NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”


1 Comment

What Do We Know Today About Microbeads and Microplastics in the Ocean?

Plastic microbeads visible in toothpaste on a toothbrush.

Microbeads are tiny pieces of polyethylene plastic added to health and beauty products, such as some cleansers and toothpastes. They can pass through wastewater treatment processes and end up in the ocean and Great Lakes, posing a potential threat to aquatic life. (NOAA)

Almost four years ago, I was surprised to find out about the presence of plastic microbeads in cosmetic products, such as exfoliating face cleansers and some types of toothpaste.

The problem with these tiny pieces of polyethylene plastic is that once they are washed down the drain, they escape being filtered by wastewater treatment processes, allowing them to enter the ocean and Great Lakes where they could absorb toxic chemicals in the environment and be ingested by animal life.

Microbeads are actually not a recent problem; according to the United Nations Environment Programme (UNEP), plastic microbeads first appeared in personal care products about fifty years ago, with plastics increasingly replacing natural ingredients with the same purpose in these products. But even in 2012, this issue was still relatively unknown, with an abundance of products containing plastic microbeads on the market and not a lot of awareness on the part of consumers.

Microbeads, Macro-attention

For several years, the NOAA Marine Debris Program has been working with researchers that are investigating issues relating to microbeads in our marine environment. In recent years, the issue has received a fair amount of attention in the media and elsewhere.

As a result of increasing overall awareness of the problem, many companies that use microbeads in their products have been phasing them out voluntarily. On December 28, 2015, President Obama signed the Microbead-Free Waters Act of 2015 [PDF], banning plastic microbeads in cosmetics and personal care products.

The law was met with a lot of support, including from the Personal Care Products Council, an industry group who commented during the act’s approval process, which said:

“Solid, plastic microbeads are used in personal care cleansing products because of their safe and effective exfoliating properties. Research by independent scientists and nongovernmental organizations show that microbeads from all types of industrial uses are miniscule contributors to marine plastic debris; cosmetic microbeads are a tiny fraction of that. At the same time, our member companies take very seriously their role as environmental stewards of their products. As a result, companies have voluntarily committed to replace solid plastic microbeads. We look forward to this important bipartisan legislation making its way to President Obama’s desk and being signed into law.”

Under the Microscope

Tiny bits of microplastics litter a sandy patch of beach.

Microplastics, which include microbeads, are less than 5 millimeters long (roughly the size of a sesame seed). Most microplastic in the ocean actually ends up there after breaking down from bigger pieces of plastic on beaches. (NOAA)

After I originally learned about microbeads in cosmetic products, I discussed the issue with Dr. Joel Baker, Port of Tacoma Chair in Environmental Science at the University of Washington Tacoma and the Science Director of the Center for Urban Waters.

At the time, he was leading a project for the NOAA Marine Debris Program focused on detecting microplastics in the marine environment. Microplastics, which include microbeads, are minute pieces of plastic less than 5 millimeters long, or about the size of a sesame seed. More recently, he has conducted a study, “Quantification of Marine Microplastics in the Surface Waters of the Gulf of Alaska,” that examined the quantity and distribution of microplastics at specific locations in Alaskan waters over time.

Following the signing of the Microbead-Free Waters Act of 2015, I checked back in with Dr. Baker to get his thoughts on the issue now. Four years ago, he had told me, “While we don’t yet understand the impacts of microplastics to aquatic organisms, we do know that releasing persistent materials into the ocean will result in ever-increasing concentrations of marine debris.”

Speaking to him now, while Dr. Baker sees the attention given to microbeads in health and beauty products over the last few years as a good way to raise awareness about plastics in the ocean, he cautions that there still is not enough known about the damage that these extremely small particles cause. He further points out that while certainly not insignificant, they represent a very small percentage of total microplastic debris in the ocean.

We need more research to be able to measure accurately the presence of smaller microplastics, including microbeads, in the ocean. While Dr. Baker and his colleagues have developed a manual on laboratory methods for extracting microplastics from water samples, the methods do not yet detect the smallest particles such as the microbeads that exist in some health and beauty products.

Breaking Down the Issues

In addition, Dr. Baker pointed out to me that microbeads are not the largest source of marine plastic or even microplastics. “Most plastic in the ocean is from beach plastics that break down and improper disposal of trash,” he said. Cosmetic microbeads are much smaller, and are considered primary microplastics [PDF], as opposed to secondary microplastics, which are the result of larger pieces of plastic breaking down into smaller pieces.

While Dr. Baker found encouraging the news that we’ll be stopping one of the many ways plastic reaches the ocean, he emphasized there are plenty more that will require a lot of effort. He suggested that more attention needs to be paid to the abundance of plastic bags that end up in the ocean, which he feels represents a larger part of the plastic marine debris problem.

The NOAA Marine Debris Program strives to learn more about the impacts of marine microplastics. In addition to Dr. Baker’s work, the program currently is supporting microplastic research projects that include, but aren’t limited to, measuring microplastics in the marine environment; the presence of microplastics in different geographical regions, such as the coastal mid-Atlantic region and national park beaches; examining juvenile fishes to determine if they are ingesting microplastic; and the effects of microplastics in aquatic food chains.

For more information on these issues, you also can refer to a UNEP 2014 update on plastic debris in the ocean [PDF].


2 Comments

Helping a 7-year-old Oceanographer Study Oil Spills in Washington’s Waters

A young boy drops wooden yellow cards off the side of a boat into water.

Dropping the first round of drift cards off a boat in Washington’s San Juan Islands, a kindergartner kicked off his experiment to study oil spills. (Used with permission of Alek)

One spring day in 2014, a shy young boy sidled up to the booth I was standing at during an open house hosted at NOAA’s Seattle campus. His blond head just peaking over the table, this then-six-year-old, Alek, accompanied by his mom and younger sister, proceeded to ask how NOAA’s oil spill trajectory model, GNOME, works.

This was definitely not the question I was expecting from a child his age.

After he set an overflowing binder onto the table, Alek showed me the printed-out web pages describing our oil spill model and said he wanted to learn how to run the model himself. He was apparently planning a science project that would involve releasing “drift cards,” small biodegradable pieces of wood marked with identifying information, into Washington’s Salish Sea to simulate where spilled oil might travel along this heavily trafficked route for oil tankers.

Luckily, Chris Barker, one of our oceanographers who run this scientific model, was nearby and I introduced them.

But that wasn’t my last interaction with this precocious, young oceanographer-in-training. Alek later asked me to serve on his science advisory committee (something I wish my middle school science fair projects had the benefit of having). I was in the company of representatives from the University of Washington, Washington State Department of Ecology, and local environmental and marine organizations.

Over the next year or so, I would direct his occasional questions about oil spills, oceanography, and modeling to the scientists in NOAA’s Office of Response and Restoration.

Demystifying the Science of Oil Spills

A hand-drawn map of oil tankers traveling from Alaska to Washington, a thank-you note on a post-it, and a hand-written card asking for donations.

Alek did a lot of work learning about how oil tankers travel from Alaska to Washington waters and about the threat of oil spills. He even fund-raised to cover the cost of materials for his drift cards. (NOAA)

According to the Washington Department of Ecology, the waters of the Salish Sea saw more than 7,000 journeys by oil tankers traveling to and from six oil refineries along its coast in 2013. Alek’s project was focused on Rosario Strait, a narrow eastern route around Washington’s San Juan Islands in the Salish Sea. There, he would release 400 biodegradable drift cards into the marine waters, at both incoming and outgoing tides, and then track their movements over the next four months.

The scientific questions he was asking in the course of his project—such as where spilled oil would travel and how it might affect the environment—mirror the types of questions our scientists and oil spill experts ask and try to answer when we advise the U.S. Coast Guard during oil spills along the coast.

As Alek learned, multiple factors influence the path spilled oil might take on the ocean, such as the oil type, weather (especially winds), tides, currents, and the temperature and salinity of the water. He attempted to take some of these factors into account as he made his predictions about where his drift cards would end up after he released them and how they would get there.

As with other drift card studies, Alek relied on people finding and reporting his drift cards when they turned up along the coast. Each drift card was stamped with information about the study and information about how to report it.

NOAA has performed several drift card studies in areas such as Hawaii, California, and Florida. One such study took place after the December 1976 grounding of the M/V Argo Merchant near Nantucket Island, Massachusetts, and we later had some of those drift cards found as far away as Ireland and France.

A Learning Experience

A young boy in a life jacket holding a yellow wooden card and sitting on the edge of a boat.

Alek released 400 biodegradable drift cards near Washington’s San Juan Islands in the Salish Sea, at both incoming and outgoing tides, and tracked their movements to simulate an oil spill. (Used with permission of Alek)

Of course, any scientist, young or old, comes across a number of challenges and questions in the pursuit of knowledge. For Alek, that ranged from fundraising for supplies and partnering with an organization with a boat to examining tide tables to decide when and where to release the drift cards and learning how to use Google Earth to map and measure the drift cards’ paths.

Only a couple weeks after releasing them, Alek began to see reports of his drift cards turning up in the San Juan Islands and even Vancouver Island, Canada, with kayakers finding quite a few of them.

As Alek started to analyze his data, we tried to help him avoid overestimating the area of water and length of coastline potentially affected by the simulated oil spill. Once released, oil tends to spread out on the water surface and would end up in patches on the shoreline as well.

Another issue our oceanographer Amy MacFadyen pointed out to Alek was that “over time the oil is removed from the surface of the ocean (some evaporates, some is mixed into the water column, etc.). So, the sites that it took a long time for the drift cards to reach would likely see less impacts as the oil would be much more spread out and there would be less of it.”

During his project, Alek was particularly interested in examining the potential impacts of an oil spill on his favorite marine organism, the Southern Resident killer whales (orcas) that live year-round in the Salish Sea but which are endangered. He used publicly available information about their movements to estimate where the killer whales might have intersected the simulated oil (the drift cards) across the Salish Sea.

Originally, Alek had hoped to estimate how many killer whales might have died as a result of a hypothetical oil spill in this area, but determining the impacts—both deadly and otherwise—of oil on marine mammals is a complicated matter. As a result, we advised him that there is too much uncertainty and not enough data for him to venture a guess. Instead, he settled on showing the number of killer whales that might be at risk of swimming through areas of simulated oil—and hence the killer whales that could be at risk of being affected by oil.

Ocean Scientist in Training

Google Earth view of the differing paths Alek's two drift card releases traveled around Washington's San Juan Islands and Canada's Vancouver Island.

A Google Earth view of the differing paths Alek’s two drift card releases traveled around Washington’s San Juan Islands and Canada’s Vancouver Island. Red represents the paths of drift cards released on an outgoing tide and yellow, the paths of cards released on an incoming tide. (Used with permission of Alek)

“I’d like to congratulate him on a successful drift card experiment,” said MacFadyen. “His results clearly show some of the features of the ocean circulation in this region.”

In a touching note in his final report, Alek dedicated his study to several great ocean scientists and explorers who came before him, namely, Sylvia Earle, Jacques Cousteau, William Beebe, and Rachel Carson. He was also enthusiastic in his appreciation of our help: “Thank you very very much for all of your help! I love what you do at NOAA. Maybe someday I will be a NOAA scientist!”

If you’re interested in learning more about Alek’s study and his results, you can visit his website www.oilspillscience.org, where you also can view a video summary of his project.


Leave a comment

Science of Oil Spills Training: Apply for Summer 2016

Group of Coast Guard members sit and stand at a table.

These trainings help new and mid-level spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a summer Science of Oil Spills (SOS) class in Seattle, Washington, June 6-10, 2016.

Currently, we are accepting applications for three SOS classes for these locations and dates:

  • Mobile, Alabama, the week of March 28, 2016
  • Ann Arbor, Michigan, the week of May 16, 2016
  • Seattle, Washington, the week of June 6, 2016

We will accept applications for these classes as follows:

  • For the Mobile class, the application period will be open until Friday, January 22. We will notify accepted participants by email no later than Friday, February 5.
  • For the Ann Arbor class, the application period will be open until Friday, March 11. We will notify accepted participants by email no later than Friday, March 25.
  • For the Seattle class, the application period will be open until Friday, April 1. We will notify accepted participants by email no later than Friday, April 15.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

What’s It Like Saving Endangered Baby Sea Turtles in Costa Rica?

This is a post by the Office of Response and Restoration’s Valerie Chu.

Three newly hatched Olive Ridley sea turtles crawl across sand.

Newly hatched Olive Ridley sea turtles make their way toward the ocean. (Used with permission of Julie Watanuki)

I was standing on a sandy Costa Rican beach in the dark of night when I received a hard lesson in the challenges of saving an endangered species. It was my first night volunteering during a seven-day stint on a sea turtle conservation project with the Asociación de Voluntarios para el Servicio en Áreas Protegidas (ASVO) in Montezuma, Costa Rica.

I was charged with protecting sea turtle nests in the ASVO hatchery from poachers and hungry wildlife. On the night of my very first shift, I discovered something terrible had happened. A net covering one of the sea turtle nests had been taken off, and when I looked inside, I found the remains of eight dead baby turtles with just their heads bitten off. When I looked in the back of the hatchery, I noticed that some eggs also had been dug up and eaten.

It was heartbreaking, but furthered my resolve to protect these vulnerable turtles.

Later that night, I discovered who the culprits were—two raccoons. Throughout my shift, the two raccoons would sneak back and I would scare them away each time. Fortunately, the raccoons did not come back in the following days. I was grateful I could play a small part in giving young sea turtles a head start in a long and dangerous journey.

Thinking (and Acting) Globally

Rows of nets cover sandy sea turtle nests, surrounded by fencing.

Volunteers with ASVO place sea turtle eggs collected from Costa Rican beaches into a hatchery with nets covering the nests to protect them from poachers, predators, and other threats. The eggs hatch less than two months later. (Used with permission of Valerie Chu)

Ever since I graduated from the University of Washington in 2012, I’ve wanted to make a positive impact on the dwindling populations of endangered species around the world. I started by volunteering to help orphaned and injured wildlife at the PAWS Wildlife Center near Seattle, Washington (where I recently volunteered during a vegetable oil spill).

As I’ve worked with these animals, my desire of making a global impact on wildlife conservation has increased more and more. In December 2015, I finally got my chance to do it when I traveled to Costa Rica to volunteer with ASVO.

ASVO’s primary goal is to promote active conservation in protected areas, beaches, and rural communities of Costa Rica. They have a volunteer program in around 20 different areas of the country, staffed by some 2,300 volunteers, comprising both local and international volunteers from around the world.

Turtle Time

I was working with Olive Ridley sea turtles, a vulnerable species likely to become endangered in the foreseeable future. Their main threats to survival are direct harvest of adults and eggs, incidental capture in commercial fisheries, loss of nesting habitat, and predators.

During nesting season in Costa Rica, people with ASVO patrol the beaches for female turtles laying their eggs and then gather the eggs and place them at a hatchery. This way, the eggs are protected from poachers, predators, and other threats, both human and environmental. The eggs incubate in the hatchery for between 52 and 58 days before hatching.

Because I had arrived at the end of sea turtle nesting season, I mostly handled the hatchlings and released them into the ocean. When the newly hatched turtles had completely emerged from their nests, I would—while wearing a glove—pick up each one from its nest and head to the ocean. I would then set the turtles down on the sand and watch them walk into the ocean. Some turtles would lose their way because they would walk in the wrong direction or get swept aside by a big wave, so it was my job to make sure they found their way to the ocean without mishap.

Most of my turtle volunteer shifts were at night, and because sea turtles are very sensitive to white light, we could only use a red light while handling them. During night shifts, we were always paired with a second person, allowing us to have one person handle the hatched turtles while the other could stand guard at the hatchery (a very important job, as I observed my first night).

After releasing the turtles, I had to record the number of turtles released, the time of the release, and other notes. Each of the nests held roughly 80-100 eggs, and about 50-70 eggs would hatch, which was an incredible sight.

Don’t Stop (Thinking About What You Can Do)

This trip was an absolutely amazing experience for me. By working with these turtles, I began to fulfill my dream of making a global impact on endangered species populations. On top of that, I was able to connect with other people who care about these issues and form a deep bond over this shared experience.

In the future, I hope to continue volunteering for the conservation of imperiled species like the tiny sea turtles I encountered in Costa Rica. In 2017, I plan to travel to Thailand to work with the endangered elephant population.

But there are lots of ways to protect endangered species at home too. How do you plan to help?

Three people help wash an oiled goose in big soapy wash tubs.

Valerie Chu is an Environmental Scientist who has been providing support for the Office of Response and Restoration’s Emergency Response Division software projects since 2012, when she obtained her undergraduate degree in Environmental Science and Resource Management and then started working with NOAA and Genwest. During her spare time, she volunteers with animal welfare-related causes such as PAWS and Zazu’s House Parrot Sanctuary.


Leave a comment

Remembering the Veterans That Served America and the Historic Shipwrecks They Left Behind

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that over 20,000 shipwrecks rest on the ocean floor off our coasts? The past century of commerce and warfare has left us with this legacy of sunken vessels dotting the seafloor around the United States.

While some of these are naval vessels, a large proportion are merchant vessels destroyed during war time. These wrecks are skewed heavily to World War II casualties such as those fallen during the “Battle of the Atlantic.” Some wrecks, such as the Civil War casualty, the USS Monitor, have been listed as National Historic Landmarks or on the National Register of Historic Places. Many of them, such as the USS Arizona at Pearl Harbor, Hawaii, are either civilian or military grave sites.

Beyond their military and historic significance, these wrecks also represent an enormous human toll. Today—on Veterans Day in the United States, Armistice Day or Remembrance Day in other nations—we honor the men and women who have served in the armed forces of all nations, as well as those serving in the Merchant Marine, and commemorate those who gave their lives in that service.

The Terrible Cost of the Battle of the Atlantic

During World War II’s Battle of the Atlantic, which lasted from September 1939 until the defeat of Germany in 1945, German U-boats and warships (and later Italian submarines) were pitted against Allied convoys transporting military equipment and supplies across the Atlantic to Great Britain and the Soviet Union. This battle to control Atlantic shipping lanes involved thousands of ships and stretched across thousands of square miles of ocean.

A Coast Guard ship's crew watches an explosion in the water ahead.

On April 17, 1943, Coast Guardsmen on the deck of the U.S. Coast Guard Cutter Spencer watch the explosion of a depth charge that blasted a Nazi U-boat’s hope of breaking into the center of a large convoy of ships. World War II left thousands of Allied and Axis ships — and soldiers — on the bottom of the ocean. (U.S. Coast Guard)

The losses in the battle were staggering. Between January and June 1942 alone, this battle resulted in the sinking of almost 500 ships. Historians estimate that more than 100 convoy battles took place during the war, costing Britain’s Merchant Navy more than 30,000 men and around 3,000 ships. The terrible cost for the Germans was 783 U-boats and 28,000 sailors, about 75% of the U-boat force. Although casualty statistics vary, we know that the U.S. Merchant Mariners suffered the highest rate of marine casualties of any service in World War II.

While many of these sunken vessels in U.S. waters rest in the Atlantic Ocean or Gulf of Mexico, numerous wrecks, such as the S/S Montebello, can be found in the Pacific. And of course, the wartime toll was spread across the world’s oceans, touching nearly all parts of the globe.

NOAA’s Role with Undersea Wrecks

NOAA is involved with shipwrecks in a number of ways. The agency’s role ranges from offering scientific guidance to the U.S. Coast Guard during pollution responses, to stewarding the diverse natural and cultural resources including shipwrecks in national marine sanctuaries, to creating navigational charts that show the precise locations of wrecks that could hinder maritime traffic. Most of the 20,000 wrecks resting off our coasts are old and did not carry oil as fuel or hazardous cargo; however, some of the more recent wrecks have the potential to contain—and sometimes leak—oil.

In 2002, for example, the decaying wreck of the S/S Jacob Luckenbach (carrying supplies to support the Korean War) was identified as the source of mysterious, recurring oil spills that had killed thousands of seabirds and other marine life along California’s coast. Our office joined with the U.S. Coast Guard and other agencies to remove the approximately 100,000 gallons of oil remaining in the wreck, protect the resources of the Great Farallones National Marine Sanctuary, and restore critical seabird breeding habitat in the U.S. and Canada to make up for the harm caused by the oil releases.

Two divers and a shark swim next to a large shipwreck.

Knowing how shipwreck sites formed helps explain why sunken vessels, like the Dixie Arrow which initially carried approximately 86,136 barrels of crude oil, but was demolished during World War II, no longer remain intact and are no longer potentially polluting shipwrecks. (NOAA)

Leaking wrecks like the Jacob Luckenbach are one reason NOAA maintains a large database of shipwrecks, dumpsites, navigational obstructions, underwater archaeological sites, and other underwater cultural resources, known as the Resources and Undersea Threats (RUST) database.

Beginning in 2010, NOAA’s Office of Response and Restoration and Office of National Marine Sanctuaries systematically analyzed a subset of those wrecks which could pose a substantial threat of leaking oil still on board. This work is part of NOAA’s Remediation of Underwater Legacy Environmental Threats (RULET) project. (Read more about the work conducted and the final report (PDF).) After the report was completed in 2013, the U.S. Coast Guard has worked to incorporate the information and recommendations into their regional contingency plans.

NOAA also has the privilege of protecting shipwrecks and naval battlefields though its National Marine Sanctuaries office. The first NOAA national marine sanctuary was designated in 1975 to protect the U.S. Navy warship USS Monitor, and other sanctuaries have followed in these footsteps of preserving historic wrecks. Today, you can explore fascinating undersea wrecks at Florida Keys National Marine Sanctuary, Thunder Bay National Marine Sanctuary in the Great Lakes, and at other sanctuaries.

Wrecks and Reefs

Sometimes these submerged shipwrecks can serve as artificial reefs. Sunken wrecks are actually the most prevalent type of artificial reef. As artificial reefs, shipwrecks can create both amazing homes for a diversity of marine life and popular attractions for commercial and recreational fishers, divers, and snorkelers.

Occasionally, vessels are even sunk intentionally for this purpose. However, it can be very costly to prepare the vessels to become artificial reefs, which requires removing paints and other hazardous materials in the hull. Another consideration is the stability of the vessel and its danger to living things around it. For example, if the vessel is in shallow water, will it flip over in a storm and crush the new coral growing there? Could people or marine life get caught inside it? These considerations are why artificial reefs are often found in deep water and why establishing an artificial reef requires special review and permitting processes.

Through the study, protection, and promotion of our diverse legacy of undersea wrecks, national marine sanctuaries help us learn more about and celebrate our merchant marine and military history.

Explore Shipwrecks While Staying Dry

You can learn more about NOAA expeditions between 2008 and 2011, which explored the World War II wrecks in the “Graveyard of the Atlantic.”

You also can watch a video of researchers first discovering the long-lost location of the USS Monitor’s wreck in 1973 off the coast of North Carolina:

See what it’s like to dive among the many wrecks at the bottom of Lake Huron in Thunder Bay’s “Shipwreck Alley”:

Take a video tour of the wreck of the USS Arizona, sunk by Japanese planes on December 7, 1941, and pay homage to the members of the U.S. armed forces who gave their lives.

Video frame of a diver exploring a shipwreck.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


Leave a comment

When Boats Don’t Float: From Sunken Wrecks to Abandoned Ships

Derelict boat in a Gulf marsh.

Ships end up wrecked or abandoned for many reasons and can cause a variety of environmental and economic issues. After Hurricanes Katrina and Rita, thousands of vessels like this one needed to be scrapped or salvaged in the Gulf of Mexico. (NOAA)

The waterways and coastlines of the United States are an important national resource, supporting jobs and providing views and recreation. However, the past century of maritime commerce, recreation, and even warfare has left a legacy of thousands of sunken, abandoned, and derelict vessels along our coasts, rivers, and lakes.

Some of these sunken shipwrecks are large commercial and military vessels such as the USS Arizona in Pearl Harbor, Hawaii; the Edmund Fitzgerald in the Great Lakes; and the recent tragic loss of the 790 foot cargo ship El Faro and its crew off the Bahamas.

These large vessels may be environmental threats because of their cargoes, munitions, and fuel, but many also are designated as submerged cultural resources—part of our maritime heritage. Some even serve as memorials or national historic landmarks. Unless they are pollution hazards, or shallow enough to be threats to navigation or become dive sites, most are largely forgotten and left undisturbed in their deep, watery resting sites.

But another class of wrecks, abandoned and derelict boats, are a highly visible problem in almost every U.S. port and waterway. Some vessels are dilapidated but still afloat, while others are left stranded on shorelines, or hidden just below the surface of the water. These vessels can have significant impacts on the coastal environment and economy, including oil pollution, marine debris, and wildlife entrapment. They become hazards to navigation, illegal release points for waste oils and hazardous materials, and general threats to public health and safety.

Large rusted out ship in shallow water surrounded by corals.

Some shipwrecks, like this one stranded among coral in American Samoa, can become threats to marine life and people. (NOAA)

Most derelict and abandoned vessels are the result of chronic processes—rot and rust and deterioration from lack of maintenance or economic obsolescence—with vessels slowly worsening until they sink or become too expensive to repair, and around that point are abandoned.

Others are mothballed or are awaiting repair or dismantling. If the owners can’t afford moorage and repairs, or if the costs to dismantle the ship exceed the value of the scrap, the owners often dump the boat and disappear. Many vessels end up sinking at moorings, becoming partially submerged in intertidal areas, or stranding on shorelines after their moorings fail. These vessels typically lack insurance, have little value, and have insolvent or absentee owners, a problematic and expensive combination.

Another source of abandoned vessels comes from major natural disasters. After large hurricanes, coastal storms, and tsunamis, a large number of vessels of varying sizes, conditions, and types may be damaged or set adrift in coastal waters. For example, approximately 3,500 commercial vessels and countless recreational vessels needed to be salvaged or scrapped after Hurricanes Katrina and Rita hit the Gulf Coast in 2005. And remember the empty squid boat that drifted across the Pacific Ocean after the 2011 Japan earthquake and tsunami?

NOAA’s interests in this wide range of lost or neglected ships include our roles as scientific advisers to the U.S. Coast Guard, as stewards of marine living and cultural resources (which extends to when these resources are threatened by pollution as well), and as the nation’s chart maker to ensure that wrecks are properly marked for safe navigation.

This week we’re taking a deeper dive into the many, varied, and, at times, overlooked issues surrounding the wrecks and abandoned vessels dotting U.S. waters. As recent events have shown, such as in a recently discovered leaking wreck in Lake Erie and a rusted tugboat left to rot in Seattle, this issue isn’t going away.

First, check out our infographic below exploring the different threats from wrecked and abandoned ships and a gallery of photos highlighting some examples of these ships, both famous and ordinary. UPDATE 11/16/2015: Take a look at the stories featured during this deep dive:

Illustration showing a sunken, abandonedship sticking out of the water close to shore, leaking oil, damaging habitat, posing a hazard to navigation, and creating marine debris on shore.

Sunken and abandoned ships can cause a lot of potential damage to the environment and the economy. (NOAA)

Follow

Get every new post delivered to your Inbox.

Join 647 other followers