NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

On the Chesapeake Bay, Turning Artillery Sites and Landfills into Places for Wildlife

Excavator removes metal debris from the shore of a coastal landfill.

Used from 1972 to 1974, this landfill at Naval Support Facility Indian Head’s site 36 saw more than 57,000 pounds of metal and other materials hauled away as part of its cleanup and restoration. (U.S. Navy)

Roughly 25 miles downstream of Washington, DC, on the Potomac River is a military base known as Naval Support Facility Indian Head. Established in 1890, it is the U.S. Navy’s oldest continuously running ordnance station (ordnance includes artillery and ammunition). In the course of its history, this sprawling 2,500 acre naval installation has served as a research facility, a testing site for artillery, and a manufacturing site for some of the explosive chemical powders used in weapons.

However, as is the case for many other military facilities scattered along the shores of Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities—at one point, the Navy used it to test large naval guns by firing projectiles into the Potomac River—that it was designated a Superfund site and slated for cleanup under CERCLA.

Aerial view of Naval Support Facility Indian Head surrounded by water.

Like many other military facilities along the Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities that it was designated a Superfund site and slated for cleanup. (U.S. Navy)

But tackling environmental cleanup and restoration in a place with such a long history of explosives makes for unusual challenges.

For example, when the cleanup team needed to take soil or water samples, they often had to call in ordnance clearance specialists to help deal with the dangerous chemicals, guns, rockets, missiles, ordnance, and explosives potentially littering the area.

Juxtaposed against this scene at the base is Mattawoman Creek, a beautiful freshwater tidal creek with abundant wetlands and wildlife adjacent to the military site. Migratory fish such as yellow perch, herring, and shad follow the creek as they travel further inland to reproduce. In addition, many fish use the wetlands as a nursery and source of food. Large, hungry birds such as bald eagles, herons, and egrets flock to the area, as well as recreational fishers eager to cast their lines to the plentiful fish.

Fortunately, a detailed investigation indicated that this natural area has not suffered widespread impacts from pollution at the nearby base. Instead, the investigation directed the base’s cleanup strategy to focus on key sections serving as major pollution sources.

Laying Waste

The Caffee Road Landfill at the base’s Site 11 was such a mix of soil, waste, and debris that it actually extended the shoreline up to 150 feet into Mattawoman Creek. In addition to serving as a landfill for Indian Head, the military used the site to burn waste, and munitions and explosives potentially lay buried in pockets along the shoreline.

Getting this landfill—an ongoing source of pollution—under control needed to accomplish three goals: block contact with the contaminated soil, prevent shoreline erosion, and avoid exposing potential ordnance.

The design for remediating this site included placing a protective soil cover over the landfill and stabilizing the shoreline. Historically, shoreline stabilization has been achieved by positioning large rocks and riprap on the edge of the water, which “hardens” the shoreline and would move the wave energy from the protected area to adjacent areas.

Instead, NOAA and the trustee agencies responsible for the area’s natural resources proposed what is called a “living shoreline.” These hybrid shorelines are constructed habitats designed to mimic the functions of natural shoreline habitats and which incorporate both natural habitat and built infrastructure. They aim to provide the same benefits as nature, such as shoreline stabilization, improved water quality, and wildlife habitat. The project was rounded out by planting marsh shrubs and trees along the shoreline and by seeding and mulching the soil cover on top of the landfill.

All the while during these construction operations, the cleanup team had a trained professional clearing the munitions and explosives to provide safe working conditions as they transformed this dump into a safe place for fish, birds, and wildlife.

The close partnership among several federal and state agencies, including the Navy, U.S. Environmental Protection Agency, Maryland Department of the Environment, and the trustees, was instrumental in successfully and efficiently converting this former landfill into vibrant habitat, resulting in savings of more than $700,000.

Recycling for Wildlife

A similar transformation has occurred at a landfill on the base’s Site 36. This landfill, most likely originally part of Chickamuxen Creek and a nearby wetland, was used from 1972 to 1974 and has been inactive since that time. The fill material dumped into the creek was believed to contain metal casings from mines, bombs, and torpedoes—not exactly normal working conditions.

Cleanup focused on removing scrap metal and potential munitions items from the surface of the landfill and the shoreline. The multi-agency team hauled away more than 57,000 pounds of metal and other materials from the site, with much of it recycled rather than left under the existing soil cover. By taking a common-sense approach to removing this debris, the project managed risk and minimized environmental impacts by maintaining natural habitats, including forests and wetlands, whenever possible, while also ensuring the landfill’s soil cover would control pollution.

While there is still work to be done, progress abounds elsewhere on the naval facility. For example, the multi-agency cleanup team removed creek sediments contaminated with mercury and surrounding floodplain soils to protect and enhance restoration of habitat along a tributary to Mattawoman Creek. The tributary has been blocked off from the main channel to prevent mercury from getting to Mattawoman Creek, but with the mercury gone, there is now potential for opening up the tributary and reconnecting it with the creek.

Naval Support Facility Indian Head occupies a unique place in military history, and thanks to efficient collaboration among federal and state agencies working to clean it up, this locale again provides valuable and healthy habitat for fish, birds, and wildlife along the Chesapeake Bay.


Leave a comment

Five Key Questions NOAA Scientists Ask During Oil Spills

Responders in a small boat pressure-wash rocky shore at the site of an oil spill.

Responders pressure wash the Texas shoreline after the tank ship Eagle Otome oil spill in January of 2010. (NOAA)

During an emergency situation such as an oil spill or ship grounding, scientists in NOAA’s Office of Response and Restoration are guided by five central questions as they develop scientifically based recommendations for the U.S. Coast Guard.

These recommendations help the Coast Guard respond to the incident while minimizing environmental impacts resulting from the spill and response.

Identified in the late 1980s by NOAA, these questions provide a sequential framework for identifying key information at each step that will then inform answers to subsequent questions raised during an oil spill. For example, in order to predict “where could it go?” (question two), you first need to know “what spilled?” (question one), and so on.

Questions guiding NOAA's oil spill response science, with a ship leaking oil, surrounded by boom, with flying birds and a benzene molecule.

Naturally, during a spill response, it may become necessary to revisit earlier questions or assumptions as conditions change and more—or better—information becomes available.

The Scene of the Spill

Establishing what happened is the first step. What is the scenario for this incident and where is it occurring? Gathering this information means figuring out facts such as:

  • the type of incident (e.g., pipeline rupture versus oil tanker collision).
  • the volume and types of oil involved.
  • the incident environment (e.g., stormy, calm).
  • the incident location (e.g., open ocean, near shore, water temperature).

Forecast: Cloudy with a Chance of Oil

Dr. Amy MacFadyen is a NOAA physical oceanographer who frequently works on the next step, which is predicting where the oil is going to go. In most of the spills we respond to, the oil is spilled at or near the water surface and is less dense than water. Initially, the oil will float and form a slick. Dr. MacFadyen looks at what is going on in the environment with wind and waves, which can break up the slick, causing some of the oil to mix into the water column in the form of small droplets.

An important point is that responders can potentially clean up what is on top of the water but recovering oil droplets from the water column is practically impossible. This is why it is so important to spill responders to receive accurate predictions of the movement of the surface slicks so they can quickly implement cleanup or prevention strategies.

In order to make predictions about oil movement, Dr. MacFadyen uses a computer model which includes ocean current and wind forecasts to generate an oil trajectory forecast map. Trajectory forecast models may be updated frequently, as conditions at the site of the spill change. Although the trajectory map shows the position of the oil, there is an element of uncertainty as the forecasts are based on other predictions, such as weather forecasts, which are not always perfect and are themselves subject to change.

To reduce uncertainty, trajectory forecasts incorporate information from trained observers flying over the slick who can confirm the actual location of the oil over the course of the spill response. MacFadyen can then incorporate that updated information as she runs the trajectory forecast model again.

A Sense of Sensitivity

In order to answer what the oil might affect, NOAA developed Environmental Sensitivity Index maps to identify what might be harmed by a spill in different habitat types. It is necessary for responders and decision makers to know what shoreline types exist in the path of the oil, as well as vulnerable species and habitats so that they can plan for the appropriate protection (such as booming) or cleanup method (such as skimming). Cleaning up oil off a sandy beach is very different than a salt marsh, mudflat, or rocky shore.

Animals, plants, and habitats at risk can include those on the water (e.g., seabirds), below the surface (e.g., fish), and on the bottom (e.g., mussels), as well as on the shoreline (e.g., marsh grasses).

Jill Petersen, manager of the Office of Response and Restoration Environmental Sensitivity Index map program, works to ensure that these maps of each U.S. coastal region are up-to-date so that this information is readily available should a spill occur.

Raise the Alarm for Harm

The next step is to look at what harm the oil could cause. When oil is released into the water, it can cause harm to marine animals and the environment. Oil contains thousands of chemical compounds. Polycyclic aromatic hydrocarbons [PDF], or PAHs as they are commonly known, are a class of oil compounds that have been associated with toxic effects in exposed organisms. Because of this, scientists frequently study PAHs in spilled oil to gauge the oil’s potential environmental impact.

However, the complexity of each oil’s chemistry and the changes that occur once it is in the environment make the assessment of risk a challenging task. In order to do so, response biologists consider the type of oil, the sensitivity of potentially exposed organisms, and how the oil is expected to behave in the environment.

Oil spills can involve releases of large volumes of oil that overwhelm whatever natural capacity there might be to absorb impacts, which leads to the photographs we see of heavy oil covering plants and animals. But recent research studies have shown that even minute amounts of petroleum can harm marine eggs and larvae—which means the decisions we make during a response are even more critical to the long-term health of the affected habitats.

NOAA marine biologist Dr. Alan Mearns is an expert on how pollution from oil harms the environment. Each year, he reviews and summarizes recent research in this field to ensure oil spill response recommendations and decisions are based on the most current science that exists.

Sending Help

A skimmer picks up oil off the surface of the Delaware River.

A skimmer picks up oil off the surface of the Delaware River after the tanker Athos spilled oil in 2004. (NOAA)

Answering the previous questions allows us to determining what can be done to help. Doug Helton, the Office of Response and Restoration’s Incident Operations Coordinator, describes possible solutions as usually falling under three categories: containing the source, cleaning up, and protecting the shore.

To contain the source means to limit the further release of pollution by plugging the leak in the pipeline or containing the spill, for example, by keeping the ship from sinking and losing its entire cargo of oil.

Cleanup on the water could be conducted by mechanical means, such as booming and skimming, or through alternative technologies, such as burning the oil in open water or using chemicals to disperse the oil.

Cleanup along the shoreline can be done manually or mechanically using methods such as pressure washing. When considering cleanup options, sometimes monitoring the situation is the best option when a response method could actually cause more harm to the environment. One example is in an oiled marsh because these habitats are especially vulnerable to oil but also to being damaged by people walking through them trying to remove oil.

In addition to providing scientific support to the U.S. Coast Guard, NOAA’s Office of Response and Restoration develops oil spill response software and mapping tools. For responders, NOAA has published a series of job aids and manuals that provide established techniques and guidelines for observing oil, assessing shoreline impact, and evaluating accepted cleanup technologies for a variety of oil spill situations.


2 Comments

What Have We Learned About Using Dispersants During the Next Big Oil Spill?

The Deepwater Horizon Oil Spill: Five Years Later

This is the eighth in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

A U.S. Air Force plane drops an oil-dispersing chemical onto an oil slick on the Gulf of Mexico

A U.S. Air Force plane drops an oil-dispersing chemical onto an oil slick on the Gulf of Mexico May 5, 2010, as part of the Deepwater Horizon response effort. (NOAA)

Five years ago, in the middle of the response to the Deepwater Horizon oil spill, I was thrown into a scientific debate about the role of chemical dispersants in response to the spill. Dispersants are one of those things that are talked about a lot in the context of oil spills, but in reality used pretty rarely. Over my more than 20 years in spill response, I’ve only been involved with a handful of oil spills that used dispersants.

But the unprecedented use of chemical dispersants on and below the ocean’s surface during the Deepwater Horizon oil spill raised all sorts of scientific, public, and political questions. Questions about both their effectiveness in minimizing impacts from oil as well as their potential consequences for marine life in the Gulf of Mexico.

Did we understand how the ingredients and components of the dispersants behave? How toxic are they? What are the potential risks of dispersants and do they outweigh the benefits?

We knew the flood of questions wouldn’t end when the gushing oil well was capped; they would only intensify the next time there was a significant oil spill in U.S. waters. NOAA, as the primary scientific adviser to the U.S. Coast Guard, would need to keep abreast of the surge of new information and be prepared to answer those questions. Five years later, we know a lot more, but many of the scientific, public, and policy questions remain open to debate.

What Are Dispersants?

Dispersants are a class of chemicals specifically designed to remove oil from the water surface. One commonly used brand name is Corexit, but there are dozens of different dispersant mixtures (see this list of all the products available for use during an oil spill).

They work by breaking up oil slicks into lots of small droplets, similar to how dish detergent breaks up the greasy mess on a lasagna pan. These tiny droplets have a high surface area-to-volume ratio, making them easier for oil-eating microbes to break them down (through the process of biodegradation). Their small size also makes the oil droplets less buoyant, allowing them to scatter throughout the water column more easily.

Why Does Getting Oil off the Ocean Surface Matter?

Oil slicks on the water surface are particularly dangerous to seabirds, sea turtles, marine mammals, sensitive early life stages of fish (e.g., fish eggs and embryos), and intertidal resources (such as marshes and beaches and all of the plants and animals that live in those habitats). Oil, in addition to being toxic when inhaled or ingested, interferes with birds’ and mammals’ ability to stay waterproof and maintain a normal body temperature, often resulting in death from hypothermia. Floating oil can drift long distances and then strand on shorelines, creating a bigger cleanup challenge.

However, applying dispersants to an oil slick instead shifts the possibility of oil exposure to animals living in the water column beneath the ocean surface and on the sea floor. We talk about making a choice between either protecting shorelines and surface-dwelling animals or protecting organisms in the water column.

But during a large spill like the Deepwater Horizon, this is a false choice. No response technology is 100 percent effective, so it’s not either this or that; it’s how much of each? If responders do use dispersants, some oil will still remain on the surface (or reach the surface in the case of subsurface dispersants), and if they don’t use dispersants, some oil will still naturally mix into or remain in the water column.

Why Don’t We Just Clean up Oil with Booms and Skimmers?

Cleaning up oil with mechanical response methods like skimmers is preferable because these vessels actually remove the mess from the environment by skimming and collecting oil off the water surface. And in most spills, that is all we use. There are thousands of small and medium-sized spills annually, and mechanical cleanup is the norm for these incidents.

But these methods, known as “mechanical recovery,” can only remove some of the oil. Under ideal (rather than normal) circumstances, skimmers can recover—at best—only around 40 percent of an oil spill. During the Deepwater Horizon oil spill response, skimmers only managed to recover approximately 3 percent of the oil released.

Dispersants generally are only considered when mechanical cleanup would be swamped or is considered infeasible. During a big spill, mechanical recovery may only account for a small percentage of the oil. Booms (long floating barriers used to contain or soak up oil) and skimmers don’t work well in rough seas and take more time to deploy. Booms also require constant maintenance or they can become moved around by wind and waves away from their targeted areas. If they get washed onto shore, booms can cause significant damage, particularly in sensitive areas such as marshes and wetlands.

Aircraft spraying dispersant are able to treat huge areas of water quickly while a skimmer moves very slowly, only one to two miles per hour. In the open ocean spilled oil can spread as fast, or faster, than the equipment trying to corral it.

Isn’t There Something Better?

Chemical product label for Corexit dispersant.

Dispersants, such as Corexit, are a class of chemicals specifically designed to remove oil from the water surface by breaking up oil slicks into lots of small droplets. (NOAA)

Well, researchers are trying to develop more effective response tools, including safer dispersants. And the questions surrounding the potential benefits and risks of using dispersants in the Gulf of Mexico have led to substantial research in the Gulf and other waters at risk from spills, including the Arctic. That research is ongoing, and answering one question usually leads to several more.

Unfortunately, however, once an oil spill occurs, we don’t have the luxury of waiting for more research to address lingering scientific and technical concerns. A decision will have to be made quickly and with incomplete information, applied to the situation at the moment. And if, during a large spill, mechanical methods become overwhelmed, the question may be: Is doing nothing else better than using dispersants?

That summer of 2010, in between trips to the Gulf and to hearings in DC, we began to evaluate the observations and science conducted during the spill to build a foundation for planning and decision making in future spills. In 2011, NOAA and our partners held a national workshop of federal, state, industry, and academic scientists to discuss what was known about dispersants and considerations for their use in future spills. You can read the reports and background materials from that workshop.

That was not the only symposium focused on dispersant science and knowledge. Almost every major marine science conference over the past five years has devoted time to the issue. I’ve been involved in workshops and conferences from Florida to Alaska, all wrestling with this issue.

What Have We Learned?

Freshly spilled crude oil in the Ohmsett saltwater test tank starts turning brown after dispersants applied.

The Deepwater Horizon oil spill spawned a larger interest in researching dispersants. Here, you can see freshly spilled crude oil in the Ohmsett saltwater test tank in New Jersey, where the oil starts changing a few minutes after dispersants were applied. Note that some of the oil is still black, but some is turning brown. (NOAA)

Now, five years later, many questions remain and more research is coming out almost daily, including possible impacts from these chemicals on humans—both those active in the response as well as residents near the sites of oiling. Keeping up with this research is a major challenge, but we are working closely with our state and federal partners, including the U.S. Environmental Protection Agency and Coast Guard, as well as those in the academic community to digest the flow of information.

The biggest lesson learned is one we already knew. Once oil is spilled there are no good outcomes and every response technology involves trade-offs.

Dispersants don’t remove oil from the environment, but they do help reduce the concentration of the oil by spreading it out in the water (which ocean currents and other processes do naturally), while also increasing degradation rates of oil. They reduce the amount of floating oil, which reduces the risk for some organisms and environments, but increases the risk for others. We also know that some marine species are even more sensitive to oil than we previously thought, especially for some developmental stages of offshore fish including tuna and mahi mahi.

But we also know, from the Exxon Valdez and other spills, that oil on the shore can persist for decades and create a chronic source of oil exposure for birds, mammals, fish, and shellfish that live near shore. We don’t want oil in the water column, and we don’t want oil in our bays and shorelines. Basically, we don’t want oil spills at all. That sounds like something everyone can agree with.

But until we stop using, storing and transporting oil, we have the risk of spills. The decision to use dispersants or not use dispersants will never be clear cut. Nor will it be done without a lot of discussion of the trade-offs. The many real and heart-felt concerns about potential consequences aren’t dismissed lightly by the responders who have to make tough choices during a spill.

I am reminded of President Harry Truman who reportedly said he wanted a one-handed economist, since his economic advisers would always say, “on the one hand…on the other.”


Leave a comment

After an Oil Spill, How—and Why—Do We Survey Affected Shorelines?

Four people walking along a beach.

A team of responders surveying the shoreline of Raccoon Island, Louisiana, on May 12, 2010. They use a systematic method for surveying and describing shorelines affected by oil spills, which was developed during the Exxon Valdez spill in 1989. (U.S. Navy)

This is part of the National Ocean Service’s efforts to celebrate our role in the surveys that inform our lives and protect our coasts.

In March of 1989, oil spill responders in Valdez, Alaska, had a problem. They had a very large oil spill on their hands after the tanker Exxon Valdez had run aground on Bligh Reef in Prince William Sound.

At the time, many aspects of the situation were unprecedented—including the amount of oil spilled and the level of response and cleanup required. Further complicating their efforts were the miles and miles of remote shoreline along Prince William Sound. How could responders know which shorelines were hardest hit by the oil and where they should focus their cleanup efforts? Plus, with so many people involved in the response, what one person might consider “light oiling” on a particular beach, another might consider “heavy oiling.” They needed a systematic way to document the oil spill’s impacts on the extensive shorelines of the sound.

Out of these needs ultimately came the Shoreline Cleanup and Assessment Technique, or SCAT. NOAA was a key player involved in developing this formal process for surveying coastal shorelines affected by oil spills. Today, we maintain the only SCAT program in the federal government although we have been working with the U.S. Environmental Protection Agency (EPA) to help develop similar methods for oil spills on inland lakes and rivers.

Survey Says …

SCAT aims to describe both the oil and the environment along discrete stretches of shoreline potentially affected by an oil spill. Based on that information, responders then can determine the appropriate cleanup methods that will do the most good and the least harm for each section of shoreline.

The teams of trained responders performing SCAT surveys normally are composed of representatives from the state and federal government and the organization responsible for the spill. They head out into the field, armed with SCAT’s clear methodology for categorizing the level and kind of oiling on the shoreline. This includes standardized definitions for describing how thick the oil is, its level of weathering (physical or chemical change), and the type of shoreline impacted, which may be as different as a rocky shoreline, a saltwater marsh, or flooded low-lying tundra.

After carefully documenting these data along all possibly affected portions of shoreline, the teams make their recommendations for cleanup methods. In the process, they have to take a number of other factors into account, such as whether threatened or endangered species are present or if the shoreline is in a high public access area.

It is actually very easy to do more damage than good when cleaning up oiled shorelines. The cleanup itself—with lots of people, heavy equipment, and activity—can be just as or even more harmful to the environment than spilled oil. For sensitive areas, such as a marsh, taking no cleanup action is often the best option for protecting the stability of the fragile shoreline, even if some oil remains.

Data, Data Everywhere

Having a common language for describing shoreline oiling is a critical piece of the conversation during a spill response. Without this standard protocol, spill responders would be reinventing the wheel for each spill. Along that same vein, responders at NOAA are working with the U.S. EPA and State of California to establish a common data standard for the mounds of data collected during these shoreline surveys.

Managing all of that data and turning it into useful products for the response is a lot of work. During bigger spills, multiple data specialists work around the clock to process the data collected during SCAT surveys, perform quality assurance and control, and create informational products, such as maps showing where oil is located and its level of coverage on various types of shorelines.

Data management tools such as GPS trackers and georeferenced photographs help speed up that process, but the next step is moving from paper forms used by SCAT field teams to electronic tools that enable these teams to directly enter their data into the central database for that spill.

Our goal is to create a data framework that can be translated into any tool for any handheld electronic device. These guidelines would provide consistency across digital platforms, specifying exactly what data are being collected and in which structure and format. Furthermore, they would standardize which data are being shared into a spill’s central database, whether they come from a state government agency or the company that caused the spill. This effort feeds into the larger picture for managing data during oil spills and allows everyone working on that spill to understand, access, and work with the data collected, for a long time after the spill.

Currently, we are drafting these data standards for SCAT surveys and incorporating feedback from NOAA, EPA, and California. In the next year or two, we hope to offer these standards as official NOAA guidelines for gathering digital data during oiled shoreline surveys.

To learn more about how teams perform SCAT surveys, check out NOAA’s Shoreline Assessment Manual and Job Aid.


Leave a comment

After a Century Apart, NOAA and Partners Reunite a Former Wetland with San Francisco Bay’s Tides

Excavator removing earth from a breached barrier between tide waters in a slough and the new wetland.

The first of four breaches of tidal levees separating Cullinan Ranch from the tide waters of San Francisco Bay. (NOAA)

Scooping away the last narrow band of mud, a bright yellow excavator released a rush of brackish water into an area cut off from the tides for more than a hundred years.

The 1,200 acre field now filling with water, known as Cullinan Ranch due to its history as a hay farm, is once again becoming a tidal wetland.

On January 6, 2015, more than 100 people celebrated the reintroduction of tide waters to Cullinan Ranch in Solano County, California. For decades before, earthen levees had separated it from the nearby Napa River and San Pablo Bay, a northern corner of the San Francisco Bay Estuary.

With three more levee breaches planned by the end of January, restoration of this 1,500 acre site is nearly complete, with efforts to monitor the project’s progress to follow. Surrounded by state and federal wildlife lands, Cullinan Ranch will fill in a gap in coastal habitat as it becomes integrated with San Pablo Bay National Wildlife Refuge.

How Low Can It Flow

For the most part, Cullinan Ranch will be covered in open water because years of farming, beginning in the 1880s, caused the land to sink below sea level. The open water will provide places for animals such as fish and birds—as well as the invertebrates they like to eat—to find food and rest after big storms.

However, some areas of the property will remain above the low tide level, creating conditions for the plant pickleweed to thrive. While a succulent like cacti, pickleweed can survive wet and salty growing conditions. (Fun fact: Some people enjoy cooking and eating pickleweed. When blanched, it apparently tastes salty and somewhat crispy.) The salt marsh harvest mouse, native to California and one of the few mammals able to drink saltwater, also will take advantage of the habitat created by the pickleweed in the recovering wetland.

Wildlife will not be the only ones enjoying the restoration of Cullinan Ranch. A major highway passes by the site, and Cullinan Ranch has experienced numerous upgrades to improve recreational access for people brought there by Highway 37. Soon anyone will be able to hike on the newly constructed trails, fish off the pier, and launch kayaks from the dock.

Turning Money into Marshes

The restoration of Cullinan Ranch from hay field to tidal wetland has been in the works for a long time, brought about by a range of partners and funding agencies, including NOAA, the U.S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, California Department of Fish and Wildlife, California Wildlife Conservation Board, and Ducks Unlimited. NOAA provided several sources of funding to help finish this restoration project.

In addition to $900,000 from the American Recovery and Reinvestment Act, NOAA contributed $650,000 through a community-based restoration partnership with Ducks Unlimited and $1.65 million awarded for natural resource damages through the Castro Cove trustee council. The latter funding was part of a $2.65 million settlement with Chevron as a result of the nearby Chevron Richmond Refinery discharging mercury and oil pollution into Castro Cove for years. Cullinan Ranch and Breuner Marsh are the two restoration projects Chevron funded to make up for this pollution.

Map of San Francisco Bay showing locations of NOAA restoration projects.

NOAA is working on a number of tidal wetland restoration projects in the north San Francisco Bay. (NOAA)

Cullinan Ranch is one of the largest restoration projects in the north San Francisco Bay, but it is far from the only one NOAA is involved with in the region. Helping reverse a century-long trend which saw many of the bay’s tidal wetlands disappear, NOAA has been working on a suite of projects restoring these historic and important coastal features in northern California.

Watch footage of the earthen levee being breached to reconnect the bay’s tide waters to Cullinan Ranch.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Winter 2015

Two people talking on a beach with a ferry in the background.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of February 23–27, 2015 at the NOAA Disaster Response Center in Mobile, Alabama.

We will accept applications for this class through Friday, January 9, 2015, and we will notify applicants regarding their participation status by Friday, January 16, 2015, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas, (April 27–May 1, 2015) and Seattle, Washington (date to be determined).

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Out of Sandy, Lessons in Helping Coastal Marshes Recover from Storms

Cleanup workers scoop oil out of an oiled marsh with containment boom around the edges.

After Sandy’s flooding led to an oil spill at a Motiva refinery, Motiva cleanup workers extract oil from Smith Creek, a waterway connected to the Arthur Kill, in Woodbridge, New Jersey, on November 5, 2012. (NOAA)

Boats capsized in a sea of grass. Tall trees and power lines toppled over. A dark ring of oil rimming marsh grasses. This was the scene greeting NOAA’s Simeon Hahn and Carl Alderson a few days after Sandy’s floodwaters had pulled back from New Jersey in the fall of 2012.

They were surveying the extent of an oil spill in Woodbridge Creek, which is home to a NOAA restoration project and feeds into the Arthur Kill, a waterway separating New Jersey from New York’s Staten Island. When the massive storm known as Sandy passed through the area, its flooding lifted up a large oil storage tank at the Motiva Refinery in Sewaren, New Jersey. After the floodwaters set the tank back down, it caused roughly 336,000 gallons of diesel fuel to leak into the creek and surrounding wetlands.

That day, the NOAA team was there with Motiva and the New Jersey Department of Environmental Protection (DEP) to begin what can be a long and litigious process of determining environmental impacts, damages, and required restoration—the Natural Resource Damage Assessment process.

In this case, however, not only did the group reach a cooperative agreement—in less than six months—on a restoration plan for the oiled wetlands, but at another wetland affected by Sandy, NOAA gained insight into designing restoration projects better able to withstand the next big storm.

Cleaning up the Mess After a Hurricane

Hurricanes and other large storms cause a surprising number of oil and hazardous chemical spills along the coast. After Sandy hit New York and New Jersey, the U.S. Coast Guard began receiving reports of petroleum products, biodiesel, and other chemicals leaking into coastal waters from damaged refineries, breached petroleum storage tanks, and sunken and stranded vessels. The ruptured tank at the Motiva Refinery was just one of several oil spills after the storm, but the approach in the wake of the spill is what set it apart from many other oil spills.

“Early on we decided that we would work together,” reflected Hahn, Regional Resource Coordinator for NOAA’s Office of Response and Restoration. “There was a focus on doing the restoration rather than doing lengthy studies to quantify the injury.”

This approach was possible because Motiva agreed to pursue a cooperative Natural Resource Damage Assessment with New Jersey as the lead and with support from NOAA. This meant, for example, that up front, the company agreed to provide funding for assessing the environmental impacts and implementing the needed restoration, and agreed on and shared the data necessary to determine those impacts. This cooperative process resulted in a timely and cost-effective resolution, which allowed New Jersey and NOAA to transition to the restoration phase.

Reaching Restoration

Because of the early agreement with Motiva, NOAA and New Jersey DEP did not conduct exhaustive new studies detailing specific harm to these particular tidal wetlands. Instead, they turned to the wealth of data from the oil spill response and existing data from the Arthur Kill to make an accurate assessment of the oil’s impacts.

People driving small boats up a marshy river in winter.

A few days after the oil spill, Motiva’s contractors ferried the assessment team up Woodbridge Creek in New Jersey, looking for impacts from the oil. (NOAA)

From their shoreline, aerial, and boat surveys, they knew that the marsh itself had a bathtub ring of oil around the edge, affecting marsh grasses such as Spartina. No oiled wildlife turned up. However, the storm’s immediate impacts made it difficult to take water and sediment samples or directly examine potential effects to fish. Fortunately, the assessment team was able to use a lot of data from a nearby past oil spill and damage assessment in the Arthur Kill. In addition, they could rely on both general scientific research on oil spill toxicology and maps from the response team detailing the areas most heavily oiled.

Together, this created a picture of the environmental injuries the oil spill caused to Woodbridge Creek. Next, NOAA economists used the habitat equivalency analysis approach to calculate the amount of restoration needed to make up for these injuries: 1.23 acres of tidal wetlands. They then extrapolated how much it will cost to do this restoration based on seven restoration projects within a 50 mile radius, coming to $380,000 per acre. As a result, NOAA and New Jersey agreed that Motiva needed to provide $469,000 for saltwater marsh restoration and an additional $100,000 for monitoring, on top of Motiva’s cleanup costs for the spill itself.

To use this relatively small amount of money most efficiently, New Jersey DEP, as the lead agency, is planning to combine it with another, larger restoration project already in the works. While still negotiating which project that will be, the team has been eyeing a high-profile, 80-acre marsh restoration project practically in the shadow of the Statue of Liberty. Meanwhile, the monitoring project will take place upstream from the site of the Motiva oil spill at the 67-acre Woodbridge Creek Marsh, which received light to moderate oiling. NOAA already has data on the state of the animals and plants at this previously established restoration site, which will provide a rare comparison for before and after the oil spill.

Creating More Resilient Coasts

A storm as damaging as Sandy highlights the need for restoring wetlands. These natural buffers offer protection for human infrastructure, absorbing storm surge and shielding shorelines from wind and waves. Yet natural resource managers are still learning how to replicate nature’s designs, especially in urban areas where river channels often have been straightened and adjoining wetlands filled and replaced with shorelines armored by concrete riprap.

To the south in Philadelphia, Sandy contributed to significant erosion at a restored tidal marsh and shoreline at Lardner’s Point Park, located on the Delaware River. This storm revealed that shoreline restoration techniques which dampen wave energy before it hits the shore would help protect restored habitat and reduce erosion and scouring.

Out of this destructive storm, NOAA and our partners are trying to learn as much as possible—both about how to reach the restoration phase even more efficiently and how to make those restoration projects even more resilient. The wide range of coastal threats is not going away, but we at NOAA can help our communities and environment bounce back when they do show up on our shores.

Learn more about coastal resilience and how NOAA’s Ocean Service is helping our coasts and communities bounce back after storms, floods, and other disasters and follow #NOAAResilience on social media.

Follow

Get every new post delivered to your Inbox.

Join 563 other followers