NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

NOAA Experts Help Students Study up on Oil Spills and Ocean Science

Person on boat looking oiled sargassum in the ocean.

Mark Dodd, wildlife biologist from Georgia’s Department of Natural Resources, surveying oiled sargassum in the Gulf of Mexico. (Credit: Georgia Department of Natural Resources)

Every year high school students across the country compete in the National Ocean Sciences Bowl to test their knowledge of the marine sciences, ranging from biology and oceanography to policy and technology. This year’s competition will quiz students on “The Science of Oil in the Ocean.” As NOAA’s center for expertise on oil spills, the Office of Response and Restoration has been a natural study buddy for these aspiring ocean scientists.

In addition to providing some of our reports as study resources, three of our experts recently answered students’ questions about the science of oil spills in a live video Q&A. In an online event hosted by the National Ocean Sciences Bowl, NOAA environmental scientist Ken Finkelstein, oceanographer Amy MacFadyen, and policy analyst Meg Imholt fielded questions on oil-eating microbes, oil’s movement in the ocean, and much more.

Here is a sampling of the more than a dozen questions asked and answered, plus a bit of extra research to help you learn more. (You also can view the full hour-long video of the Q&A.)

What are the most important policies that relate to the oil industry?

There are lots of policies related to the oil industry. Here are a few that impact our work:

  • The Clean Water Act establishes rules about water pollution.
  • The Oil Pollution Act of 1990 establishes the Oil Spill Liability Trust Fund to support oil spill response and holds companies responsible for damages to natural resources caused by a spill.
  • The National Contingency Plan guides preparedness and response for oil and hazardous material spills. It also regulates the use of some response tools such as dispersants.
  • The Outer Continental Shelf Lands Act gives the Department of Interior authority to lease areas in federal waters for oil and gas development and to regulate offshore drilling.
  • The Endangered Species Act and the Marine Mammal Protection Act establish rules for protected species that companies must consider in their operations.

How do waves help transport oil?

Waves move oil in a few ways. First is surface transport. Waves move suspended particles in circles. If oil is floating on the surface, waves can move it toward the shore. However, ocean currents and winds blowing over the surface of the ocean are generally much more important in transporting surface oil. For example, tidal currents associated with rising and falling water levels can be very fast — these currents can move oil in the coastal zone at speeds of several miles per hour. Over time, all these processes act to spread oil out.

Waves are also important for a mixing process called dispersion. Most oils float on the surface because they are less dense than water. However, breaking waves can drive oil into the water column as droplets. Larger, buoyant droplets rise to the surface. Smaller droplets stay in the water column and move around in the subsurface until they are dissolved and degraded.

How widespread is the use of bacteria to remediate oil spills?

Some bacteria have evolved over millions of years to eat oil around natural oil seeps. In places without much of this bacteria, responders may boost existing populations by adding nutrients, rather than adding new bacteria.

This works best as a polishing tool. After an initial response, particles of oil are left behind.  Combined with wave movement, nutrient-boosted bacteria help clean up those particles.

Are oil dispersants such as Corexit proven to be poisonous, and if so, what are potential adverse effects as a result of its use?

Both oil and dispersants can have toxicological effects, and responders must weigh the trade-offs. Dispersants can help mitigate oil’s impacts to the shoreline. When oil reaches shore, it is difficult to remove and can create a domino effect in the ecosystem. Still, dispersants break oil into tiny droplets that enter the water column. This protects the shoreline, but has potential consequences for organisms that swim and live at the bottom of the sea.

To help answer questions like these, we partnered with the Coastal Response Research Center at the University of New Hampshire to fund research on dispersants and dispersed oil. Already, this research is being used to improve scientific support during spills.

What are the sources of oil in the ocean? How much comes from natural sources and how much comes from man-made sources?

Oil can come from natural seeps, oil spills, and also runoff from land, but total volumes are difficult to estimate. Natural seeps of oil account for approximately 60 percent of the estimated total load in North American waters and 40 percent worldwide, according to the National Academy of Sciences in a 2003 report. In 2014, NOAA provided scientific support to over 100 incidents involving oil, totaling more than 8 million gallons of oil potentially spilled. Scientists can identify the source of oil through a chemical technique known as oil fingerprinting. This provides evidence of where oil found in the ocean is from.

An important factor is not only how much oil is in the environment, but also the type of oil and how quickly it is released. Natural oil seeps release oil slowly over time, allowing ecosystems to adapt. In a spill, the amount of oil released in a short time can overwhelm the ecosystem.

What is the most effective order of oil spill procedure? What is currently the best method?

It depends on what happened, where it’s going, what’s at risk, and the chemistry of the oil.  Sometimes responders might skim oil off the surface, burn it, or use pads to absorb oil. The best response is determined by the experts at the incident.

Bag of oiled waste on a beach.

Oiled waste on the beach in Port Fourchon, Louisiana. On average, oil spill cleanups generate waste 10 times the amount of oil spilled. (NOAA)

What do you do with the oil once it is collected? Is there any way to use recovered oil for a later use?

Oil weathers in the environment, mixing with water and making it unusable in that state. Typically, collected oil has to be either processed before being recycled or sent to the landfill, along with some oiled equipment. Oil spill cleanups create a large amount of waste that is a separate issue from the oil spill itself.

Are the effects of oil spills as bad on plants as they are on animals?

Oil can have significant effects on plants, especially in coastal habitat. For example, mangroves and marshes are particularly sensitive to oil. Oil can be challenging to remove in these areas, and deploying responders and equipment can sometimes trample sensitive habitat, so responders need to consider how to minimize the potential unintended adverse impact of cleanup actions.

Does some of the crude oil settle on the seafloor? What effect does it have?

Oil usually floats, but can sometimes reach the seafloor. Oil can mix with sediment, separate into lighter and heavier components, or be ingested and excreted by plankton, all causing it to sink, with potential impacts for benthic (bottom-dwelling) creatures and other organisms.

When oil does reach the seafloor, removing it has trade-offs. In some cases, removing oil could require removing sediment, which is home to many important benthic (bottom-dwelling) organisms. Responders work with scientists to decide this on a case-by-case basis.

To what extent is the oil from the Deepwater Horizon oil spill still affecting the Gulf of Mexico ecosystem?

NOAA and our co-trustees have released a number of studies as part of the ongoing Natural Resource Damage Assessment for this spill and continue to release new research. Some public research has shown impacts on dolphins, deep sea ecosystems, and tuna. Other groups, like the Gulf of Mexico Research Initiative, are conducting research outside of the Natural Resource Damage Assessment.

How effective are materials such as saw dust and hair when soaking up oil from the ocean surface?

Oil spill responders use specialized products, such as sorbent materials, which are much more effective.


Leave a comment

NOAA Partners with University of Washington to Examine How Citizen Science Can Help Support Oil Spill Response

This is a guest post by University of Washington graduate students Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño.

Volunteers sample mussels at a Mussel Watch beach site near Edmonds, Wash.

Volunteers sample mussels at a Mussel Watch site in Washington, one of NOAA’s National Mussel Watch Program sites. This program relies on citizen scientists to gather data on water pollution levels and seafood safety by regularly sampling mussels at established locations across the nation. (Alan Mearns/NOAA)

Citizen science—characterized by public participation in the scientific process—is a growing trend in scientific research. As technology opens up new opportunities, more and more people are able to collaborate on scientific efforts where widespread geographic location or project scope previously may have been a barrier.

Citizen science can take a number of forms, ranging from small-scale environmental monitoring to massive crowdsourced classification efforts, and there is a great deal of benefit to be realized when managed properly. For example, the NOAA National Severe Storms Laboratory developed the mPING smartphone app to allow anyone in the United States to file hyper-local weather reports, which in turn helps the NOAA National Weather Service fine-tune their weather forecasts.

The Citizen Science Management Project

Our team of University of Washington graduate students is working with NOAA’s Office of Response and Restoration to research the potential for incorporating citizen science into its oil spill response efforts.

Thanks to improvements in technology, the public is more interested in and better able to contribute help during oil spills than ever before. During recent oil spills, notably the 2010 Deepwater Horizon incident, large numbers of citizens have expressed interest in supporting monitoring and recovery efforts. As the lead science agency for oil spills, NOAA is considering how to best engage the public in order to respond to oil spills even more effectively.

The goal of the project is to provide recommendations for NOAA on effective citizen science management. To do this, we began working to find the most current and relevant information on citizen science by conducting a broad review of the published scientific literature and speaking with experts in the fields of oil spill response, citizen science, and coastal volunteer management. Our next steps are to analyze the research and come up with possible options for NOAA’s Office of Response and Restoration on how to best adopt and incorporate citizen science into its work.

Initial Findings

NOAA’s Role. NOAA’s role in an oil spill response is primarily that of scientific support. During a response, NOAA begins by addressing a few core questions. Phrased simply, they are:

  • What got spilled?
  • Where will it go and what will it hit?
  • What harm will it cause and how can the effects of the spill be reduced?

We believe that using citizen scientists to help answer these fundamental questions may help NOAA better engage communities in the overall response effort and produce additional usable data to strengthen the response.

Aerial view of Deepwater Horizon oil spill and response vessels.

A view of the oil source and response vessels during the Deepwater Horizon incident as seen during an overflight on May 20, 2010. This spill piqued public interest in oil spills. (NOAA)

Changing Trends and New Opportunities. Technology is changing quickly. More than half of Americans own a smartphone, mapping programs are readily available and easy-to-use, and the Internet provides an unparalleled platform for crowdsourced data collection and analysis, as well as a venue for communication and outreach. These advances in technology are adding a new dimension to citizen science by creating the ability to convey information more quickly and by increasing visibility for citizen science projects. Increased exposure to citizen science efforts spurs interest in participation and the additional data collection capacity provided by smartphones and other technology allows more people to contribute. One such trend is the digital mapping of crowdsourced information, such as the NOAA Marine Debris Program’s Marine Debris Tracker app, which enables people to map and track different types of litter and marine debris they find around the world.

Oil Spills, NOAA, and Citizen Science. In 2012 the National Response Team prepared a document on the “Use of Volunteers: Guidelines for Oil Spills,” outlining ways in which oil spill responders can move toward improved citizen involvement before, during, and after an oil spill. We will use this as a framework to assess potential citizen science programs that could be adopted or incorporated by NOAA’s Office of Response and Restoration.

Challenges. All citizen science programs face certain challenges, such as ensuring data reliability with increased participation from non-experts, finding and maintaining the capacity required to manage a citizen science program and incorporate new data, and working with liability concerns around public participation. The challenges become even greater when incorporating citizen science into oil spill response. The unique challenges we have identified are the compressed timeline associated with a spill situation; the unpredictability in scope, geography, and nature of a spill; and the heightened risk and liability that come from having volunteers involved with hazardous material spill scenarios. We will keep all of these concerns in mind as we develop our recommendations.

Next Steps

From here, our team will be analyzing our findings and developing some recommendations for NOAA’s Office of Response and Restoration. We hope to identify, categorize, and assess different citizen science models that may work in a response situation, weighing the strengths and weaknesses of each model. These findings will be presented in a final report to NOAA in March 2015.

If you would like to learn more about the Citizen Science Management Project or check on our progress, please visit the project website: https://citizensciencemanagement.wordpress.com. If you have ideas about the project, feel free to reach out to us through the contact page. We would love to hear from you!

Sam Haapaniemi, Myong Hwan Kim, and Roberto Treviño are graduate students at the University of Washington in Seattle, Washington. The Citizen Science Management Project is being facilitated through the University of Washington’s Program on the Environment. It is the most recent project in an ongoing relationship between NOAA’s Office of Response and Restoration and the University of Washington’s Program on the Environment.


Leave a comment

When Planning for Disasters, an Effort to Combine Environmental and Human Health Data

Two men clean up oil on a beach.

Workers clean oil from a beach in Louisiana following the 2010 Deepwater Horizon spill. (NOAA)

Immediately following the Deepwater Horizon oil spill of 2010, there was a high demand for government agencies, including NOAA, to provide public data related to the spill very quickly. Because of the far-reaching effects of the spill on living things, those demands included data on human health as well as the environment and cleanup.

In mid-September of 2014, a group of scientists including social and public health experts, biologists, oceanographers, chemists, atmospheric scientists, and data management experts convened in Shepherdstown, West Virginia, to discuss ways they could better integrate their respective environmental and health data during disasters. The goal was to figure out how to bring together these usually quite separate types of data and then share them with the public during future disasters, such as oils spills, hurricanes, tornadoes, and floods.

The Deepwater Horizon spill experience has shown government agencies that there are monitoring opportunities which, if taken, could provide valuable data on both the environment and, for example, the workers that are involved in the cleanup. Looking back, it was discovered that at the same time that “vessels of opportunity” were out in the Gulf of Mexico assisting with the spill response and collecting data on environmental conditions, the workers on those vessels could have been identified and monitored for future health conditions, providing pertinent data to health agencies.

A lot of environmental response data already are contained in NOAA’s online mapping tool, the Environmental Response Management Application (ERMA®), such as the oil’s location on the water surface and on beaches throughout the Deepwater Horizon spill, chemicals found in sediment and animal tissue samples, and areas of dispersant use. ERMA also pulls together in a centralized format and displays Environmental Sensitivity Index data, which include vulnerable shoreline, biological, and human use resources present in coastal areas; ship locations; weather; and ocean currents. Study plans developed to assess the environmental impacts of the spill for the Natural Resource Damage Assessment and the resulting data collected can be found at www.gulfspillrestoration.noaa.gov/oil-spill/gulf-spill-data.

Screen shot of ERMA mapping program showing Gulf of Mexico with Deepwater Horizon oil spill data.

ERMA Deepwater Gulf Response contains a wide array of publicly available data related to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Here, you can see cumulative levels of oiling on the ocean surface throughout the spill, shorelines affected, and the location of the damaged wellhead. (NOAA)

Health agencies, on the other hand, are interested in data on people’s exposure to oil and dispersants, effects of in situ burning on air quality, and heat stress in regard to worker health. They need information on both long-term and short-term health risks so that they can determine if impacted areas are safe for the communities. Ideally, data such as what are found in ERMA could be imported into health agencies’ data management systems which contain human impact data, creating a more complete picture.

Putting out the combined information to the public quickly and transparently will promote a more accurate representation of a disaster’s aftermath and associated risks to both people and environment.

Funded by NOAA’s Gulf of Mexico Disaster Response Center and facilitated by the University of New Hampshire’s Coastal Response Research Center, this workshop sparked ideas for better and more efficient collaboration between agencies dealing with environmental and human health data. By setting up integrated systems now, we will be better prepared to respond to and learn from man-made and natural disasters in the future. As a result of this workshop, participants formed an ongoing working group to move some of the best practices forward. More information can be found at crrc.unh.edu/workshops/EDDM.

Dr. Amy Merten, of OR&R’s Assessment and Restoration Division co-authored this blog.


Leave a comment

Marine Life in Gulf of Mexico Faces Multiple Challenges

Editor’s Note: This is a revised posting by Maggie Broadwater of NOAA’s National Centers for Coastal Ocean Science that has corrected some factual misstatements in the original post.

photo of a bottlenose dolphin calf.

A bottlenose dolphin calf in the Gulf of Mexico. (NOAA)

Animals living in coastal waters can face a number of environmental stressors—both from nature and from humans—which, in turn, may have compounding effects. This may be the case for marine life in the Gulf of Mexico which experiences both oil spills and the presence of toxic algae blooms.

On the Lookout

Marine sentinels, like bottlenose dolphins in the Gulf of Mexico, share this coastal environment with humans and consume food from many of the same sources. As marine sentinels, these marine mammals are similar to the proverbial “canary in the coal mine.” Studying bottlenose dolphins may alert us humans to the presence of chemical pollutants, pathogens, and toxins from algae (simple ocean plants) that may be in Gulf waters.

Texas Gulf waters, for an example, are a haven for a diverse array of harmful algae. Additional environmental threats for this area include oil spills, stormwater and agricultural runoff, and industrial pollution.

Recently, we have been learning about the potential effects of oil on bottlenose dolphin populations in the Gulf of Mexico as a result of the Deepwater Horizon oil spill in April 2010. Dolphins with exposure to oil may develop lung disease and adrenal impacts, and be less able to deal with stress.

Certain types of algae produce toxins that can harm fish, mammals, and birds and cause illness in humans. During harmful algal blooms, which occur when colonies of algae “bloom” or grow out of control, the high toxin levels observed often result in illness or death for some marine life, and low-level exposure may compromise their health and increase their susceptibility to other stressors.

However, we know very little about the combined effects from both oil and harmful algal blooms.

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

Familiar Waters

Prior to the Galveston Bay oil spill, Texas officials closed Galveston Bay to the harvesting of oysters, clams, and mussels on March 14, 2014 after detecting elevated levels of Dinophysis. These harmful algae can produce toxins that result in diarrhetic shellfish poisoning when people eat contaminated shellfish. Four days later, on March 18, trained volunteers from NOAA’s Phytoplankton Monitoring Network detected Pseudo-nitzschia in Galveston Bay. NOAA Harmful Algal Bloom scientist Steve Morton, Ph.D., confirmed the presence of Pseudo-nitzchia multiseries, a type of algae known as a diatom that produces a potent neurotoxin affecting humans, birds, and marine mammals. NOAA’s Harmful Algal Bloom Analytical Response Team confirmed the toxin was present and notified Texas officials.

When Oil and Algae Mix

Studying marine mammal strandings and deaths helps NOAA scientists and coastal managers understand the effects of harmful algal blooms across seasons, years, and geographical regions. We know that acute exposure to algal toxins through diet can cause death in marine mammals, and that even exposures to these toxins that don’t kill the animal may result in serious long-term effects, including chronic epilepsy, heart disease, and reproductive failure.

But in many cases, we are still working to figure out which level of exposure to these toxins makes an animal ill and which leads to death. We also don’t yet know the effects of long-term low-level toxin exposure, exposure to multiple toxins at the same time, or repeated exposure to the same or multiple toxins. Current NOAA research is addressing many of these questions.

A dolphin mortality event may have many contributing factors; harmful algae may only be one piece in the puzzle. Thus, we do not yet know what effects recent Dinophysis and Pseudo-nitzchia blooms may have on the current marine mammal populations living in Texas coastal waters. Coastal managers and researchers are on alert for marine mammal strandings that may be associated with exposure to harmful algae, but the story is unfolding, and is very complex.

Photo of volunteer with a microscope.

Galveston volunteer with NOAA’s Phytoplankton Monitoring Network helps identify toxic algae. (NOAA)

On March 22, 2014, four days after harmful algae were found in Galveston Bay, the M/V Summer Wind collided with oil tank-barge Kirby 27706 in Galveston Bay near Texas City, releasing approximately 168,000 gallons of thick, sticky fuel oil. The Port of Houston was closed until March 27. State and federal agencies are responding via the Unified Command. NOAA is providing scientific support and Natural Resource Damage Assessment personnel are working to identify injured natural resources and restoration needs. Much of the oil has come ashore and survey teams are evaluating the shorelines to make cleanup recommendations.

Time will tell if the harmful algal toxins and oil in Galveston Bay have a major negative effect on the marine mammals, fish, and sea turtles that live in surrounding waters. Fortunately, NOAA scientists with a range of expertise—from dolphins to harmful algae to oil spills—are on the job.

Maggie BroadwaterMaggie Broadwater is a Research Chemist and serves as coordinator for NOAA’s Harmful Algal Bloom Analytical Response Team at the National Centers for Coastal Ocean Science in Charleston, S.C.  Dr. Broadwater earned a Ph.D. in Biochemistry from the Medical University of South Carolina in 2012 and has a M.S. in Biomedical Sciences and a B.S. in Biochemistry.


Leave a comment

Latest Research Finds Serious Heart Troubles When Oil and Young Tuna Mix

Atlantic bluefin tuna prepares to eat a smaller fish.

Atlantic bluefin tuna are a very ecologically and economically valuable species. However, populations in the Gulf of Mexico are at historically low levels. (Copyright: Gilbert Van Ryckevorsel/TAG A Giant)

In May of 2010, when the Deepwater Horizon rig was drilling for oil in the open waters of the Gulf of Mexico, schools of tuna and other large fish would have been moving into the northern Gulf. This is where, each spring and summer, they lay delicate, transparent eggs that float and hatch near the ocean surface. After the oil well suffered a catastrophic blowout and released 4.9 million barrels of oil, these fish eggs may have been exposed to the huge slicks of oil floating up through the same warm waters.

An international team of researchers from NOAA, Stanford University, the University of Miami, and Australia recently published a study in the journal Proceedings of the National Academy of Sciences exploring what happens when tuna mix with oil early in life.

“What we’re interested in is how the Deepwater Horizon accident in the Gulf of Mexico would have impacted open-ocean fishes that spawn in this region, such as tunas, marlins, and swordfishes,” said Stanford University scientist Barbara Block.

This study is part of ongoing research to determine how the waters, lands, and life of the Gulf of Mexico were harmed by the Deepwater Horizon oil spill and response. It also builds on decades of research examining the impacts of crude oil on fish, first pioneered after the 1989 Exxon Valdez oil spill in Alaska. Based on those studies, NOAA and the rest of the research team knew that crude oil was toxic to young fish and taught them to look carefully at their developing hearts.

“One of the most important findings was the discovery that the developing fish heart is very sensitive to certain chemicals derived from crude oil,” said Nat Scholz of NOAA’s Northwest Fisheries Science Center.

This is why in this latest study they examined oil’s impacts on young bluefin tuna, yellowfin tuna, and amberjack, all large fish that hunt at the top of the food chain and reproduce in the warm waters of the open ocean. The researchers exposed fertilized fish eggs to small droplets of crude oil collected from the surface and the wellhead from the Deepwater Horizon spill, using concentrations comparable to those during the spill. Next, they put the transparent eggs and young fish under the microscope to observe the oil’s impacts at different stages of development. Using a technology similar to doing ultrasounds on humans, the researchers were able create a digital record of the fishes’ beating hearts.

All three species of fish showed dramatic effects from the oil, regardless of how weathered (broken down) it was. Severely malformed and malfunctioning hearts was the most severe impact. Depending on the oil concentration, the developing fish had slow and irregular heartbeats and excess fluid around the heart. Other serious effects, including spine, eye, and jaw deformities, were a result of this heart failure.

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

“Crude oil shuts down key cellular processes in fish heart cells that regulate beat-to-beat function,” noted Block, referencing another study by this team.

As the oil concentration, particularly the levels of polycyclic aromatic hydrocarbons (PAHs), went up, so did the severity of the effects on the fish. Severely affected fish with heart defects are unlikely to survive. Others looked normal on the outside but had underlying issues like irregular heartbeats. This could mean that while some fish survived directly swimming through oil, heart conditions could follow them through life, impairing their (very important) swimming ability and perhaps leading to an earlier-than-natural death.

“The heart is one of the first organs to appear, and it starts beating before it’s completely built,” said NOAA Fisheries biologist John Incardona. “Anything that alters heart rhythm during embryonic development will likely impact the final shape of the heart and the ability of the adult fish to survive in the wild.”

Even at low levels, oil can have severe effects on young fish, not only in the short-term but throughout the course of their lives. These subtle but serious impacts are a lesson still obvious in the recovery of marine animals and habitats still happening 25 years after the Exxon Valdez oil spill.


Leave a comment

What Are Kids Reading About Oil Spills?

This is a post by Dr. Alan Mearns, NOAA Senior Staff Scientist.

Kids reading books in a book store.

Credit: Carolien Dekeersmaeker/Creative Commons Attribution-NonCommercial 2.0 Generic License

What are your children and their teachers reading? We might want to pay closer attention. The stories we tell our children are a reflection of how we see the world, and we want to make sure these stories have good information about our world.

I occasionally accompany my wife, a preschool teacher, to local children’s bookstores, and more often than not, find books about oil spills and other disasters.  Recently, I took a closer look at the quality of the information found in a sampling of children’s books on oil spills.

An Oil Spill Ecologist Dives into Kids’ Books

So far, the eight or so books I’ve looked at focus on one of the two major oil spills in the American mind: the 1989 Exxon Valdez oil spill in Alaska or the 2010 Deepwater Horizon spill in the Gulf of Mexico.

A number are heart-warming stories about wildlife speaking about their experience in oil and the nice people who captured, cleaned, and released them. Birds, especially pelicans, and sea otters often play a starring role in telling these stories. Several present case histories of the oil spills, their causes, and cleanup. Some books place oil spills in the context of our heavy reliance on oil, but many ignore why there’s so much oil being transported in the first place.

One book’s color drawings show oil spill cleanup methods so well you can actually see how they work—and which I think could even be used in trainings on oil spill science.

Something that may not be top-of-mind for many parents but which I appreciate is the presence of glossaries, indices, and citations for further reading. These resources can help adults and kids evaluate whether statements about these oil spills are supported by reliable information or not.

Reading Recommendations

When reading a book—whether it is about oil spills or not—with kids you know, keep the following recommendations in mind:

  • Make sure the story informs, as well as entertains.
  • Ask where the “facts” in the story came from.
  • Look for reputable, original sources of information.
  • Ask why different sources might be motivated to show information the way they do.
  • Talk to kids about thinking critically about where information comes from.

Learn more about the ocean, pollution, and creatures that live there from our list of resources for teachers and students.

Dr. Alan Mearns.Dr. Alan Mearns is Ecologist and Senior Staff Scientist with the Office of Response and Restoration’s Emergency Response Division in Seattle. He has over 40 years of experience in ecology and pollution assessment and response, with a focus on wastewater discharges and oil spills along the Pacific Coast and Alaska. He has worked in locations as varied as the Arctic Ocean, southern California, Israel, and Australia, and has participated in spill responses around the U.S. and abroad.


2 Comments

Our Top 10 New Year’s Resolutions for 2014

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii's Midway Atoll. We're looking forward to keeping our coasts clean in 2014 too! (NOAA)

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii’s Midway Atoll. We’re looking forward to keeping our coasts clean in 2014 too! (NOAA)

With the end of 2013, many are reflecting on how the past year went. For NOAA’s Office of Response and Restoration, we think we handled things pretty well, despite seeing some unusual challenges come our way (e.g., grounded drilling rig, molasses spill, 70 foot stranded dock). After all, being prepared—and preparing others—for the worst is a major focus in our work.

Despite our many accomplishments of the last year, however, we know that we should always be striving to improve how we respond to oil and chemical spills, assess and restore damaged ecosystems, and reduce the threat of marine debris.

So, without further ado, here are our top 10 resolutions for 2014:

  1. Lose “wait.” That is, we’re increasing our capacity to process damage assessment cases and get dollars for restoration out the door more quickly.
  2. Get more mobile. We’re making several of our websites friendlier for mobile devices. In particular, stay tuned to response.restoration.noaa.gov and incidentnews.noaa.gov.
  3. Make more friends. We’re now on Facebook and Twitter, so don’t be shy about following us for the latest news and updates.
  4. Stay trendy. As trends change in what petroleum products America is importing and exporting, we’re working with the University of Washington to explore how this will affect our readiness to respond to the oil spills of tomorrow.
  5. Quit littering. Or rather, get others to quit littering. We’re always dreaming up better ways to change people’s behavior so that everyone’s trash, including plastics, stays out of our oceans.
  6. Get our ducks in a row. When Hurricane Sandy came racing toward the East Coast, it was bringing wind and waves that would literally reshape the shoreline. As a result, we’re updating our northeast Environmental Sensitivity Maps to reflect changes caused by the storm and to add information that would enhance the value of these geographic summaries of vulnerable coastal resources when another disaster strikes.
  7. Help others. We’re partnering with states impacted by Sandy to assess and remove marine debris from the storm, so that means getting funding out fast to those who need it.
  8. Update our look. This spring, we’ll be releasing a major update to our mapping program MARPLOT, which allows emergency responders such as firefighters to create, customize, and download maps for offline use. Users will see very high-quality base (background) maps, including the familiar sight of Google maps.
  9. Listen more. We’ll be looking forward to hearing your thoughts on restoration plans and projects around the country, starting with Deepwater Horizon public meetings across the Gulf of Mexico in January.
  10. Release a new GNOME. In 2014, we’ll be releasing GNOME 2, our next generation oil spill modeling system. GNOME 2 will offer a Web-based system for forecasting the path of spilled oil in pre-designated locations in the U.S., include better 3-D modeling support, and integrate our oil weathering model, ADIOS.

Thanks for helping us make 2013 a great year. We look forward to even more in 2014!

Follow

Get every new post delivered to your Inbox.

Join 501 other followers