visiting https://www.doi.gov/deepwaterhorizon/adminrecord and scrolling down to and clicking on #5 Preassessment/Assessment (§§ 990.40 – 990.45; 990.51). This will reveal a list of various types of environmental impacts—to birds, sea floor habitat, marine mammals, etc.—which the federal government studied as part of the Deepwater Horizon oil spill’s Natural Resource Damage Assessment.

Say you’re interested in marine mammals, so you click on 5.6 Marine Mammal Injury and then 5.6.3 Data sets. You can then download and open the document “NOAA Marine Mammal data related to the Deepwater Horizon incident, available through systems such as DIVER and ERMA, or as direct downloads. (September 23, 2015).”

Under the section “Data Links,” you can choose from a variety of stored searches (or “queries”) in DIVER that will show you where and when, for example, bottlenose dolphins with satellite tags traveled after the spill (tip: zoom in to view this data on the map)—along with photographs to go with it (tip: click on the “Photos” tab under the map to browse).

Map view of DIVER software map showing where tagged dolphins swam in the Gulf of Mexico after the Deepwater Horizon oil spill.

A map view of DIVER shows where tagged dolphins traveled along the Gulf Coast, showing two populations that stayed in their home bases of Barataria Bay and Mississippi Sound. (NOAA)

This can tell us key information, such as the fact that certain populations of dolphins stay in the same areas along the coast, meaning they don’t travel far from home. We can also look at data about whether those dolphin homes were exposed to a lot of oil, which would suggest that the dolphins that lived there likely were exposed to oil again and again.

Both of these tools allow us to work with incredible amounts of data and see their stories brought to life through the power of geographic information systems. So, go ahead and start exploring!


Leave a comment

Births Down and Deaths Up in Gulf Dolphins Affected by Deepwater Horizon Oil Spill

A mother bottlenose dolphin pushes her dead newborn calf at the water's surface.

Dolphin Y01 pushes a dead calf through the waters of Barataria Bay, Louisiana, in March 2013. This behavior is sometimes observed in female dolphins when their newborn calf does not survive. Barataria Bay dolphins have seen a disturbingly low rate of reproductive success in the wake of the Deepwater Horizon oil spill. (Louisiana Department of Wildlife and Fisheries)

In August of 2011, a team of independent and government scientists evaluating the health of bottlenose dolphins in Louisiana’s Barataria Bay gave dolphin Y35 a good health outlook.

Based on the ultrasound, she was in the early stages of pregnancy, but unlike many of the other dolphins examined that summer day, Y35 was in pretty good shape. She wasn’t extremely underweight or suffering from moderate-to-severe lung disease, conditions connected to exposure to Deepwater Horizon oil in the heavily impacted Barataria Bay.

Veterinarians did note, however, that she had alarmingly low levels of important stress hormones responsible for behaviors such as the fight-or-flight response. Normal levels of these hormones help animals cope with stressful situations. This rare condition—known as hypoadrenocorticism—had never been reported before in dolphins, which is why it was not used for Y35 and the other dolphins’ health prognoses.

Less than six months later, researchers spotted Y35 for the last time. It was only 16 days before her expected due date. She and her calf are now both presumed dead, a disturbingly common trend among the bottlenose dolphins that call Barataria Bay their year-round home.

This trend of reproductive failure and death in Gulf dolphins over five years of monitoring after the 2010 Deepwater Horizon oil spill is outlined in a November 2015 study led by NOAA and published in the peer-reviewed journal Proceedings of the Royal Society.

Of the 10 Barataria Bay dolphins confirmed to be pregnant during the 2011 health assessment, only two successfully gave birth to calves that have survived. This unusually low rate of reproductive success—only 20%—stands in contrast to the 83% success rate in the generally healthier dolphins being studied in Florida’s Sarasota Bay, an area not affected by Deepwater Horizon oil.

Baby Bump in Failed Pregnancies

While hypoadrenocorticism had not been documented previously in dolphins, it has been found in humans. In human mothers with this condition, pregnancy and birth—stressful and risky enough conditions on their own—can be life-threatening for both mother and child when the condition is left untreated. Wild dolphins with this condition would be in a similar situation.

Mink exposed to oil in an experiment ended up exhibiting very low levels of stress hormones, while sea otters exposed to the Exxon Valdez oil spill experienced high rates of failed pregnancies and pup death. These cases are akin to what scientists have observed in the dolphins of Barataria Bay after the Deepwater Horizon oil spill.

Among the pregnant dolphins being monitored in this study, at least two lost their calves before giving birth. Veterinarians confirmed with ultrasound that one of these dolphins, Y31, was carrying a dead calf in utero during her 2011 exam. Another pregnant dolphin, Y01, did not successfully give birth in 2012, and was then seen pushing a dead newborn calf in 2013. Given that dolphins have a gestation of over 12 months, this means Y01 had two failed pregnancies in a row.

The other five dolphins to lose their calves after the Deepwater Horizon oil spill, excluding Y35, survived pregnancy themselves but were seen again and again in the months after their due dates without any young. Dolphin calves stick close to their mothers’ sides in the first two or three months after birth, indicating that these pregnant dolphins also had calves that did not survive.

At least half of the dolphins with failed pregnancies also suffered from moderate-to-severe lung disease, a symptom associated with exposure to petroleum products. The only two dolphins to give birth to healthy calves had relatively minor lung conditions.

Survival of the Least Oiled

Dolphin Y35 wasn’t the only one of the 32 dolphins being monitored in Barataria Bay to disappear in the months following her 2011 examination. Three others were never sighted again in the 15 straight surveys tracking these dolphins. Or rather, they were never seen again alive. One of them, Y12, was a 16-year-old adult male whose emaciated carcass washed up in Louisiana only a few weeks before the pregnant Y35 was last seen. In fact, the number of dolphins washing up dead in Barataria Bay from August 2010 through 2011 was the highest ever recorded for that area.

Survival rate in this group of dolphins was estimated at only 86%, down from the 95-96% survival seen in dolphin populations not in contact with Deepwater Horizon oil. The marshy maze of Barataria Bay falls squarely inside the footprint of the Deepwater Horizon oil spill, and its dolphins and others along the northern Gulf Coast have repeatedly been found to be sick and dying in historically high numbers. Considering how deadly this oil spill has been for Gulf bottlenose dolphins and their young, researchers expect recovery for these marine mammals to be a long time coming.

Watch an updated video of the researchers as they temporarily catch and give health exams to some of the dolphins in Barataria Bay, Louisiana, in August of 2011 and read a 2013 Q&A with two of the NOAA researchers involved in these studies:

This study was conducted under the Natural Resource Damage Assessment for the Deepwater Horizon oil spill. These results are included in the injury assessment documented in the Draft Programmatic Assessment and Restoration Plan that is currently out for public comment. We will accept comments on the plan through December 4, 2015.

This research was conducted under the authority of Scientific Research Permit nos. 779-1633 and 932-1905/MA-009526 issued by NOAA’s National Marine Fisheries Service pursuant to the U.S. Marine Mammal Protection Act.

Follow

Get every new post delivered to your Inbox.

Join 702 other followers