NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Podcast: What Was It Like Responding in the Aftermath of Hurricane Katrina?

On today’s episode of Diving Deeper, we remember one of the most devastating natural disasters to hit U.S. shores: Hurricane Katrina, which made landfall 10 years ago this week.

What was it like working in New Orleans and the surrounding area in the wake of such a storm?

In this podcast, we talk with Charlie Henry and Dave Wesley, two pollution responders from NOAA’s Office of Response and Restoration who were working in the area in the aftermath of not just one massive hurricane, but two, as Hurricane Rita swept across the Gulf Coast just a few short weeks later.

Hear about their experiences responding to these storms, find out which memories stand out the most for them, and reflect on the toll of working in a disaster zone:

Learn more about our work after Hurricanes Katrina and Rita, explore the progress made in the 10 years since, and see photos of the destruction these storms left across the heavily industrialized coast of the Gulf of Mexico.


Leave a comment

Surveying What Hurricane Katrina Swept out to Sea

This is a post by Nir Barnea of NOAA’s Marine Debris Program.

Sunken boat next to a house in Louisiana.

Hurricane Katrina’s storm surge, over 25 feet high in places, destroyed houses, boats, and infrastructure along the Gulf Coast, and when it receded, it washed out to sea massive amounts of what became marine debris. (U.S. Coast Guard)

Hurricane Katrina was a powerful storm, one which brings a variety of powerful images to people’s minds: The satellite image of the huge storm moving toward the Gulf Coast, the flooded neighborhoods of New Orleans, damaged boats strewn all over like discarded toys.

But for me, the image I remember most vividly is one of stairways leading to homes no longer there. Driving along Mississippi’s Route 90 from Biloxi to Pass Christian on a hot August day in 2006, I saw dozens of them. They were the only remnants left of the beautiful beachfront houses that once lined that road, an area devastated by Hurricane Katrina’s overwhelming storm surge.

Swept Away

The same massive storm surge that demolished these houses was the reason I was in the region a year after Hurricane Katrina struck the Gulf Coast. The storm surge, over 25 feet high in places, destroyed houses and infrastructure, and when it receded, it washed out to sea massive amounts of what became marine debris.

In the wake of Hurricane Katrina and less than a month later, Hurricane Rita, the marine debris in ports and navigation channels was cleared quickly. However, the remaining debris, outside of navigation channels and in fishing and boating areas, posed a safety hazard to people, damaged boats and fishing gear, and hampered recreation and commercial activities.

To help deal with this debris, Congress appropriated funding in 2006 and again in 2007 to NOAA’s Office of Coast Survey and Office of Response and Restoration to survey traditional fishing grounds, map items found, disseminate survey information to assist with removal, and inform the public.

The project took three years. During the first phase, areas off the coast of Alabama, Mississippi, and eastern Louisiana were surveyed with side scan sonar. The survey teams generated maps of suspected underwater debris items (called “targets”) and placed them on the Gulf of Mexico Marine Debris Project website. We also shared with the public the locations of debris items determined to be a danger to navigation.

In the second phase of the project, our survey covered nearshore areas along the central and western Louisiana coastline. In addition to side scan sonar, survey teams used multi-beam survey technology for major targets, which is a powerful tool that provided us with vivid images of the objects detected.

NOAA, Federal Emergency Management Agency (FEMA), U.S. Coast Guard, and the State of Louisiana collaborated closely to determine which targets were the result of Hurricanes Katrina or Rita and therefore eligible for removal. Many of the targets we detected were actually not the result of these two major storms.

Dealing with Disaster Debris

Overturned boat in water awaiting salvage with another boat salvaged in background.

To help deal with the debris not yet cleared after Hurricanes Katrina and Rita, Congress appropriated funding to NOAA to survey traditional fishing grounds, map items found, and share that information to assist with removal and public notification. (NOAA)

On September 2, 2009, the project partners met in Baton Rouge, Louisiana, for a workshop summarizing the project. Participants provided insights and suggestions for improving the process, which were later gathered into the workshop proceedings [PDF]. We learned many lessons from this project, which should be put to good use in the future.

One of the things I liked most about the project was its collaborative nature. Project partners included two NOAA offices and eight contractors, Coast Guard, FEMA, a host of state agencies from the three impacted states, NOAA Sea Grant, and of course, the general public in the Gulf of Mexico. This collaborative effort did not go unnoticed, and the project received the Gulf Guardian Award for Partnership.

Hurricane Katrina was the first severe marine debris event for the young NOAA Marine Debris Program, established in 2005. It was not the last.

Over the last 10 years, our program, along with other parts of NOAA, have dealt with marine debris from Hurricane Sandy, a tsunami in American Samoa, and most recently, the influx of debris from the Japan tsunami of 2011.

Sadly, this trend suggests more such events in the future. NOAA and other agencies have learned a lot over the past 10 years, and we are better prepared for the next disaster which might sweep debris out to sea or bring large amounts of it onto shore (what we call “severe marine debris events”). Learn more at gulfofmexico.marinedebris.noaa.gov and marinedebris.noaa.gov/current-efforts/emergency-response.


1 Comment

Melting Permafrost and Camping with Muskoxen: Planning for Oil Spills on Arctic Coasts

 Muskoxen near the scientists' field camp on Alaska's Espenberg River.

Muskoxen near the scientists’ field camp on Alaska’s Espenberg River. (NOAA)

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

Alaska’s high Arctic coastline is anything but a monotonous stretch of beach. Over the course of more than 6,500 miles, this shoreline at the top of the world shows dramatic transformations, featuring everything from peat and permafrost to rocky shores, sandy beaches, and wetlands. It starts at the Canadian border in the east, wraps around the northernmost point in the United States, and follows the numerous inlets, bays, and peninsulas of northwest Alaska before coming to the Bering Strait.

Planning for potential oil spills along such a lengthy and varied coastline leaves a lot for NOAA’s Office of Response and Restoration to consider. We have to take into account a wide variety of shorelines, habitats, and other dynamics specific to the Arctic region.

This is why fellow NOAA Office of Response and Restoration scientist Catherine Berg and I, normally based in Anchorage, jumped at the opportunity to join a National Park Service–led effort supporting oil spill response planning in the state’s Northwest Arctic region.

Our goal was to gain on-the-ground familiarity with its diverse shorelines, nearshore habitats, and the basics of working out there. That way, we would be better prepared to support an emergency pollution response and carry out the ensuing environmental impact assessments.

Arctic Endeavors

Man inflating boat next to ATV and woman kneeling on beach.

At right, NOAA Regional Resource Coordinator Dr. Sarah Allan collects sediment samples while National Park Service scientist Paul Burger inflates the boat near the mouth of the Kitluk River in northwest Alaska. (National Park Service)

Many oil spill planning efforts have focused on oil drilling sites on Alaska’s North Slope, especially in Prudhoe Bay and the offshore drilling areas in the Chukchi Sea. However, with increased oil exploration and a longer ice-free season in the Arctic, more ship traffic—and a heightened risk of oil spills—extends to the transit routes throughout Arctic waters.

This risk is especially apparent in the Northwest Arctic around the Bering Strait, where vessel traffic is squeezed between Alaska’s mainland and two small islands. On top of the growing risk, the Northwest Arctic coast, like much of Alaska, presents daunting logistical challenges for spill response due to its remoteness and limited infrastructure and support services.

To help get a handle on the challenges along this region’s coast, Catherine Berg and I traveled to northwest Alaska in July 2015 and, in tag-team fashion, visited the shorelines of the Chukchi Sea in coordination with the National Park Service. Berg is the NOAA Scientific Support Coordinator for emergency response and I’m the Regional Resource Coordinator for environmental assessment and restoration.

The National Park Service is collecting data to improve Geographic Response Strategies in the Bering Land Bridge National Preserve and the Cape Krusenstern National Monument, both flanking Kotzebue Sound in northwest Alaska. These strategies, a series of which have been developed for the Northwest Arctic, are plans meant to protect specific sensitive coastal environments from an oil spill, outlining recommendations for containment boom and other response tools.

Because our office is interested in understanding the potential effects of oil on Arctic shorelines, we worked with the Park Service on this trip to collect information related to oil spill response and environmental assessment planning in northwest Alaska’s Bering Land Bridge National Preserve.

The Wild Life

From the village of Kotzebue, two National Park Service scientists and I—along with our all-terrain vehicle (ATV), trailer, and all of our personal, camping, and scientific gear—were taken by boat to a field camp on the Espenberg River. After arriving, we could see signs of bear, wolf, and wolverine activity near where this meandering river empties into the Bering Sea. Herds of muskoxen passed near camp.

Considering most of the Northwest Arctic’s shorelines are just as wild and hard-to-reach, we should expect to be set up in a similar field camp, with similarly complex planning and logistics, in order to collect environmental impact data after an oil spill. As I saw firsthand, things only got more complicated as weather, mechanics, shallow water, and low visibility forced us to constantly adapt our plans.

Heading west, we used ATVs to get to the mouth of the Kitluk River, where the Park Service collected data for the Geographic Response Strategies, while I collected sediment samples from the intertidal area for chemical analysis. These samples would serve as set of baseline comparisons should there be an oil spill in a similar area.

Traveling there, we saw dramatic signs of coastal erosion, a reminder of the many changes the Arctic is experiencing.

The next day, the boat took us around Espendberg Point into Kotzebue Sound to the Goodhope River estuary. There, we used a small inflatable boat with a motor to check out the different sites identified for special protection in the Geographic Response Strategy. I also took the opportunity to field test the “Vegetated Habitats” sampling guideline I helped develop for collecting time-sensitive data in the Arctic. Unfortunately, the very shallow coastal water presented a challenge for both our vessels; the water was only a few feet deep even three miles offshore.

After an unplanned overnight in Kotzebue (more improvising!), I returned to the field camp via float plane and got an amazing aerial view of the coastline. The Arctic’s permafrost and tundra shorelines are unique among U.S. coastlines and will require special oil spill response, cleanup, and impact assessment considerations.

Sound Lessons

After I returned to the metropolitan comforts of Anchorage, my colleague Catherine Berg swapped places, joining the Northwest Arctic field team.

As the lead NOAA scientific adviser to the U.S. Coast Guard during oil spill response in Alaska, her objective was to evaluate Arctic shoreline types not previously encountered during oil spills. Using our Shoreline Cleanup and Assessment Technique method, she targeted shorelines within Kupik Lagoon on the Chukchi Sea coast and in the Nugnugaluktuk River in Kotzebue Sound. She surveyed the profile of these shorelines and recorded other information that will inform and improve Arctic-specific protocols and considerations for surveying oiled shorelines.

Though we only saw a small part of the Northwest Arctic coastline, it was an excellent opportunity to gauge how its coastal characteristics would influence the transport and fate of spilled oil, to improve how we would survey oiled Arctic shorelines, to gather critical baseline data for this environment, and to field test our guidelines for collecting time-sensitive data after an oil spill.

One of the greatest challenges for responding to and evaluating the impacts of an Arctic oil spill is dealing with the logistics of safety, access, transportation, and personnel support. Collaborating with the Park Service and local community in Kotzebue and gaining experience in the field camp gave us invaluable insight into what we would need to do to work effectively in the event of a spill in this remote area.

First, be prepared. Then, be flexible.

Thank you to the National Park Service, especially Tahzay Jones and Paul Burger, for the opportunity to join their field team in the Bering Land Bridge National Preserve.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


Leave a comment

Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

If your house were burning down, who would you want to respond? The local firefighters, armed with hoses and broad training in first aid, firefighting, and crowd management? Or would your panicked neighbors running back and forth with five-gallon buckets of water suffice?

Presumably, everyone would choose the trained firefighters. Why?

Well, because they know what they are doing! People who know what they are doing instill confidence and reduce panic—even in the worst situations. By being prepared for an emergency, firefighters and other responders can act quickly and efficiently, reducing injuries to people and damage to property.

People who have considered the range of risks for any given emergency—from a house fire to a hurricane—and have formed plans to deal with those risks are more likely to have access to the right equipment, tools, and information. When disaster strikes, they are ready and able to respond immediately, moving more quickly from response to recovery, each crucial parts of the resilience continuum. If they prepared well, then the impacts to the community may not be as severe, creating an opportunity to bounce back even faster.

Having the right training and plans for dealing with disasters helps individuals, communities, economies, and natural resources better absorb the shock of an emergency. That translates to shorter recovery times and increased resilience.

This shock absorption concept applies to everything from human health to international emergency response to coastal disasters.

For example, the Department of Defense recognizes that building a culture of resilience for soldiers depends on early intervention. For them, that means using early education and training [PDF] to ensure that troops are “mission ready.” Presumably, the more “mission ready” a soldier is before going off to war, the less recovery will be needed, or the smoother that process will be, when a soldier returns from combat.

Similarly, the international humanitarian response community has noted that “resilience itself is not achievable without the capacity to absorb shocks, and it is this capacity that emergency preparedness helps to provide” (Harris, 2013 [PDF]).

NOAA’s Office of Response and Restoration recognizes the importance of training and education for preparing local responders to respond effectively to coastal disasters, from oil spills caused by hurricanes to severe influxes of marine debris due to flooding.

Coastline of Tijuana River National Estuarine Research Reserve in southern California.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources, helping coasts bounce back to health even more quickly. (NOAA)

In fiscal year 2014 alone, we trained 2,388 emergency responders in oil spill response and planning. With more coastal responders becoming more knowledgeable in how oil and chemicals behave in the environment, more parts of the coast will become better protected against a disaster’s worst effects. In addition to trainings, we are involved in designing and carrying out exercises that simulate an emergency response to a coastal disaster, such as an oil spill, hurricane, or tsunami.

Furthermore, we are always working to collect environmental data in our online environmental response mapping tool, ERMA, and identify sensitive shorelines, habitats, and species before any disaster hits. This doesn’t just help create advance plans for how to respond—including guidance on which areas should receive priority for protection or response—but also helps quickly generate a common picture of the situation and response in the early stages of an environmental disaster response.

After the initial response, NOAA’s Office of Response and Restoration is well-positioned to conduct rapid assessments of impacts to natural resources. These assessments can direct efforts to clean up and restore, for example, an oiled wetland, reducing the long-term impact and expediting recovery for the plants and animals that live there.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. Our years of experience and scientific expertise enable us to complement their trainings on emergency response operations with time-critical environmental science considerations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources. Our popular Science of Oil Spills class, held several times a year around the nation, is just one such example.

Additionally, we are working with coastal states to develop response plans for marine debris following disasters, to educate the public on how we evaluate the environmental impacts of and determine restoration needs after oil and chemical spills, and to develop publicly available tools that aggregate and display essential information needed to make critical response decisions during environmental disasters.

You can learn more about our efforts to improve resilience through readiness at response.restoration.noaa.gov.

Kate Clark.Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


2 Comments

From Board Games to Cookbooks, How the Exxon Valdez Oil Spill Infiltrated Pop Culture

Big oil spills, those of the magnitude which happen only once every few decades, often leave a legacy of sorts.

In the case of the 1989 Exxon Valdez oil spill, which dumped roughly 11 million gallons of crude oil into Alaska’s Prince William Sound, that legacy took many forms. Legislative, ecological, and even cultural—yes, that extends to pop culture too.

In short order, the Exxon Valdez oil spill prompted monumental changes in the laws governing maritime shipping and oil spill response. In 1990, Congress passed the Oil Pollution Act, empowering NOAA and the U.S. Environmental Protection Agency to better respond to and plan for spills and setting up a trust fund (paid for by an oil tax) to help with cleanup operations.

Furthermore, this important legislation mandated that oil tankers with single hulls (like the easily punctured Exxon Valdez) would no longer be permitted to operate in U.S. waters, instead requiring double-hull vessels to carry oil. (However, the full phaseout of single-hull tankers would take decades.)

More than 25 years later, researchers are still uncovering this spill’s ecological legacy, its stamp on the natural world, and learning what happens when oil interacts with that world. The spill affected some two dozen species and habitats, some of which have not yet recovered.

Of course, the Exxon Valdez oil spill also left a complicated cultural legacy, imparting health, social, psychological, and economic impacts on the people living and working in the area, particularly those whose livelihoods are closely tied to the ocean. Commercial fishers, the recreation and tourism industry, and more than a dozen predominantly Alaskan Native communities relying on fish, waterfowl, and other natural resources for subsistence were dramatically affected by the oil spill.

Yet the cultural echoes of this environmental disaster spread beyond Alaska. It inspired a second grader to write an impassioned letter about the plight of otters threatened by the spill to the Alaska director of the Fish and Wildlife Service. After working at this spill, it inspired one NOAA marine biologist to begin collecting some of the strange pieces of memorabilia related to the incident, from a piece of the ill-fated tanker to an Exxon safety calendar featuring the ship in the very month it would run aground.

These echoes even managed to permeate the ranks of pop culture. Take a look at these five ways that the Exxon Valdez oil spill has shown up in places most oil spills just don’t go:

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

  1. A board game. Local bartender Richard Lynn of Valdez, Alaska, created the game “On the Rocks: The Great Alaska Oil Spill” after working part-time to clean up the spill. Each player navigates through the game using an authentic bit of rock from Prince William Sound. The goal was to be the first player to scrub all 200 miles of oily shore. The catch was that you only had about 6 months and $250 million in play money to accomplish this. You could pick up your own copy of the game for $16.69, which was the hourly rate Exxon’s contracted workers earned while cleaning up the spill.
  2. A movie. Dead Ahead: the Exxon Valdez Disaster was the 1992 made-for-TV movie that dramatized the events of the oil spill and ensuing cleanup. This film even featured some well-known actors, including John Heard as Alaska inspector Dan Lawn and Christopher Lloyd as Exxon Shipping Company President Frank Iarossi.
  3. A cookbook. Fortunately, the recipes in The Two Billion Dollar Cookbook don’t feature dishes like “oiled herring” or “otter on the rocks.” Instead, this 300 page cookbook compiled by Exxon Valdez cleanup workers and their friends and families highlights meals more along the lines of barbeque sandwich mix and steak tartare, in addition to being peppered with personal stories from its contributors. Proceeds from the sale of this cookbook benefit a homeless shelter and food bank based in Anchorage, Alaska. Why two billion dollars? That was how much Exxon had shelled out for responding to the spill when the cookbook hit the presses.
  4. A play. Two plays, in fact. Dick Reichman, resident of Valdez, Alaska, during the momentous spill, has twice written and directed plays that examined this disaster—and the high emotions that came with it—through the theatrical lens. His first play, written in 1992 and dubbed “The official Valdez oil spill melodrama,” was Tanker on the Rocks: or the Great Alaskan Bad Friday Fish-Spill of ’89. His second, The Big One: a Chronicle of the Exxon Valdez Oil Spill, was received with some acclaim during its 2009 run in Anchorage. You can watch a short video of the actors and director preparing for the 2009 performance (warning: some explicit language).
  5. Children’s books, novels, and poetry. From a children’s book about a young girl rescuing an oiled baby seal to a novel written by the tugboat captain who towed the Exxon Valdez out of Prince William Sound, there exists a bounty of literature exploring the many human and environmental themes of this oil spill. As you peruse them, keep in mind this NOAA scientist’s recommendations for evaluating what you’re reading about oil spills, especially when doing so with kids.

Have you seen other examples of the Exxon Valdez or perhaps, more recently, the Deepwater Horizon oil spill showing up in pop culture?

A special thanks to the Alaska Resources Library and Information Services (ARLIS) for compiling an excellent list of Exxon Valdez related information [PDF] and for helping procure an image of the rare “On the Rocks” board game.


2 Comments

How Beach Cleanups Help Keep Microplastics out of the Garbage Patches

Basket full of faded, old plastic bottles on a beach.

Cleaning up a few plastic bottles on a beach can make a big difference when it comes to keeping microplastics from entering the ocean. (NOAA)

These days plastic seems to be everywhere; unfortunately, that includes many parts of the ocean, from the garbage patches to Arctic sea ice. With this pollution increasingly in the form of tiny plastic bits, picking up a few bottles left on the beach can feel far removed from the massive problem of miniscule plastics floating out at sea.

However, these two issues are more closely connected than you may think.

But how do we get from a large plastic water bottle, blown out of an overfilled trash can on a beach, to innumerable plastic pieces no bigger than a sesame seed—and known as microplastics—suspended a few inches below the ocean surface thousands of miles from land?

The answer starts with the sun and an understanding of how plastic deteriorates in the environment.

The Science of Creating Microplastics

Plastic starts breaking down, or degrading, when exposed to light and high temperatures from the sun. Ultraviolet B radiation (UVB), the same part of the light spectrum that can cause sunburns and skin cancer, starts this process for plastics.

This process, known as photo-oxidation, is a chemical reaction that uses oxygen to break the links in the molecular chains that make up plastic. It also happens much faster on land than in the comparatively cool waters of the ocean.

For example, a hot day at the beach can heat the sandy surface—and plastic trash sitting on it—up to 104 degrees Fahrenheit. The ocean, on the other hand, gets darker and colder the deeper you go, and the average temperatures at its surface in July can range from 45 degrees Fahrenheit near Adak Island, Alaska, to 89 degrees in Cannon Bay, Florida.

Back on that sunny, warm beach, a plastic water bottle starts to show the effects of photo-oxidation. Its surface becomes brittle and tiny cracks start forming. Those larger shards of plastic break apart into smaller and smaller pieces, but they keep roughly the same molecular structure, locked into hydrogen and carbon chains. A brisk wind or child playing on the beach may cause this brittle outer layer of plastic to crumble. The tide washes these now tiny plastics into the ocean.

Once in the ocean, the process of degrading slows down for the remains of this plastic bottle. It can sink below the water surface, where less light and heat penetrate and less oxygen is available. In addition, plastics can quickly become covered in a thin film of marine life, which further blocks light from reaching the plastic and breaking it down.

An Incredible Journey

Lots of tiny pieces of plastic covering rocks.

Microplastics, tiny bits of plastic measuring 5 millimeters or less, are often the result of larger pieces of plastic breaking down on land before making it into the ocean. They can also come from cosmetics and fleece clothing. (NOAA)

In general, plastic breaks down much, much more slowly in the ocean than on land. That means plastic objects that reach the ocean either directly from a boat (say trash or nets from a fishing vessel) or washed into the sea before much degradation has happened are much less likely to break into smaller pieces that become microplastics. This also applies to plastics that sink below the ocean surface into the water column or seafloor.

Instead, plastic that has spent time heating up and breaking down on land is most likely to produce the microplastics eventually accumulating in ocean gyres or garbage patches, a conclusion supported by the research of North Carolina State University professor Anthony Andrady and others.

Of course, microplastics in the form of “microbeads” in face wash and other cosmetics or microfibers in fleece clothing also can reach the ocean by slipping through waste water treatment systems.

However, regularly patrolling your favorite beach or waterway and cleaning up any plastic or other marine debris can go a long way to keeping millions of tiny microplastics—some so tiny they can only be seen with a microscope—from reaching the garbage patches and other areas of the ocean.

The great thing is anyone can do this and you don’t have to wait for the International Coastal Cleanup each September to get started.

Find more tips and resources to help you on your way:


Leave a comment

On the Chesapeake Bay, Turning Artillery Sites and Landfills into Places for Wildlife

Excavator removes metal debris from the shore of a coastal landfill.

Used from 1972 to 1974, this landfill at Naval Support Facility Indian Head’s site 36 saw more than 57,000 pounds of metal and other materials hauled away as part of its cleanup and restoration. (U.S. Navy)

Roughly 25 miles downstream of Washington, DC, on the Potomac River is a military base known as Naval Support Facility Indian Head. Established in 1890, it is the U.S. Navy’s oldest continuously running ordnance station (ordnance includes artillery and ammunition). In the course of its history, this sprawling 2,500 acre naval installation has served as a research facility, a testing site for artillery, and a manufacturing site for some of the explosive chemical powders used in weapons.

However, as is the case for many other military facilities scattered along the shores of Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities—at one point, the Navy used it to test large naval guns by firing projectiles into the Potomac River—that it was designated a Superfund site and slated for cleanup under CERCLA.

Aerial view of Naval Support Facility Indian Head surrounded by water.

Like many other military facilities along the Chesapeake Bay, the land and waters of the Indian Head base became so polluted by the range of military activities that it was designated a Superfund site and slated for cleanup. (U.S. Navy)

But tackling environmental cleanup and restoration in a place with such a long history of explosives makes for unusual challenges.

For example, when the cleanup team needed to take soil or water samples, they often had to call in ordnance clearance specialists to help deal with the dangerous chemicals, guns, rockets, missiles, ordnance, and explosives potentially littering the area.

Juxtaposed against this scene at the base is Mattawoman Creek, a beautiful freshwater tidal creek with abundant wetlands and wildlife adjacent to the military site. Migratory fish such as yellow perch, herring, and shad follow the creek as they travel further inland to reproduce. In addition, many fish use the wetlands as a nursery and source of food. Large, hungry birds such as bald eagles, herons, and egrets flock to the area, as well as recreational fishers eager to cast their lines to the plentiful fish.

Fortunately, a detailed investigation indicated that this natural area has not suffered widespread impacts from pollution at the nearby base. Instead, the investigation directed the base’s cleanup strategy to focus on key sections serving as major pollution sources.

Laying Waste

The Caffee Road Landfill at the base’s Site 11 was such a mix of soil, waste, and debris that it actually extended the shoreline up to 150 feet into Mattawoman Creek. In addition to serving as a landfill for Indian Head, the military used the site to burn waste, and munitions and explosives potentially lay buried in pockets along the shoreline.

Getting this landfill—an ongoing source of pollution—under control needed to accomplish three goals: block contact with the contaminated soil, prevent shoreline erosion, and avoid exposing potential ordnance.

The design for remediating this site included placing a protective soil cover over the landfill and stabilizing the shoreline. Historically, shoreline stabilization has been achieved by positioning large rocks and riprap on the edge of the water, which “hardens” the shoreline and would move the wave energy from the protected area to adjacent areas.

Instead, NOAA and the trustee agencies responsible for the area’s natural resources proposed what is called a “living shoreline.” These hybrid shorelines are constructed habitats designed to mimic the functions of natural shoreline habitats and which incorporate both natural habitat and built infrastructure. They aim to provide the same benefits as nature, such as shoreline stabilization, improved water quality, and wildlife habitat. The project was rounded out by planting marsh shrubs and trees along the shoreline and by seeding and mulching the soil cover on top of the landfill.

All the while during these construction operations, the cleanup team had a trained professional clearing the munitions and explosives to provide safe working conditions as they transformed this dump into a safe place for fish, birds, and wildlife.

The close partnership among several federal and state agencies, including the Navy, U.S. Environmental Protection Agency, Maryland Department of the Environment, and the trustees, was instrumental in successfully and efficiently converting this former landfill into vibrant habitat, resulting in savings of more than $700,000.

Recycling for Wildlife

A similar transformation has occurred at a landfill on the base’s Site 36. This landfill, most likely originally part of Chickamuxen Creek and a nearby wetland, was used from 1972 to 1974 and has been inactive since that time. The fill material dumped into the creek was believed to contain metal casings from mines, bombs, and torpedoes—not exactly normal working conditions.

Cleanup focused on removing scrap metal and potential munitions items from the surface of the landfill and the shoreline. The multi-agency team hauled away more than 57,000 pounds of metal and other materials from the site, with much of it recycled rather than left under the existing soil cover. By taking a common-sense approach to removing this debris, the project managed risk and minimized environmental impacts by maintaining natural habitats, including forests and wetlands, whenever possible, while also ensuring the landfill’s soil cover would control pollution.

While there is still work to be done, progress abounds elsewhere on the naval facility. For example, the multi-agency cleanup team removed creek sediments contaminated with mercury and surrounding floodplain soils to protect and enhance restoration of habitat along a tributary to Mattawoman Creek. The tributary has been blocked off from the main channel to prevent mercury from getting to Mattawoman Creek, but with the mercury gone, there is now potential for opening up the tributary and reconnecting it with the creek.

Naval Support Facility Indian Head occupies a unique place in military history, and thanks to efficient collaboration among federal and state agencies working to clean it up, this locale again provides valuable and healthy habitat for fish, birds, and wildlife along the Chesapeake Bay.

Follow

Get every new post delivered to your Inbox.

Join 607 other followers