NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Preparing for What Can Go Wrong Because of Hurricanes

A view of the houses and highways along the New Jersey coast which were damaged by Hurricane Sandy.

A view of the houses and highways along the New Jersey coast which were damaged by Hurricane Sandy in 2012. (U.S. Fish and Wildlife Service)

Sandy. Katrina. Andrew. These and many other names stand out in our memories for the power of wind and wave—and the accompanying devastation—which these storms have brought to U.S. shores. Atlantic hurricane season officially begins June 1 and ends November 30, but disasters can and do strike unexpectedly.

Being involved in disaster response, we at NOAA’s Office of Response and Restoration know what can go wrong when a hurricane hits the coast—after all, we’ve seen it firsthand:

Clearly, a lot is at stake when a hurricane sweeps through an area, which is why preparing for hurricanes and other disasters is so important. We can’t stop these powerful storms, but we can prepare ourselves, our homes, and our coastal communities to lessen the impacts and bounce back more quickly after storms hit.

Hurricane Preparedness Week comes as a reminder each May before the Atlantic hurricane season begins. NOAA’s National Weather Service has plenty of tips and guidelines for preparing to weather these storms:

NOAA’s Office of Response and Restoration also takes care to prepare for hurricanes and other disasters.

Sometimes that means building internet and phone access into the stormproof bathrooms of our facilities so that we can continue providing sound science and support to deal with pollution from a storm. Other times that means working with coastal regions to create response plans for disaster debris, training other emergency responders to address oil and chemical spills, and developing software tools that pull together and display key information necessary for making critical response decisions during disasters.

Learn more about how to protect yourself and your belongings from a hurricane.


Leave a comment

After Pollution Strikes, Restoring the Lost Cultural Bond Between Tribes and the Environment

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

A young boy hangs humpback whitefish on a drying rack next to a river.

Restoring the deep cultural ties between native communities and the environment is an important and challenging part of restoration after oil spills and chemical releases. Here, a boy from the Alaska Native village of Shungnak learns to hang dry humpback whitefish. (U.S. Fish and Wildlife Service)

When I’ve heard residents of the Alaskan Arctic speak about the potential impacts of an oil spill, I don’t hear any lines of separation between the oil spill causing injury to the environment and injury to the community.

Their discussions about the potential harm to walrus or seals inevitably include how this will impact the community’s ability to hunt for food, which affects both their food security and traditions. The cultures of these communities are inextricably tied to the land and sea.

So I ask myself, in the wake of an oil spill in the Arctic, how would we begin to restore that bond between the environment and the communities who live there? How can we even begin to make up for the lost hunting trips between grandparents and grandkids that don’t happen because of an oil spill? Furthermore, how could we help restore the lost knowledge that gets passed down between generations during such activities?

We know nothing can truly replace those vital cultural exchanges and activities that don’t occur because of pollution, but we have to try. Thanks to our federal Natural Resource Damage Assessment laws, polluters are made accountable for these lost cultural uses of natural resources, as well as for the harm to affected lands, waters, plants, and animals.

An Alaska Native expert teaches two boys how to cut and prepare pike for drying.

Many ideas for cultural restoration after pollution center around the concept of teaching youth the traditional ways of using natural resources. Here, students from the Alaska Native village of Selawik learn to cut a pike for drying from a local expert. (U.S. Fish and Wildlife Service)

Here are a few examples of our efforts to restore these cultural uses of coastal resources after they’ve been harmed by oil and chemical spills, as well as some ideas for the future.

Community Camps in Alaska

When the M/V Kuroshima ran around on Unalaska Island, Alaska, in November 1997, approximately 39,000 gallons of heavy oil spilled into Summer Bay, Unalaska’s prime recreational beach. As a result of the spill, access to the bay and its beach was closed off or restricted for several months.

In an effort to restore the lost use of their beach, the local Qawalangin Tribe received funding for an outdoor summer recreational camp, which focuses on tribal and cultural projects such as traditional subsistence harvesting techniques for shellfish and activities with Unangan elders in Alaska’s Aleutian Islands. To ensure the safety of local seafoods eaten by the tribe, NOAA also arranged for further chemical analysis of shellfish tissues and educated the community about the results.

Cultural Apprenticeships in New York

Years of aluminum and hydraulic fluid manufacturing released toxic substances such as PCBs into New York’s St. Lawrence River, near the Canadian border. This history of pollution robbed the St. Regis Mohawk Tribe, whose Mohawk name is Akwesasne, of the full ability to practice numerous culturally important activities, such as fishing. Legal settlements with those responsible for the pollution have provided funding for the tribe to implement cultural programs to help make up for those losses.

But first, representatives from the St. Regis Mohawk Tribe conducted oral history research, hosted community outreach meetings, and solicited restoration project ideas from the community. As a result of these efforts, they determined that two main components of restoration [PDF] were necessary: an apprenticeship program and funding for cultural institutions and programs.

The long-term, master-apprentice relationship program focuses on the four areas of traditional cultural practices that were harmed by the release of hazardous contaminants into the St. Lawrence River and surrounding area. This program also promotes and supports the regeneration of practices associated with traditions in these four areas:

  • Water, fishing, and use of the river.
  • „Horticulture and basketmaking.
  • „Medicinal plants and healing.
  • Hunting and trapping.

Hands-on experience and Mohawk language training are also integral parts of the apprenticeship program.

In addition to this program, resources have been provided to a number of existing Akwesasne-based programs that have already begun the work of responding to the cultural harm caused by this contamination. One example is providing opportunities for Akwesasne youth and surrounding communities to receive outdoor educational experience in a natural and safe location for traditional teachings, such as respect for the land and survival skills.

Planning for the Worst and Hoping for the Best in the Arctic

Whales, polar bears, and walrus carved into a bowhead whale jawbone.

We need to work closely with each tribe affected by an oil spill or chemical release to help them achieve the cultural connection with nature affected by pollution. You can see this connection in action at the Iñupiat Heritage Center in Barrow, Alaska, where local artists carve traditional icons into the jawbone of a bowhead whale. (NOAA)

Discussions with Alaskan Arctic communities have yielded similar suggestions of potential forms of cultural restoration after pollution. A 2012 multi-day workshop with communities in Kotzebue, Alaska, generated an initial list of ideas, including:

  • Teaching traditional celebrations (e.g., foot races and dances).
  • Teaching subsistence practices and survival techniques.
  • Supporting science fairs with an environmental restoration focus.
  • Maintaining and transferring hunting knowledge by educating youth on proper whale, seal, and walrus hunting methods.

This last idea is particularly intriguing and would involve preparing a “virtual hunt” curriculum on how to shoot whales so they can be recovered, how to butcher an animal, and sharing the results of the hunt with others.

After working here at NOAA since 2008, I can rattle off plenty of restoration ideas for an oiled beach, or oiled birds. But when it comes to restoring lost cultural uses of the environment, there are no off-the-shelf project ideas.

Each tribe is unique and how one tribe’s members interact with their natural environment may not be the same as another tribe’s. While there may be similar themes we can build upon, such as teaching language and harvesting skills, we need to work closely with each tribe affected by an oil or chemical spill to help them achieve once again what pollution has taken away.


Leave a comment

How Do We Measure What We Lose When an Oil Spill Harms Nature?

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a post by economist Adam Domanski of NOAA’s Office of Response and Restoration.

A beach closed sign on a fence in front of an ocean beach at Coal Point.

When an oil spill closes a beach, economists will count how many trips to the coast were affected by that spill and use information on where those trips were originating to measure the lost value per lost trip. This informs the amount of restoration that needs to make up for those losses. (Used with permission of Chris Leggett)

After oil spills into the ocean, NOAA studies the impacts to animals and plants, but we also make sure to measure the direct impacts to people’s use of nature. This is all part of the Natural Resource Damage Assessment process, which makes up for those impacts.

Humans can value environmental quality just for its existence (think of remote mountains and pristine beaches). In the Natural Resource Damage Assessment process, this “non-use value” is most often compensated for by replacing the natural resources or services that were lost.

Oil and Fun Don’t Mix

However, people can also value the environment because they use it for recreational or cultural purposes. For example, people may be affected if they can’t go fishing, boating, or walking along the beach because of an oil spill.

When oil or another contaminant comes near shore, sometimes people will cancel their planned trip, sometimes they’ll change where they’re going, and other times they’ll still take a trip but will enjoy it less. Trustees of the affected resources, like NOAA, apply different tools to measure these recreational use losses (we’ll talk about cultural losses in an upcoming blog post).

However, people may make one of these changes even if there isn’t any oil present on the beach. Sometimes beaches or fishing areas may be closed because cleanup crews or environmental assessment teams are present. Other times, people may hear about an oil spill in the news and may change their trip based on their reasonable expectation that the oil spill will affect their trip in some way.

Infographic showing three scenarios for how people react to an oil spill: some people stay home from the beach, some people go to a beach farther from the oil spill, and some people go to the same beach but have a less enjoyable experience.

Thanks to the Oil Pollution Act, any one of these changes is an impact than we can quantify in the Natural Resource Damage Assessment process.

Counting How Much Less Fun

Under the Oil Pollution Act, people generally can file legal claims for two types of economic losses related to recreational use due to a spill. Lost revenue to local businesses, such as stores, restaurants, and hotels, is a private loss and is reserved for those businesses to claim. On the other hand, the lost value to the would-be hikers, boaters, anglers, and swimmers is considered a public loss and is the responsibility of trustees, that is, local, state, and federal agencies and tribes acting as stewards of the affected public natural resources.

People walking on a developed portion of white sand beach at the ocean.

Pollution makes for a bad day at the beach, which is why NOAA also measures the impact of oil spills and chemical releases on people’s use of natural resources. (NOAA)

To measure these public damages, trustee economists will count how many trips to the coast were affected by that particular oil spill and use information on where those trips were originating to measure the lost value per lost trip. Together, these two pieces make up the trustee claim for lost recreational use after an oil spill.

To measure lost trips, trustees will often use on-site, telephone, or mail surveys in combination with on-site or aerial counts of people on the coast. Sometimes, we can take advantage of other data sources that already tell us how many people visit the coast, such as existing beach attendance data, parking meter counts, or recreational fishing surveys.

For example, after the 2007 Cosco Busan oil spill in San Francisco Bay, trustees performed on-site counts of people at some beaches, used a telephone survey to estimate the levels of use at others, and relied on the California Recreational Fisheries Survey to estimate trips taken by anglers. This information was combined with weather data in a statistical model to predict the number of people that would have taken trips if the oil spill hadn’t occurred. The assessment estimated that there had been over 1 million lost trips.

The lost value per lost trip is measured using economic models that combine information on where people live and which recreational sites they can choose from. Just like shopping at the grocery store (where you choose from lots of different products at different prices), recreators choose between lots of different access points, each of which has a different “price” (in terms of gas and travel time).

People standing around a pier fishing.

When pollution affects people’s ability to use and enjoy natural resources, such as fishing, we use money from the entity responsible for the pollution to fund projects that will benefit the very same users who were affected. (NOAA)

Using many observations of how many people choose which sites at which prices, economists can measure the recreational demand for each site. When a site is affected by an oil spill, this model can be used to determine the lost value to recreators. For the Cosco Busan oil spill, this approach estimated that the average lost value per lost trip was $18.25 (as measured in 2007 dollars).

The goal of the Natural Resource Damage Assessment process is to compensate the public for the harm caused by a spill. After we calculate the lost value, the trustees aren’t done yet. Using money from the entity responsible for the oil spill, we spend restoration dollars on projects that will benefit the very same users who were affected. A few examples of projects we have built include fishing piers, boat ramps, parks, and artificial reefs.

Survey Says

So, how important are lost recreational use claims to the Natural Resource Damage Assessment process? Here are a few approximate numbers from past oil spill cases:

As you can see, surveying how people use the environment is a critical part of this process. And although taking surveys can be annoying, they often times generate really useful data that economists get super excited about—and from which you can directly benefit. So, the next time you get asked if you want to take a survey, take the opportunity to make an economist happy and say yes.

Learn more about the economics of Natural Resource Damage Assessment and the value of a good day at the beach (video).

adam-domanski_150Adam Domanski is an economist who specializes in non-market valuation with the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. He received his PhD in Economics from North Carolina State University and has worked on numerous oil spill and hazardous waste site cases. In his spare time he enjoys traveling and spending time outside.


Leave a comment

From Kayaking to Carbon Storage, What We Stand to Gain (and Lose) from Our Coasts

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a guest post by Stefanie Simpson of Restore America’s Estuaries.

People sitting in canoes and standing on a shoreline.

When coastal habitats are damaged or destroyed, we lose all of the benefits they provide, such as carbon storage and places to canoe. (NOAA)

Estuaries, bays, inlets, sounds—these unique places where rivers meet the sea can go by many different names depending on which region of the United States you’re in. Whether you’re kayaking through marsh in the Carolinas, hiking through mangrove forest in the Everglades, or fishing in San Francisco Bay, you are experiencing the bounty estuaries provide.

Natural habitats like estuaries offer people an incredible array of benefits, which we value in assorted ways—ecologically, economically, culturally, recreationally, and aesthetically.

Estuaries, where saltwater and freshwater merge, are some of the most productive habitats in the world. Their benefits, also called “ecosystem services,” can be measured in a variety of ways, such as by counting the number of birding or boating trips made there or by measuring the amount of fish or seafood produced.

If you eat seafood, chances are before ending on up your plate, that fish spent at least some of its life in an estuary. Estuaries provide critical habitat for over 75% of our commercial fish catch and 80% of our recreational fish catch. Coastal waters support more than 69 million jobs and generate half the nation’s Gross Domestic Product (GDP) [PDF]. Estuaries also improve water quality by filtering excess nutrients and pollutants and protect the coast from storms and flooding.

Another, perhaps less obvious, benefit of estuaries is that they are also excellent at removing carbon dioxide from the atmosphere and storing it in the ground long-term. In fact, estuary habitats like mangroves, salt marshes, and seagrasses store so much carbon, scientists gave it its own name: blue carbon.

How do we know how much carbon is in an estuary? Scientists can collect soil cores from habitats such as a salt marsh and analyze them in the lab to determine how much carbon is in the soil and how long it’s been there.

But you can also see the difference. Carbon-rich soils are made up of years of accumulated sediment and dead and decaying plant and animal material. These soils are dark, thick, and mucky—much different from the sandy, mineral soils you might find along a beach.

Science continues to improve our understanding of ecosystem services, such as blue carbon, and their value to people. For example, in 2014 a study was conducted in the Snohomish Estuary in Washington’s Puget Sound to find out just how much carbon could be stored by restoring estuaries. The study estimated that full restoration of the Snohomish Estuary (over 9,884 acres) would remove 8.9 million tons of carbon dioxide from the atmosphere—that’s roughly equal to taking 1,760,000 cars off the road for an entire year.

Estuary restoration would not only help to mitigate the effects of climate change but would have a positive cascading effect on other ecosystem services as well, including providing habitat for fish, improving water quality, and preventing erosion.

Healthy estuaries provide us with so many important benefits, yet these habitats are some of the most threatened in the world and are disappearing at alarming rates. In less than 100 years, most of these habitats may be lost, due to human development and the effects of climate change, such as sea-level rise.

When we lose estuaries and other coastal habitats, we lose all of the ecosystem services they provide, including carbon storage. When coastal habitat is drained or destroyed, the carbon stored in the ground is released back into the atmosphere and our coast becomes more vulnerable to storms and flooding. It is estimated that half a billion tons of carbon dioxide are released every year due to coastal and estuary habitat loss.

These benefits can also be compromised when coastal habitats are harmed by oil spills and chemical pollution. People also feel these impacts to nature, whether because an oil spill has closed their favorite beach or chemical dumping has made the fish a tribe relies on unsafe to eat.

Scientists and economists continue to increase our understanding of the many benefits provided by our coastal habitats, and land managers use this information to protect and restore habitats and their numerous services. Stay tuned for more this week as NOAA’s Office of Response and Restoration and Restore America’s Estuaries explore how our use of nature suffers from pollution and why habitat restoration is so important.

Stefanie Simpson.Stefanie Simpson is the Blue Carbon Program Coordinator for Restore America’s Estuaries where she works to promote blue carbon as a tool for coastal restoration and conservation and coordinates the Blue Carbon National Network. Ms. Simpson is also a Returned Peace Corps Volunteer (Philippines 2010-12) and has her Master of Science in Environmental Studies.

The views expressed here reflect those of the author and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


8 Comments

NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate

Shoal grass seagrass on a sandy ocean floor.

Seagrass beds serve as important habitat for a variety of marine life, and understanding their growth patterns better can help fisheries management and restoration efforts. (NOAA)

Amy Uhrin was sensing a challenge ahead of her. As a NOAA scientist working on her PhD, she was studying the way seagrasses grow in different patterns along the coast, and she knew that these underwater plants don’t always create lush, unbroken lawns beneath the water’s surface.

Where she was working, off the North Carolina coast near the Outer Banks, things like the churning motion of waves and the speed of tides can cause seagrass beds to grow in patchy formations. Clusters of bigger patches of seagrass here, some clusters of smaller patches over there. Round patches here, elongated patches over there.

Uhrin wanted to be able to look at aerial images showing large swaths of seagrass habitat and measure how much was actually seagrass, rather than bare sand on the bottom of the estuary. Unfortunately, traditional methods for doing this were tedious and tended to produce rather rough estimates. These involved viewing high-resolution aerial photographs, taken from fixed-wing planes, on a computer monitor and having a person digitally draw lines around the approximate edges of seagrass beds.

While that can be fairly accurate for continuous seagrass beds, it becomes more problematic for areas with lots of small patches of seagrass included inside a single boundary. For the patchy seagrass beds Uhrin was interested in, these visual methods tended to overestimate the actual area of seagrass by 70% to more than 1,500%. There had to be a better way.

Seeing the Light

Patches of seagrass beds of different sizes visible from the air.

Due to local environmental conditions, some coastal areas are more likely to produce patchy patterns in seagrass, rather than large beds with continuous cover. (NOAA)

At the time, Uhrin was taking a class on remote sensing technology, which uses airborne—or, in the case of satellites, space-borne—sensors to gather information about the Earth’s surface (including information about oil spills). She knew that the imagery gathered from satellites (i.e. Landsat) is usually not at a fine enough resolution to view the details of the seagrass beds she was studying. Each pixel on Landsat images is 30 meters by 30 meters, while the aerial photography gathered from low-flying planes often delivered resolution of less than a meter (a little over three feet).

Uhrin wondered if she could apply to the aerial photographs some of the semi-automated classification tools from imagery visualization and analysis programs which are typically used with satellite imagery. She decided to give it a try.

First, she obtained aerial photographs taken of six sites in the shallow coastal waters of North Carolina’s Albemarle-Pamlico Estuary System. Using a GIS program, she drew boundaries (called “polygons”) around groups of seagrass patches to the best of her ability but in the usual fashion, which includes a lot of unvegetated seabed interspersed among seagrass patches.

Six aerial photographs of seagrass habitat off the North Carolina coast, with yellow boundary lines drawn around general areas of seagrass habitat.

Aerial photographs show varying patterns of seagrass growth at six study sites off the North Carolina coast. The yellow line shows the digitally drawn boundaries around seagrass and how much of that area is unvegetated for patchy seagrass habitat. (North Carolina Department of Transportation)

Next, Uhrin isolated those polygons of seagrass beds and deleted everything else in each image except the polygon. This created a smaller, easier-to-scan area for the imagery visualization program to analyze. Then, she “trained” the program to recognize what was seagrass vs. sand, based on spectral information available in the aerial photographs.

Though limited compared to what is available from satellite sensors, aerial photographs contain red, blue, and green wavelengths of light in the visible spectrum. Because plants absorb red and blue light and reflect green light (giving them their characteristic green appearance), Uhrin could train the computer program to classify as seagrass the patches where green light was reflected.

Classify in the Sky

Amy Uhrin stands in shallow water documenting data about seagrass inside a square frame of PVC pipe.

NOAA scientist Amy Uhrin found a more accurate and efficient approach to measuring how much area was actually seagrass, rather than bare sand, in aerial images of coastal North Carolina. (NOAA)

To Uhrin’s excitement, the technique worked well, allowing her to accurately identify and map smaller patches of seagrass and export those maps to another computer program where she could precisely measure the distance between patches and determine the size, number, and orientation of seagrass patches in a given area.

“This now allows you to calculate how much of the polygon is actually seagrass vegetation,” said Uhrin, “which is good for fisheries management.” The young of many commercially important species, such as blue crabs, clams, and flounder, live in seagrass beds and actively use the plants. Young scallops, for example, cling to the blades of seagrass before sliding off and burrowing into the sediment as adults.

In addition, being able to better characterize the patterns of seagrass habitat could come in handy during coastal restoration planning and assessment. Due to local environmental conditions, some areas are more likely to produce patchy patterns in seagrass. As a result, efforts to restore seagrass habitat should aim for restoring not just cover but also the original spatial arrangement of the beds.

And, as Uhrin noted, having this information can “help address seagrass resilience in future climate change scenarios and altered hurricane regimes, as patchy seagrass areas are known to be more susceptible to storms than continuous meadows.”

The results of this study, which was done in concert with a colleague at the University of Wisconsin-Madison, have been published in the journal Estuarine, Coastal and Shelf Science.


Leave a comment

Redrawing the Coast After Sandy: First Round of Updated Environmental Sensitivity Data Released for Atlantic States

Contsruction equipment moves sand to rebuild a New Jersey beach in front of houses damaged during Hurricane Sandy.

In Brick, New Jersey, construction crews rebuild the beaches in front of homes damaged by Hurricane Sandy. This huge storm actually changed the shape of shorelines up and down the East Coast. (Federal Emergency Management Agency/FEMA)

This is a post by the Office of Response and Restoration’s Jill Petersen.

In 2012 Hurricane Sandy brought devastating winds and flooding to the Atlantic coast. In some parts of New Jersey, flood waters reached nearly 9 feet. Up and down the East Coast, this massive storm actually reshaped the shoreline.

As a result, we’ve been working to update our Environmental Sensitivity Index (ESI) maps to reflect the new state of Atlantic shorelines. These maps and data give oil spill planners and responders a quick snapshot of a shoreline’s vulnerability to spilled oil.

This week, we released the digital data, for use within a Geographic Information System (GIS), for the first regions updated after Hurricane Sandy. Passed the January following Sandy, the Disaster Relief Appropriations Act of 2013 provided funds to update ESI maps for eleven Atlantic coast states, ranging from Maine to South Carolina. For this project, we grouped the states into seven regions.

The GIS data for the regions released this week cover South Carolina and portions of New York and New Jersey, including the Hudson River, south Long Island, and the New York–New Jersey metropolitan area. For these two regions, we mapped more than 300 oil-sensitive species and classified over 17,000 miles of shoreline according to their sensitivity to spilled oil.

Updated GIS data and PDF maps for the remaining regions affected by Sandy will be available in the coming months.

Time for a Change

The magnitude of the overall effort has been unprecedented, and provided us with the opportunity to revisit what was mapped and how, and to update the technology used, particularly as it relates to the map production.

Our first Environmental Sensitivity Index maps were produced in the early 1980s and, since that time, the entire U.S. coast has been mapped at least once. To be most useful, these data should be updated every 5–7 years to reflect changes in shoreline and species distributions that may occur due to a variety of things, including human intervention, climate change, or, as in this case, major coastal storms.

In addition to ranking the sensitivity of different shorelines (including wetlands and tidal flats), these data and maps also show the locations of oil-sensitive animals, plants, and habitats, along with various human features that could either be impacted by oil, such as a marina, or be useful in a spill response scenario, such as access points along a beach.

New Shores, New Features

A street sign is buried under huge piles of sand in front of a beach community.

In the wake of Sandy, we’ve been updating our Environmental Sensitivity Index maps and data and adding new features, such as storm surge inundation data. Hurricane Sandy’s flooding left significant impacts on coastal communities in eleven Atlantic states. (Federal Emergency Management Agency/FEMA)

To gather suggestions for improving our ESI maps and data, we sent out user surveys, conducted interviews, and pored over historical documentation. We evaluated all suggestions while keeping the primary users—spill planners and responders—at the forefront. In the end, several major changes were adopted, and these improvements will be included in all future ESI maps and data.

Extended coverage was one of the most requested enhancements. Previous data coverage was focused primarily on the shoreline and nearshore—perhaps 2–3 miles offshore and generally less than 1 mile inland. The post-Sandy maps and data extend 12 nautical miles offshore and 5 miles inland.

This extension enables us to include data such as deep water species and migratory routes, as well as species occurring in wetlands and human-focused features found further inland. With these extra features, we were able to incorporate additional hazards to the coastal environment. One example was the addition of storm surge inundation data, provided by NOAA’s National Hurricane Center, which provide flood levels for storms classified from Category 1 to Category 5.

We also added more jurisdictional boundaries, EPA Risk Management Facilities (the EPA-regulated facilities that pose the most significant risk to life or human health), repeated measurement sites (water quality, tide gauges, Mussel Watch sites, etc.), historic wrecks, and locations of coastal invasive species. These supplement the already comprehensive human-use features that were traditionally mapped, such as access points, fishing areas, historical sites, and managed areas.

The biological data in our maps continue to represent where species occur, along with supporting information such as concentration, seasonal variability, life stage and breeding information, and the data source. During an oil spill, knowing the data source (e.g., the U.S. Fish and Wildlife Service) is especially important so that responders can reach out for any new information that could impact their approach to the spill response.

A new feature added to the biological data tables alerts users as to why a particular species’ occurrence may warrant more attention than another, providing context such as whether the animals are roosting or migrating. As always, we make note of state and federal threatened, endangered, or listed species.

Next up

Stay tuned for the digital data and PDF maps for additional Sandy-affected regions. While the updated PDF maps will have a slightly different look and feel than prior ones, the symbology and map links will be very familiar to long-time users.

In the meantime, we had already been working on updating ESI maps for two regions outside those funded by the Disaster Relief Appropriations Act. These regions, the outer coast of Washington and Oregon and the state of Georgia, have benefited from the general improvements brought about by this process. As of this week, you can now access the latest GIS data for these regions as well.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”

Follow

Get every new post delivered to your Inbox.

Join 687 other followers