NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

During the Chaos of Oil Spills, Seeking a System to Test Potential Solutions

This is a post by Ed Levine of NOAA’s Office of Response and Restoration.

Response workers load oil containment boom onto a supply ship in Louisiana.

NOAA helped develop a systematic approach to vetting new and non-traditional spill response products and techniques during the fast-paced atmosphere of an oil spill. We helped implement this system during the 2010 Deepwater Horizon oil spill to evaluate the tens of thousands of ideas proposed during the spill. (U.S. Coast Guard)

In the pre-dawn hours of January 7, 1994, the tank barge Morris J Berman ran aground near San Juan, Puerto Rico, damaging coral and spilling more than 800,000 gallons of a thick, black fuel oil. Strong winds and waves battered the barge as it continued to leak and created dangerous conditions for spill responders.

During the hectic but organized spill response that followed [PDF] the barge’s grounding, a number of vendors appeared at the command post with spill cleanup products which they assured responders would fix everything. This scenario had played out at many earlier oil spills, and nearly every time, these peddled products were treated differently, at various times sidelined, ignored, tested, or put to use.

It’s not unexpected for the initial situation at any emergency response—be it medical, natural disaster, fire, or oil spill—to be chaotic. Responders are dealing with limited resources, expertise, and information at the very beginning.

As the situation progresses, additional help, information, and experts typically arrive to make things more manageable. Usually, in the middle of all this, people are trying to be helpful, or make a buck, and sometimes both.

At the spill response in Puerto Rico, the responders formed an official ad hoc group charged with cataloging and evaluating each new suggested cleanup product or technology. The group involved local government agencies, NOAA, and the U.S. Coast Guard. It began to develop a systematic approach to what had typically been a widely varying process at previous oil spills.

The methodology the group developed for this case was rough and quickly implemented for the situation at hand. Over the course of the several months required to deal with the damaged barge and oil spill, the ad hoc group tested several, though not all, of the potential cleanup products.

Approaching Order

A few years later, another group took this process a step further through the Regional Response Team III, a state-federal entity for response policy, planning, and coordination for West Virginia, Maryland, Delaware, Pennsylvania, Virginia, and the District of Columbia.

This working group set out to develop a more organized and systematic way to deal with alternative oil spill response techniques and technologies, those which aren’t typically used during oil spill responses. After many months of working collaboratively, this multi-agency working group, which included me and other colleagues in NOAA’s Office of Response and Restoration, produced the approach known as the Alternative Response Tools Evaluation System (ARTES).

This system allows a special response team to rapidly evaluate a proposed response tool and provide feedback in the form of a recommendation to the on-scene coordinator, who directs spill responses for a specified area. This coordinator then can make an informed decision on the use of the proposed tool.

artes-process-flow-chart_noaa_720

The Alternative Response Tools Evaluation System (ARTES) process is designed for use both before and after a spill. “OSC” stands for on-scene coordinator, the person who directs a spill response, and “RRT” stands for Regional Response Team, the multi-agency group charged with spill response policy, planning, and coordination for different regions of the United States.

The ARTES process is designed for two uses. First, it can be used to assess a product’s appropriateness for use during a specific incident, under specific circumstances, such as a diesel spill resulting from a damaged tug boat on the Mississippi River. Second, the process can serve as a pre-evaluation tool during pre-spill planning to identify conditions when a proposed product would be most effective.

One advantage of the ARTES process is that it provides a management system for addressing the numerous proposals submitted by vendors and others during a spill. Subjecting all proposals to the same degree of evaluation also ensures that vendors are considered on a “level playing field.”

Although developed for one geographic region, the ARTES process quickly became adopted by others around the country and has been included in numerous local and regional response plans.

Once the ARTES process was codified, several products including an oil solidifier and a bioremediation agent underwent regional pre-spill evaluations. Personally, I was involved in several of those evaluations as well as one during an actual spill.

A Flood of Oil … and Ideas

A super tanker ship with a large slit in the bow anchored in the Gulf of Mexico.

The super tanker “A Whale” after testing during the Deepwater Horizon oil spill. The skimming slits on its bow are being sealed because it was not able to perform as designed. This vessel design was one of more than 80,000 proposals for surface oil spill response submitted during the spill. (NOAA)

Another defining moment for the ARTES process came in 2010 during the Deepwater Horizon oil spill. Within the first week of the spill, the unified command, the multi-agency organization which coordinates the response and includes those responsible for the spill, was inundated with suggestions to cap the leaking well and clean up the oil released into the Gulf of Mexico.

At one of the morning coordination meetings, the BP incident commander shared his frustration in keeping up with the deluge of offers. He asked if anyone had a suggestion for dealing with all of them. My hand shot up immediately.

After the meeting I spoke with leaders from both BP and the U.S. Coast Guard and described the ARTES process to them. They gave me the go-ahead to implement it. Boy, did I not know what we were in for!

As the days went by, the number of submissions kept growing, and growing, and growing. What started out as a one-person responsibility—recording submissions by phone and email—was soon taken over by a larger group staffed by the Coast Guard and California Office of Spill Prevention and Response and which eventually grew into a special unit of the response.

A dedicated website was created to receive product proposals and ideas, separate them into either a spill response or well capping method, track their progress through the evaluation system, and report the final decision to archive the idea, test it, or put it to use during the spill.

People who submitted ideas were able to track submissions and remain apprised of each one’s progress. Eventually, 123,000 individual ideas were submitted and tracked, 470 made the initial cut, 100 were formally evaluated, and about 30 were implemented during response field operations. Of the original 123,000 submissions, there were 80,000 subsurface and 43,000 surface oil spill response ideas.

One of the many proposals for cleaning up the oil took the form of the ship A Whale. It was a super tanker with a large slit in the bow at the waterline that was meant to serve as a huge skimmer, pulling oil off the ocean surface. Unfortunately, testing revealed that it didn’t work.

Some other examples of submissions included sand-cleaning machines and a barge designed to be an oil skimming and storage device (nicknamed the “Bubba Barge”) that actually did work. On the other hand, popular proposals such as human hair, feathers, and pool “noodles” didn’t perform very well.

Even under the weight of this incredible outpouring of proposals, the ARTES process held up, offering a great example of how far pre-planning can go.

Ed Levine.

Ed Levine is the Response Operations Supervisor – East for NOAA’s Office of Response and Restoration, managing Scientific Support Coordinators from Maine to Texas.

 


Leave a comment

Alaska Updates Plan for Using Dispersants During Oil Spills

Humpback whale and seabirds at surface of Bering Sea with NOAA ship beyond.

By breaking crude oils into smaller droplets, chemical dispersants reduce the surface area of an oil slick as well as the threats to marine life at the ocean surface, such as whales and seabirds. (NOAA)

While the best way to deal with oil spills in the ocean is to prevent them in the first place, when they do happen, we need to be ready. Cleanup is difficult, and there are no magic remedies to remove all the oil. Most big oil spills require a combination of cleanup tools.

This week the Alaska Regional Response Team, an advisory council for oil spill responses in Alaska, has adopted a revised plan for one of the most controversial tools in the toolbox: Chemical dispersants.

How Dispersants Are Used in Oil Spills

Dispersants are chemical compounds which, when applied correctly under the right conditions, break crude oils into smaller droplets that mix down into the water column. This reduces not only the surface area of an oil slick but also the threats to marine life at the ocean surface. By making the oil droplets smaller, they become much more available to natural degradation by oil-eating microbes.

Dispersants are controversial for many reasons, notably because they don’t remove oil from the marine environment. Mechanical removal methods are always preferred, but we also know that during large oil spills, containment booms and skimmers can get overwhelmed and other pollution response tools may be necessary. This is a big concern especially in Alaska, where weather and remote locations increase the logistical challenges inherent in a large scale oil spill response.

Although dispersants get a lot of attention because of their extensive use after the 2010 Deepwater Horizon oil spill, they actually are used rarely during oil spills. In fact, dispersants have only been applied to about two dozen spills in the United States in the last 40 years. The only time they were tested during an actual spill in Alaska was during the Exxon Valdez oil spill in 1989.

Some oils like light and medium crude are often dispersible and others, like heavy fuel oils, often are not. In some cases dispersants have worked and in others they haven’t. The results of the Exxon Valdez testing were unclear and still subject to debate. So, why have a plan for something that is rarely used and may not be successful?

Probably the biggest reason is pragmatic. Dispersants work best on fresh, unweathered oil. Ideally, they should be applied to oil within hours or days of a spill. Because time is such a critical factor to their effectiveness, dispersants need to be stockpiled in key locations, along with the associated aircraft spraying and testing equipment. People properly trained to use that equipment need to be ready to go too.

A New Plan for Alaska

Airplane sprays dispersants over an oil slick in the Gulf of Mexico.

Although only used once in an Alaskan oil spill, dispersants have already been an approved oil spill response tool in the state for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly. (U.S. Environmental Protection Agency)

Now, dispersants have already been an approved oil spill response tool in Alaska [PDF] for a number of years. This new plan improves the decision procedures and designates areas where dispersant use may be initiated rapidly while still requiring notification of the natural resource trustees, local and tribal governments, and other stakeholders before actual use.

Alaska’s new plan specifies all the requirements for applying dispersants on an oil spill in Alaskan waters and includes detailed checklists to ensure that if dispersants are used, they have a high probability of success.

The new plan sets up a limited preauthorization zone in central and western Alaska, and case-by-case procedures for dispersant use elsewhere in Alaska. The plan also recognizes that there are highly sensitive habitats where dispersant use should be avoided.

In addition, preauthorization for using dispersants exists only for oil spills that happen far offshore. Most states have similar preauthorization plans that allow dispersant use starting three nautical miles offshore. The new Alaska plan starts at 24 miles offshore.

We realize that even far offshore, there may be areas to avoid, which is why all of the spill response plans in central and western Alaska will be revised over the next two years. This will occur through a public process to identify sensitive habitats where dispersant use would be subject to additional restrictions.

Planning for the Worst, Hoping for the Best

As the NOAA representative to the Alaska Regional Response Team, I appreciate all of the effort that has gone into this plan. I am grateful we developed the many procedures through a long and inclusive planning process, rather than in a rush on a dark and stormy night on the way to an oil spill.

But I hope this plan will never be needed, because that will mean that a big oil spill has happened. Nobody wants that, especially in pristine Alaskan waters.

Any decision to use dispersants will need to be made cautiously, combining the best available science with the particular circumstances of an oil spill. In some cases, dispersants may not be the best option, but in other scenarios, there may be a net environmental benefit from using dispersants. Having the dispersants, equipment, plans, and training in place will allow us to be better prepared to make that critical decision should the time come.

At the same time, NOAA and our partners are continuing to research and better understand the potential harm and trades-offs of dispersant use following the Deepwater Horizon oil spill. We are participating in an ongoing effort to understand the state of the science on dispersants and their potential use in Arctic waters. (The University of New Hampshire is now accepting comments on the topic of dispersant efficacy and effectiveness.)

You can find Alaska’s new dispersant policy and additional information at the Alaska Regional Response Team website at www.alaskarrt.org.

For more information on our work on dispersants, read the April 2015 article, “What Have We Learned About Using Dispersants During the Next Big Oil Spill?” and July 2013 article, “Watching Chemical Dispersants at Work in an Oil Spill Research Facility.”


Leave a comment

NOAA Involved After Barge Argo, the Lake Erie Shipwreck Lost in 1937, Resurfaces with Oily Leak in U.S. Waters

Divers exit small boats into the waters of Lake Erie.

Contractors conduct dive operations at the site of a sunken barge near the Kelley’s Island Shoal in Lake Erie, Oct. 21, 2015. The divers were trying to establish the identity of the barge and if it or any of its cargo poses an environmental threat. (U.S. Coast Guard)

The 1937 sinking of a small barge in Lake Erie went largely unnoticed at the time, but the ill-fated tank barge Argo is in the news now that the wreck’s exact location—along with a leak—has been discovered.

And it wasn’t in Canadian waters, as previously thought.

Ship Down, Pollution Rising

That piece of underwater detective work by the Cleveland Underwater Explorers, combined with historical research done as part of NOAA’s RULET program (Remediation of Underwater Legacy Environmental Threats) which in 2013 identified it as a potentially polluting shipwreck, have been key factors in the developing response to the Argo.

Recently found to be on the U.S. side of the border with Canada, the wreck has been traced to reports of pollution on Lake Erie in both nations, indicating that the Argo is leaking. At the time of the sinking, the barge was reportedly loaded with 4,762 barrels of crude oil and the chemical benzol. The U.S. Coast Guard, with support from NOAA’s Office of Response and Restoration and in collaboration with Canada, is ramping up pollution response efforts to address the leaking Great Lakes wreck.

While underwater response technologies do exist to address wrecks filled with oil, there are a lot of steps involved before a wreck can be safely remediated. Early efforts will focus on identifying whether the barge is leaking petroleum or benzol (or both) and determining whether the source of the leaks can be controlled immediately.

The Coast Guard is evaluating whether and how to safely remove the cargo from the sunken barge to reduce the likelihood of future pollution. NOAA is providing environmental and chemical data, weather forecasting, modeling of observed oil sheens back to the wreck, and other observations to support the response.

Linking Leaks to Potential Harm

Evaluating the magnitude of the leaks will alert us to any significant threats to people or to fish, birds, or other wildlife in the lake. NOAA and other organizations are analyzing samples of lake water and zebra mussels attached to the wreck to determine whether concentrations of hazardous chemicals are present or exceed levels of concern.

If it appears that the Argo has been leaking for some time or if the concentrations of detected pollutants are expected to be toxic to fish or wildlife, NOAA and other agencies would consider pursuing a natural resource damage assessment, with the goal of evaluating harm to public natural resources and determining whether and which restoration actions would compensate for injuries. As “natural resource trustee” agencies, NOAA, U.S. Fish and Wildlife Service, and the State of Ohio would perform these assessments over the next few months.

From Another Time

One of the compelling aspects of shipwrecks is the way they capture a moment in time. Looking back at the major events of that time, it is easy to see how a barge accident in the Great Lakes would barely garner a mention in the local papers. In 1937 Franklin Roosevelt had just been re-elected president, Adolf Hitler was chancellor of Germany, Benito Mussolini was prime minister of Italy, and Joseph Stalin was in power in the Soviet Union.

Even in the area of transportation, other momentous events dominated the news. The Golden Gate Bridge had just opened, the zeppelin Hindenburg was destroyed by fire while landing in New Jersey, and American aviation pioneer Amelia Earhart disappeared over the Pacific.

Yes, 1937 was a long time ago. It was well before the Oil Pollution Act of 1990 and other laws and regulations for the transport of oil and response to spills. When the Argo sank in a storm on October 20—79 years ago—the crew was safely rescued and the barge was left on the bottom, slowly sinking into the lake bed sediments.

The location wasn’t well known, even to maritime historians. We weren’t even sure if the wreck was in the U.S. or Canada, which shows how little is often known about the thousands of shipwrecks in North American waters—that is, until they start releasing their long-hidden cargo.

Update December 10, 2016: Learn about the fate of Barge Argo and its contents on board.

Stay tuned for a special series in early November when we’ll be diving deeper into the issues of sunken, abandoned, and derelict vessels—covering everything from when they become maritime heritage sites to how we deal with those that turn into polluting eyesores.


Leave a comment

How Do Oil Spills Get Cleaned up on Shore?

Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag on a beach.

Cleaning up oil from shorelines is a messy job. Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag as they clean up along a beach near Refugio State Beach, California, May 21, 2015. Cleanup teams used shovels and their hands to gather affected soil and ocean debris along oil impacted beaches north of Santa Barbara. (U.S. Coast Guard)

We often say that no two oil spills are alike, but one thing spills have in common is that cleaning oil off of shorelines is a messy business.

If a ship sinks or an oil pipeline ruptures, the primary goals of spill responders are to contain the oil source to stop any (more) oil from leaking and to prevent already spilled oil from spreading. However, weather conditions and ocean currents may overwhelm containment booms and other offshore oil spill response strategies. That means escaping oil may reach shorelines both near to and far from the initial oil spill location.

But when oil stains shorelines, what methods and equipment do responders use to remove it? And how is that different from cleaning up oil out at sea?

Here at NOAA, we have a library full of spill response manuals, technical reports, scientific journal articles, job aids, case histories, and guidance documents describing the methods used to clean up shorelines. And after every major oil spill there are advances in shoreline cleanup methods and equipment.

Here we present some commonly used shoreline cleanup options. Keep in mind that all response options, including what responders call “natural recovery” (letting oil break down naturally in the environment), have potential trade-offs. This means we have to take into consideration the impact of the cleanup methods themselves as we assess the overall environmental impacts of any action.

There are, of course, nuances in cleanup strategies at every oil spill that reflect the specific oil type, local environmental conditions, shoreline habitats, shore access, and a host of safety and logistical considerations. These variables will influence the particular cleanup strategy responders use at any one spill.

And at most oil spills, a combination of cleanup methods will be used (but not necessarily in the order shown here). Let’s take a look at each of these methods.

Responding to oil spills on shore: This graphic shows an overview of people using eight methods for cleaning up oil from shorelines. 1. Shoreling flushing/washing: Water hoses can rinse oil from the shoreline into water, where it can be more easily collected. 2. Booms: Long, floating, interconnected barriers are used to minimize the spread of spilled oil. 3. Vacuums: Industrial-sized vacuum trucks can suction oil from the shoreline or on the water surface. 4. Sorbents: Specialized absorbent materials act like a sponge to pick up oil but not water. 5. Shoreline cleaners and biodegradation agents: Chemical cleaners that act like saops may be used to remove oil, but require special permission. Nutrients may be added to help microbes break down oil. 6. Burning. Also referred to as

Responding to oil spills on shore: This is an overview of the various methods for cleaning up oil from shorelines, from flushing and vacuums to sorbents and heavy machinery. (NOAA)

1) Shoreline Flushing: This method uses water to remove or refloat stranded oil, which allows it to be more easily recovered as a slick on the water. One of the lessons learned from the 1989 Exxon Valdez oil spill was to be very careful about water pressure and temperature to avoid causing more harm to the shoreline.

2) Booms: These long, floating barriers are used to keep spilled oil off the beach, or to collect it after being flushed from the beach into the immediate waters.

3) Vacuums: Large industrial vacuums can suction oil off the beach or shoreline vegetation.

4) Sorbents: These specialized materials, which can take forms such as square pads or long booms, are engineered to absorb oil but not water.

5) Shoreline cleaners and bioremediation agents: There are a variety of chemical cleaners for oiled shorelines that usually require special approval for their use. Surface washing agents [PDF] are used to soften and lift oil off of surfaces or structures that have been oiled, such as beach rocks, docks, and riprap. Bioremediation agents, on the other hand, often take the form of fertilizers that help speed up natural microbial degradation processes. However, conventional cleanup methods (e.g., booms and sorbents) typically are used first to their fullest extent to remove the worst oiling, while these alternative measures usually play a secondary role (if any).

6) Burning: Responders sometimes will perform controlled burns, also referred to as “in situ burning,” of freshly spilled oil floating on the water’s surface or on marsh vegetation.

7) Manual recovery: This method involves using good old buckets, shovels, rakes, and other hand tools to remove oil from shorelines. It is very labor-intensive but is often a primary tool for a response when access for larger equipment is impractical, such as on remote beaches or those without road access.

8) Mechanical removal: When access is possible and won’t cause too much damage to the shoreline, responders may bring in heavy machinery, such as back hoes or front-end loaders, to scoop up and haul away oiled materials in bulk.

Two bobcat digging machines scoop oil from a beach.

Heavy machinery was brought in to remove oil from a beach in Puerto Rico in 2007. (NOAA)


Leave a comment

It Took More Than the Exxon Valdez Oil Spill to Pass the Historic Oil Pollution Act of 1990

Aerial view of Exxon Valdez tanker with boom and oil on water.

While the tanker Exxon Valdez spilled nearly 11 million gallons of oil into Alaskan waters, a trifecta of other sizable oil spills followed on its heels. These spills helped pave the way for passage of the Oil Pollution Act of 1990, which would vastly improve oil spill prevention, response, and restoration. (NOAA)

If you, like many, believe oil shouldn’t just be spilled without consequence into the ocean, then you, like us, should be grateful for a very important U.S. law known as the Oil Pollution Act of 1990.

Congress passed this legislation and President George H.W. Bush signed it into law 25 years ago on August 18, 1990, which was the summer after the tanker Exxon Valdez hit ground in Prince William Sound, Alaska. On March 24, 1989, this tanker unleashed almost 11 million gallons of oil into relatively pristine Alaskan waters.

The powerful images from this huge oil spill—streams of dark oil spreading over the water, birds and sea otters coated in oil, workers in shiny plastic suits trying to clean the rocky coastline—both shocked and galvanized the nation. They ultimately motivated the 101st Congress to investigate the causes of recent oil spills, develop guidelines to prevent and clean up pollution, and pass this valuable legislation.

Yet that monumental spill didn’t fully drive home just how inadequate the patchwork of existing federal, state, and local laws were at addressing oil spill prevention, cleanup, liability, and restoration. Nearly a year and a half passed between the Exxon Valdez oil spill and the enactment of the Oil Pollution Act. What happened in the mean time?

The summer of 1989 experienced a trifecta of oil spills that drained any resources left from the ongoing spill response in Alaska. In rapid succession and over the course of less than 24 hours, three other oil tankers poured their cargo into U.S. coastal waters. Between June 23 and 24, the T/V World Prodigy spilled 290,000 gallons of oil in Newport, Rhode Island; the T/V Presidente Rivera emptied 307,000 gallons of oil into the Delaware River; and the T/V Rachel B hit Tank Barge 2514, releasing 239,000 gallons of oil into Texas’s Houston Ship Channel.

But these were far from the only oil spills plaguing U.S. waters during that time. Between the summers of 1989 and 1990, a series of ship collisions, groundings, and pipeline leaks spilled an additional 8 million gallons along the United States coastline. And that doesn’t even include another million gallons of thick fuel oil released from a shore-side facility in the U.S. Virgin Islands after it was damaged by Hurricane Hugo.

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Can you imagine—or perhaps remember—sitting at home watching the news and hearing again and again about yet another oil spill? And wondering what the government was going to do about it? Fortunately, in August of 1990, Congress voted unanimously to pass the Oil Pollution Act, which promised—and has largely delivered—significantly improved measures to prevent, prepare for, and respond to oil spills in U.S. waters.

Now, 25 years later, the shipping industry has undergone a makeover in oil spill prevention, preparedness, and response. A couple examples include the phasing out of tankers with easily punctured single hulls and new regulations for driving tankers that require the use of knowledgeable pilots, maneuverable tug escorts, and an appropriate number of people on the ship’s bridge during transit.

Oil spill response research also received a boost thanks to the Oil Pollution Act, which reopened a national research facility dedicated to this topic and shuttered just before the Exxon Valdez spill.

But perhaps one of the most important elements of this law required those responsible for oil spills to foot the bill for both cleaning up the oil and for economic and natural resource damages resulting from it.

This provision also requires oil companies to pay into the Oil Spill Liability Trust Fund, a fund theoretically created by Congress in 1986 but not given the necessary authorization until the Oil Pollution Act of 1990. This fund helps the U.S. Coast Guard—and indirectly, NOAA’s Office of Response and Restoration—pay for the upfront costs of responding to marine and coastal accidents that threaten to release hazardous materials such as oil and also of assessing the potential environmental and cultural impacts (and implementing restoration to make up for them).

This week we’re saying thank you to the Oil Pollution Act by highlighting some of its successes in restoring the environment after oil spills. You can join us on social media using the hashtag #Thanks2OilPollutionAct.


Leave a comment

How Is an Oil Spill in a River Different Than One in the Ocean?

Boat with boom next to oil mixed with river bank vegetation.

The often complex, vegetated banks of rivers can complicate cleaning up oil spills. (NOAA)

Liquid asphalt in the Ohio River. Slurry oil in the Gulf of Mexico. Diesel in an Alaskan stream. Each of these oil spills was very different from each other, partly because they involved very different types of oils.

But even if the same type of oil were spilled in each case, the results would be just as distinct because of where they occurred—one in a large inland river, one in the open ocean, and one in a small coastal creek.

In many cases, oil tends to float. But just because an oil floats in the saltwater of the Atlantic Ocean doesn’t mean it will float in the constantly moving freshwater of the Mississippi River.

But why does that happen? And what else can we expect to be different when oil spills into a river and not the ocean?

Don’t Be Dense … Blame Density

To answer the first question: When oil floats, it is generally because the oil is less dense than the water it was spilled into. The more salt is dissolved in water, the greater the water’s density. This means that saltwater is denser than freshwater. Very light oils, such as diesel, have low densities and would float in both the salty ocean and freshwater rivers.

However, very heavy oils may sink in a river (but perhaps not on the ocean), which is what happened when an Enbridge pipeline carrying a diluted form of oil from oil sands (tar sands) leaked into Michigan’s flooded Kalamazoo River in 2010. The lighter components of the oil quickly evaporated into the air, leaving the heavier components to drift in the water column and sink to the river bottom. That created a whole slew of new challenges as responders tried new methods of first finding and then cleaning up the difficult-to-access oil.

Going with the Flow

In rivers, going with the flow usually means going downstream. Except when it doesn’t. When might a river’s currents carry spilled oil upstream?

At the mouth of a river, where it meets the ocean, a large incoming tide can enter the river and overwhelm the normal downstream currents. That could potentially carry oil floating on the surface back upstream.

In open areas, such as on the ocean surface, both winds and currents have the potential to direct where spilled oil goes. And along most coasts, wind is what brings spilled oil onto shore.

In rivers, however, the downstream currents usually dominate the overall movement of oil while wind direction often determines which side of the river oil ends up on.

Locks and Other Blocks

Unlike the ocean, rivers sometimes feature structures such as dams, locks, and other barriers that block or slow down the free flow of water. During an oil spill on a river, these structures can also slow down the movement of oil.

That’s a helpful feature for responders who are trying to catch up to and clean up that oil. Frequently, dams and locks cause oil to pool up on the surface next to them. Some of the tools responders use to collect oil from these areas include skimmers, which are devices that remove thin layers of oil from the surface, and sorbent pads and booms, which are large squares and long tubes of special material that absorb oil but not water.

In fact, the banks of the river can constrain spilled oil as well. Because the oil can’t spread as far or thin as in open water, oil slicks can be thicker on rivers, and recovery efforts can be more effective.

One exception is the case of flow-over dams, known as weirs. The water passing over weirs can be very turbulent, causing oil to disperse into the water column. If it is very light oil and there’s not very much, that oil tends not to resurface and form another slick. But sheens may resurface with heavier oils that might be broken up going over a weir but later resurface as the water it is traveling in becomes calmer downstream.

Vegging Out

Oil rings on trees next to a river with boom.

Flooding on the Kalamazoo River in Michigan during the Enbridge pipeline oil spill left a ring of oil around trees and other vegetation after the river returned to its normal level. (NOAA)

Often, plants grow in rivers and line their banks, whereas many parts of the coast are open sandy or rocky beaches, which tend to be easier to clean oil off of than vegetation. (Salt marshes and mangroves being notable oceanic exceptions.) If oil gets past booms, the long floating barriers responders use to prevent the spread of oil, and leaves a coating on plants, then plant cleanup options generally include cutting, burning, treating with chemical shoreline cleaners, or flushing vegetation with low-pressure water.

Plant life actually became an issue during the oil sands spill in Michigan’s Kalamazoo River. Because this river was flooded at the time of the spill and later returned to its normal level, oil on the river surface actually became stranded in tree branches along the riverbanks.

Muddying the Waters

Another issue for oil spills in rivers is sediment. Rivers often carry a lot of sediment in their currents. (How do you think the Mississippi got its nickname “Big Muddy”?) That means when oil droplets drift into the water column of a river, the sediment has the potential to stick to the oil droplets. Eventually (depending on how strong-flowing and full of sediment a river is) some of the oil-sediment combination may settle out to the bottom of the river, usually near the river mouth as the water slows down and reaches the ocean.

One notable example is related to an oil spill that happened on the Mississippi River in New Orleans in 2008. The tanker Tintomara collided with Barge DM932, ripping it in half and releasing all of the heavy fuel oil it was carrying. Downstream of where the responders were cleaning up oil, the Army Corps of Engineers was dredging the sediments that build up at the mouth of the Mississippi and an oily sheen appeared in the collected sediment.

Responders suspected the oil from Barge DM932 had mixed with the river sediment and fell to the bottom further downstream as the river neared the Gulf of Mexico.

Learn more about oil spills in rivers at http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/oil-spills-rivers.html.