NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Incident Responses for June 2017

Close up of skimming device on side of a boat with oil and boom.

Skimmers come in various designs but all basically work by removing the oil layer from the surface of the water. Image credit: U.S. Coast Guard

Every month our Emergency Response Division provides scientific expertise and services to the U.S. Coast Guard. Our services include everything from running oil spill trajectories to possible effects on wildlife and fisheries, and estimates on how long the oil may stay in the environment.

Several calls in June required our help to determine areas that might be effected by possible chemical releases. In those incidents, we used our CAMEO Chemicals modeling software to identify areas at risk.

Our Incident News website has information on oil spills and other incidents where we provided scientific support.

Here are some of this month’s responses:


Leave a comment

Meet the New CAMEO Chemicals Mobile App

Man in rpotective mask with fire in background.

Used by firefighters and other emergency responders, our hazardous chemicals database, CAMEO Chemicals, is now available as a mobile app. Image credit: U.S. Air Force

The joint NOAA-Environmental Protection Agency hazardous chemicals database is now available as a mobile app.

Named CAMEO Chemicals, the database has information on thousands of chemicals and hazardous substances, including response recommendations and predictions about explosions, toxic fumes, and other hazards. Firefighters and emergency planners around the world use CAMEO Chemicals to help them prepare for and respond to emergencies.

CAMEO Chemicals was already available as a desktop program, website, and mobile-friendly website. You can download the new app to view key chemical and response information on smartphones and tablets. Once downloaded, you can look up chemicals and predict reactivity without an internet connection—making it a valuable tool for emergency responders on the go. With an internet connection, you can access even more resources, like the National Institute for Occupational Safety and Health Pocket Guide to Chemical Hazards and International Chemical Safety Cards.

Image of smartphones and tablets.

Our hazardous chemicals database, CAMEO Chemicals, is now available as a mobile app. Image credit: NOAA

The app is packed with features, including:

  • Search by name, Chemical Abstracts Service number, or United Nations/North American number to find chemicals of interest in the database of thousands of hazardous substances.
  • Find physical properties, health hazards, air and water hazards, recommendations for firefighting, first aid, and spill response, and regulatory information.
  • Predict potential hazards that could arise if chemicals were to mix.
  • Quickly access additional resources like the U.S. Coast Guard Chemical Hazards Response Information System manual, the National Institute for Occupational Safety and Health Pocket Guide, and International Chemical Safety Cards.
  • Find response information from the Emergency Response Guidebook  and shipping information from the Hazardous Materials Table. Emergency Response Guidebook PDFs are available in English, Spanish, and French.
  • Save and share information with colleagues.

The mobile app is part of the CAMEO® software suite, a set of programs offered at no cost by NOAA’s Office of Response and Restoration and EPA’s Office of Emergency Management. This suite of programs was designed to assist emergency planners and responders to anticipate and respond to chemical spills.

You can download the new CAMEO Chemicals app in the Apple App store or Google Play Store.

 

Kristen Faiferlick of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Restoration on the Way for New Jersey’s Raritan River, Long Polluted by Industrial Waste

The Raritan River as it runs through a wooded area.

A draft restoration plan and environmental assessment is now available for the American Cyanamid Superfund Site which affected the Raritan River in northern New Jersey. Image credit: U.S. Geological Survey

Update: Oct, 20, 2016—Restoration for the Raritan River moved one step closer with the U.S. Department of Justice’s announcement of a settlement for the American Cyanamid Superfund Site. Details can be found here.

Following years of intensive cleanup and assessment at the American Cyanamid Superfund Site, NOAA and our partners are now accepting public comment on a draft restoration plan and environmental assessment [PDF] for this northern New Jersey site.

For many years, the 575 acre site located along the Raritan River in Bridgewater Township was used by the American Cyanamid Company for chemical manufacturing and coal tar distillation.

However, chemical wastes released during manufacturing at the facility harmed natural resources in the sediments and surface waters of the Raritan River and its tributaries. The facility was designated a Superfund site in 1983 due to contamination by a variety of toxic substances including mercury, chromium, arsenic, lead, and PCBs.

The area affected by the contamination provides habitat for a variety of migratory fish, such as alewife, blueback herring, striped bass, rainbow smelt, American shad, American eel, and other aquatic life. In addition, large numbers of birds nest, forage, and migrate along the Raritan River, from raptors and songbirds to waterfowl and shorebirds.

Over the years, NOAA has worked with the U.S. Environmental Protection Agency to ensure a thorough cleanup to protect natural resources in the Raritan River watershed. NOAA and our co-trustees, the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection, evaluated the extent of injury in the river and determined the best path toward restoration.

An Industrial History

Factories and trains at the American Cyanamid chemical manufacturing site, 1940.

The American Cyanamid Company, shown here circa 1940, produced fertilizers, cyanide, and other chemical products whose wastes were released directly into the Raritan River for decades. (Photographer unknown)

The American Cyanamid Company got its start in the early 1900s by developing an effective fertilizer ingredient, a compound of nitrogen, lime, and carbide called cyanamid. By the early 1920s, the company, whose focus had been primarily agricultural products, began producing cyanide for use in gold and silver extraction and hydrocyanic acid, important to rubber production.

Over the next several decades, the American Cyanamid Company diversified, adding chemicals, plastics, dyes, and resins to their growing line of products. Further expanding into pharmaceuticals, the company provided valuable medical products to the World War II effort.

Starting in the 1920s and continuing up to the 1980s, chemical waste associated with the company’s manufacturing practices became an issue. For decades, chemical waste was released directly into the Raritan River.

Waste treatment began in 1940, which meant it was buried at the site or stored in unlined “impoundments,” or reservoirs. That practice stopped in 1979 and dye manufacturing ended three years later. By 1985 there was no more direct discharge into the Raritan River and manufacturing at the site ceased in 1999. It is estimated that over time, 800,000 tons of chemical wastes were buried at the site.

A New Chapter for the Raritan River

The American Cyanamid site on the Raritan River in New Jersey.

The draft restoration plan for the Raritan River aims to restore passage for migratory fish while improving water quality and habitat due to years of industrial pollution at the American Cyanamid manufacturing site. (NOAA)

The restoration plan and environmental assessment were created by NOAA in coordination with the U.S. Fish and Wildlife Service and the New Jersey Department of Environmental Protection. The plan proposes restoration actions that will compensate for any injuries to the river and related natural resources.

A major component of the restoration would be the removal of the Weston Mill Dam, near the confluence of the Millstone and Raritan Rivers. The original dam, a barrier to migratory fish, is thought to have been built around 1700 to power a mill. Removal of the current dam, a 1930s-era concrete replacement of the original, will help to achieve the restoration goals of restoring passage for migratory fish while improving water quality and habitat.

As explained in the plan, removing this dam will return the flow of the Raritan River and the streams it feeds closer to their natural states and do so without negative impacts to endangered species or cultural, sociological, or archaeological resources.

Long situated in an area of industrial activity, the American Cyanamid Superfund Site is only one of several contaminated sites along the Raritan River and its tributaries. Many of these sites are now being remediated, and the watershed is being restored.

According to NOAA Regional Resource Coordinator, Reyhan Mehran, “While it’s likely that this site is among those that contributed to the general degradation of the Raritan River over the last century, the site’s cleanup and compensatory projects will be important parts of the story of restoring the Raritan.”

Learn how to comment on the draft restoration plan and environmental assessment.


Leave a comment

Accidents on a Flooded Lower Mississippi River Keep NOAA Busy with a Rash of Spills

Damaged barge on the Mississippi River.

A barge carrying slurry oil being pushed by the towing vessel Amy Francis hit the Natchez-Vidalia Bridge, Jan. 21, 2016. The barge reportedly has a maximum potential of more than 1 million gallons of slurry oil on board. (U.S. Coast Guard)

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that oil spills occur every day in U.S. waters? Rivers bustling with ship traffic, such as the Mississippi, are no exception to this rule.

In the past few weeks, we’ve been involved with quite a few accidents involving vessels carrying oil and chemicals on the Lower Mississippi River.

These river accidents coincided with high water and swift currents. Despite safeguards for vessel traffic put in place by the U.S. Coast Guard, the river conditions resulted in ships colliding, hitting bridges and ground, and breaking away from their towing vessels. One unlucky railroad bridge in Vicksburg, Mississippi, has been hit by vessels five times already this year.

Even now, the NOAA River Forecast Center reports that the Lower Mississippi is experiencing moderate flood conditions. It’s difficult to navigate a river with a tow of barges at any flow—and extremely challenging when the flow is high and fast. In spite of everyone’s best efforts, under conditions like these, accidents can and do still happen, and investigations are ongoing into the precise causes.

Luckily, most of the incidents that have occurred were relatively minor, resulted in no injuries to vessel crews, and all spills received immediate responses from state and federal agencies. Still, when oil or chemicals spill into rivers, we know that they differ from spills in the ocean or along coasts, and therefore present different challenges for spill responders.

Here are just a few of the dozen or so spills and near-spills we know of and which have been keeping our spill modelers, chemists, and Scientific Support Coordinators busy over the past few weeks.

January 21, 2016: A barge being towed by the UTV Amy Frances struck the Natchez Bridge, where Highway 84 crosses over the Lower Mississippi River between Mississippi and Louisiana, in the vicinity of Mile Marker 363. As a result, two of the barge’s tanks were damaged, spilling slurry oil, which our chemical lab confirmed was denser than water. That means this oil sinks.

In the wake of this oil spill, one of our Scientific Support Coordinators helped survey the river to detect sunken oil. Given the river’s very fast and turbulent water at the time, we think any oil released from the damaged tanks was immediately broken into small droplets and carried downstream while also sinking below the river surface. Any oil that reached the bottom was probably mixed with or buried by the sand moving downstream near the river bottom. This is because rivers that move a lot of water also move a lot of sediment.

In addition, we provided information on the expected fate and effects of the barge’s spilled slurry oil and on the animals and habitats that could be at risk.

Workers on a river edge pump oil from a damaged barge.

Response crews remove oil from the damaged MM-46 barge, Jan. 23, 2016, on the Mississippi River. Crews estimate that approximately 76,000 gallons of clarified oil mixture is still unaccounted for. Crews continue to take soundings of the damaged barge tank to determine the amount spilled while assessment teams work to locate missing product. (U.S. Coast Guard)

January 25, 2016: Just a few days later, the Coast Guard called on us for advice related to a barge containing liquid urea ammonium nitrate (liquid fertilizer), which sank south of Valewood, Mississippi, at Mile Marker 501 on the Mississippi River. Side-scan sonar indicates the barge is upside-down on the river bottom, approximately 80 feet down.

Given the position and water pressure, we believe the chemical cargo stored on the barge was likely released into the river. The chemical is heavier than water and will mix quickly into the water column. Because elevated levels of ammonia can affect aquatic life, our focus was on predicting and tracking where the chemical would go downriver and what would happen to it. Salvage efforts for the barge itself continue.

January 26, 2016: The next day, two vessel tows collided upriver of New Orleans, Louisiana, near Mile Marker 130 on the Lower Mississippi River. The collision capsized one of two barges carrying caustic soda, or sodium hydroxide. We provided the Coast Guard with an initial chemical hazard assessment for this chemical, which is a strong base. The release of a large enough quantity of sodium hydroxide could raise the pH of the water around it, posing a risk to local fish and other aquatic life nearby. The barge is secure, but righting it is difficult in the swift currents. No pollution release has been reported to date.

Science for Spills of All Kinds

During these kinds of spills, we have to be ready to provide the same round-the-clock, science-based support to the Coast Guard and other agencies as big spills like the Deepwater Horizon in the Gulf of Mexico.

For example, if a chemical has spilled into a river, we need to know where it’s going to go, what’s going to happen to it, and what, if any, species will be harmed by it. To help answer the “where’s it going?” question, our response specialists use the spill trajectory tool, GNOME, to predict the possible route the pollutant might follow.

To better understand the pollutant and its possible effects, we use software tools such as CAMEO Chemicals to provide information about the chemical’s properties, toxicity, and behavior as it is diluted by the river water. Our Chemical Aquatic Fate and Effects (CAFE) database contains information on the effects of thousands of chemicals, oils, and dispersants on aquatic life.

The Mississippi River and its floodplain are home to a diverse population of living things. On the Lower Mississippi, there may be as many as 60 separate species of mussel. To protect vulnerable species, we use our Environmental Sensitivity Index maps and data to report what animals or habitats could be at risk, particularly those that are threatened or endangered. Keeping responders and the public safe and minimizing environmental harm are two of our top priorities during any spill, no matter the size.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


Leave a comment

Apply Now for NOAA’s First Class Examining the Science of Chemical Spills

People standing in a lab next to chemical testing equipment.

This three and a half day class will provide a broad, science-based approach to understanding chemical release response. (NOAA)

For years, NOAA’s Office of Response and Restoration has been offering our popular Science of Oil Spills classes to oil spill responders and planners. But oil isn’t the only hazardous material for which we have expertise. This March, we’ll launch our first official Science of Chemical Releases (SOCR) class to share this expertise in new ways.

This class is designed to help spill responders and planners increase their scientific understanding when preparing for and analyzing chemical spills, which could range from toluene to sulfuric acid, and when making risk-based decisions to protect public health, safety, and the environment in the event of such a release.

The three and a half day class will take place at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, Alabama, from March 21–24, 2016.

We are accepting applications for this class until Friday, February 19, 2016. We will notify accepted participants by email no later than Friday, February 26.

The class is primarily intended for new and mid-level spill responders, planners, and stakeholders from all levels of government, industry, and academia.

During the class, participants will be introduced to a realistic scenario to demonstrate the use of scientific tools, resources, and knowledge to aid in response to chemical releases. The scenario will be centered on a hypothetical chemical incident involving the derailment of multiple railcars containing hazardous chemicals, resulting in a fire and release of dangerous chemicals into the environment.

Through this new training, we hope to provide a broad, science-based approach to understanding chemical release response, thereby increasing awareness and preparedness and reducing uncertainty and risk associated with this type of incident.

There is no tuition for this class. However, students are responsible for all miscellaneous expenses, including lodging, travel, and food.

For more information, and to learn how to apply for the class, visit the SOCR Classes page.

If you have any questions or experience any problems with your application, please send us an email.

To receive updates about our activities and events, including Science of Chemical Releases or Science of Oil Spills classes, subscribe to our monthly newsletter.


Leave a comment

For Oil and Chemical Spills, a New NOAA Tool to Help Predict Pollution’s Fate and Effects

Dead crab on a beach with oily water and debris.

NOAA has released the software program CAFE to help responders dealing with pollution answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it? (Beckye Stanton, California Department of Fish and Wildlife)

Accidents happen. Sometimes, they happen at places with big consequences, such as at a fertilizer factory that uses the chemical ammonia as an active ingredient.

An accident in a place like that can lead to situations in which thousands of gallons of this chemical could, for example, be released into a drainage ditch leading to a nearby salt marsh.

When oil or chemicals are released into the environment like this, responders dealing with the pollution are often trying to answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it?

To help responders answer these questions, NOAA has just released to the public a new software program known as CAFE.

The Chemical Aquatic Fate and Effects Database

NOAA’s Chemical Aquatic Fate and Effects (CAFE) database allows anyone to determine the fate and toxicological effects of thousands of chemicals, oils, and dispersants when released into fresh or saltwater environments. CAFE has two major components: the Fate module, which predicts how a contaminant will behave in the environment, and the Effects module, which determines the chemical’s potential toxicity to different species.

In the Fate module, CAFE contains data, such as chemical properties, useful in understanding and predicting chemical behavior in aquatic environments.

For example, in our ammonia-in-water scenario, CAFE’s chemical property data would tell us that ammonia has a low volatilization rate (it doesn’t readily change in form from liquid or solid to gas) and is very soluble in water. That means if spilled into a body of water, ammonia would dissolve in the water and stay there.

In the Effects module, CAFE contains data about the acute toxicity—negative, short-term impacts from short-term exposure—of different chemicals. This module plots that data on graphs known as “Species Sensitivity Distributions.” These graphs show a curved line ranking the relative sensitivity of individual species of concern, from the most sensitive to the least sensitive, to a particular chemical over a given period of exposure (ranging from 24 to 96 hours).

Graph showing the range in sensitivity of aquatic species to 48 hour exposure to ammonia.

The reactions of different species to chemicals can vary widely. The CAFE database produces these species sensitivity graphs showing the range in sensitivity of select aquatic species to certain chemicals after a given length of exposure. (NOAA)

Again turning to our scenario of an ammonia spill in a salt marsh, the graph here shows how a range of aquatic species, which the user selects from the program, would be affected by a 48 hour exposure to ammonia. The Taiwan abalone (a type of aquatic snail) is the most sensitive species because many of these snails would be affected at lower concentrations of ammonia, falling into the orange, highly toxic zone.

On the other hand, the brine shrimp is the least sensitive of this group because these shrimp would have to be exposed to much higher concentrations of ammonia to be affected. Thus the brine shrimp falls into the green, practically nontoxic zone. However, most of the data in this graph seem to fall into the moderately or slightly toxic zones, meaning that ammonia is a toxic chemical of concern.

Using these data from CAFE, you then assess the potential impact of the ammonia spill to the aquatic environment.

Download the Software

You can download version 1.1 of the Chemical Aquatic Fate and Effects (CAFE) database from NOAA’s Office of Response and Restoration website at http://response.restoration.noaa.gov/cafe.

Adding to our collection of spill response resources, CAFE will serve as a one-stop, rapid response tool to aid spill responders in their assessment of environmental impacts from chemical and oil spills.


Leave a comment

One Step Toward Reducing Chemical Disasters: Sharing with Communities Where Those Chemicals Are Located

This is a guest post by emergency planner Tom Bergman.

Dirty label on leaking chemical drum

Attempting to access, collect, and share information on where chemicals are produced, stored, and transported is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. (killbox/Creative Commons Attribution 2.0 Generic License)

The year 2013 saw two major chemical disasters in the United States, which tragically killed 17 people and injured hundreds more. As a result, President Obama signed Executive Order 13650 (EO 13650) August 1, 2013, followed by a report the next year to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

As part of this directive, six federal agencies and departments, including the U.S. Environmental Protection Agency (EPA), formed a work group to investigate how to better help local communities plan for and respond to emergencies involving hazardous substances.

Out of these work group discussions came one area needing improvement which might sound surprising to the average person: data sharing. Specifically, the work group highlighted the need to improve data sharing among the various federal programs that regulate hazardous substances and the state and local communities where those chemicals are produced, stored, and transported.

EPA works with NOAA on the chemical spill planning and response software suite known as CAMEO. These software programs offer communities critical tools for organizing and sharing precisely this type of chemical data.

Lots of Chemicals, Lots of Data

Many parts of the federal government, including several of the agencies involved in the work group, regulate hazardous chemicals in a number of ways to keep our communities safe. That means collecting information from industry on the presence or usage of hazardous substances in communities across the nation. It also results in a lot of data reported on the hazardous materials manufactured, used, stored, and transported in the United States. Making sure these data are shared with the right people is a key goal for chemical safety.

However, federal agencies do not require industry to report all of this information in consistent formats across agencies. Furthermore, this reported information on hazardous chemicals is generally not available to local emergency planners and responders—the very people who would need quick access to that information during a disaster in their community.

Trying to access, collect, and share all of this information is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. Fortunately, however, NOAA and EPA have a suite of software tools—known as CAMEO—that helps make this task a little easier.

One State’s Approach to Better Data Sharing

As required by the Emergency Planning and Community Right-to-Know Act (EPCRA), which was passed to help communities plan for emergencies involving hazardous substances, each state, Local Emergency Planning Committee, and local fire department receives hazardous material information via hazardous chemical inventories, or “Tier 2” reports. This information represents one part of the picture for local communities, but as the federal work group pointed out, it is not enough.

Already familiar with the CAMEO software suite, Oklahoma’s state emergency planners decided to use this complementary set of programs to tackle the goal of better sharing chemical safety data, as outlined in Executive Order 13650.

Under EPCRA, each state is required to have a State Emergency Response Commission to oversee the law’s hazardous chemical emergency planning programs. In Oklahoma, the group is known as the Oklahoma Hazardous Materials Emergency Response Commission (OHMERC).

As their first step toward improving chemical data sharing with local planners, OHMERC set out to obtain hazardous material information from the EPA, Department of Homeland Security, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Then, they sought to make that information available to all Oklahoma Local Emergency Planning Committees (LEPC). Subsequently, these federal agencies began to contact other state representatives to explore avenues to share these data.

Each of the three federal agencies OHMERC contacted provided non-sensitive hazardous material program data—plus the state already had access to some of the information—but these data were in different file formats. Some were contained in spreadsheets, others as PDF files, and still others delivered in text documents. As a result, there was no consistent format for delivering the information to local emergency planners.

Going Local

Oklahoma Local Emergency Planning Committees already use the CAMEO suite of software to manage their Tier 2 (EPA hazardous chemical inventory) reports. As a result, OHMERC decided to use the database program CAMEOfm to deliver additional information from other federal hazardous material programs to these local committees.

For each Tier 2 report, CAMEOfm has an “ID and Regs” section, which typically contains standard identifying codes for each local facility dealing with chemicals. For the appropriate facilities, OHMERC added new designations to the ID fields for the additional regulatory data from the Department of Homeland Security, EPA, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Now, local planners can search CAMEOfm to see which facilities in their jurisdiction are subject to several other hazardous material regulatory programs. If interested, local planners then can contact a facility, inquire why it is regulated by a particular program, gather more information, and plan directly with that facility.

Since all the CAMEOfm records are linked to the MARPLOT mapping program (also part of the CAMEO software suite), Local Emergency Planning Committees now have the information mapped as well. For example, a planner from Tulsa County can search CAMEOfm for locations with chemicals regulated under the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards program (CFATS) and the EPA’s Risk Management Plan and Toxics Release Inventory programs. Next, the planner can display the results on a map using MARPLOT.

In addition, Oklahoma facilities regulated under EPA’s Risk Management Plan program have been encouraged to include the non-sensitive parts of their plans in the “Site Plans” section of CAMEOfm. Many, though not all, of these sites did so, realizing this was an effective method to ensure the local first responders had access to that important information.

Getting Data in Ship Shape

Oklahoma’s Local Emergency Planning Committees now have all of this chemical safety information in a consistent format, located in a familiar program where they easily can access it for planning and response efforts.

Screen shot of CAMEOfm record with chemical information of shipment of Bakken crude oil.

Rail lines provide data that Oklahoma’s state emergency planners want to share with the local planning committees. The data include the appropriate Material Safety Data Sheets (MSDS) for Bakken crude oil, along with emergency response personnel and information for that railroad, and a report of the numbers of trains shipping more than 1 million pounds of Bakken crude. This information is added as a CAMEOfm record quickly and easily, in a way that is completely accessible to the responders and planners along with their other CAMEOfm records.

Another timely example of how Oklahoma is using this CAMEOfm and MARPLOT combination is for managing information on rail shipments of Bakken crude oil through the state. Bakken oil is a highly flammable type of oil typically shipped by train from the Bakken region of North Dakota and Montana and has been involved in a number of high-profile explosions and fires after train cars carrying it have derailed. OHMERC entered this shipment information, provided by the railroads, into CAMEOfm, where it becomes linked to the appropriate railroad map objects in MARPLOT. OHMERC then sends this material in the CAMEOfm and MARPLOT format to the relevant Local Emergency Planning Committees.

Using these programs to better share data is a step that any emergency planner or responder can take. You can find more information about the CAMEO software suite at response.restoration.noaa.gov/cameo.

This is a guest post by Oklahoma emergency planner Tom Bergman. He is the author of the CAMEO Companion and host of the www.cameotraining.org website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years. He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.