NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Accidents on a Flooded Lower Mississippi River Keep NOAA Busy with a Rash of Spills

Damaged barge on the Mississippi River.

A barge carrying slurry oil being pushed by the towing vessel Amy Francis hit the Natchez-Vidalia Bridge, Jan. 21, 2016. The barge reportedly has a maximum potential of more than 1 million gallons of slurry oil on board. (U.S. Coast Guard)

This is a post by the Office of Response and Restoration’s Donna Roberts.

Did you know that oil spills occur every day in U.S. waters? Rivers bustling with ship traffic, such as the Mississippi, are no exception to this rule.

In the past few weeks, we’ve been involved with quite a few accidents involving vessels carrying oil and chemicals on the Lower Mississippi River.

These river accidents coincided with high water and swift currents. Despite safeguards for vessel traffic put in place by the U.S. Coast Guard, the river conditions resulted in ships colliding, hitting bridges and ground, and breaking away from their towing vessels. One unlucky railroad bridge in Vicksburg, Mississippi, has been hit by vessels five times already this year.

Even now, the NOAA River Forecast Center reports that the Lower Mississippi is experiencing moderate flood conditions. It’s difficult to navigate a river with a tow of barges at any flow—and extremely challenging when the flow is high and fast. In spite of everyone’s best efforts, under conditions like these, accidents can and do still happen, and investigations are ongoing into the precise causes.

Luckily, most of the incidents that have occurred were relatively minor, resulted in no injuries to vessel crews, and all spills received immediate responses from state and federal agencies. Still, when oil or chemicals spill into rivers, we know that they differ from spills in the ocean or along coasts, and therefore present different challenges for spill responders.

Here are just a few of the dozen or so spills and near-spills we know of and which have been keeping our spill modelers, chemists, and Scientific Support Coordinators busy over the past few weeks.

January 21, 2016: A barge being towed by the UTV Amy Frances struck the Natchez Bridge, where Highway 84 crosses over the Lower Mississippi River between Mississippi and Louisiana, in the vicinity of Mile Marker 363. As a result, two of the barge’s tanks were damaged, spilling slurry oil, which our chemical lab confirmed was denser than water. That means this oil sinks.

In the wake of this oil spill, one of our Scientific Support Coordinators helped survey the river to detect sunken oil. Given the river’s very fast and turbulent water at the time, we think any oil released from the damaged tanks was immediately broken into small droplets and carried downstream while also sinking below the river surface. Any oil that reached the bottom was probably mixed with or buried by the sand moving downstream near the river bottom. This is because rivers that move a lot of water also move a lot of sediment.

In addition, we provided information on the expected fate and effects of the barge’s spilled slurry oil and on the animals and habitats that could be at risk.

Workers on a river edge pump oil from a damaged barge.

Response crews remove oil from the damaged MM-46 barge, Jan. 23, 2016, on the Mississippi River. Crews estimate that approximately 76,000 gallons of clarified oil mixture is still unaccounted for. Crews continue to take soundings of the damaged barge tank to determine the amount spilled while assessment teams work to locate missing product. (U.S. Coast Guard)

January 25, 2016: Just a few days later, the Coast Guard called on us for advice related to a barge containing liquid urea ammonium nitrate (liquid fertilizer), which sank south of Valewood, Mississippi, at Mile Marker 501 on the Mississippi River. Side-scan sonar indicates the barge is upside-down on the river bottom, approximately 80 feet down.

Given the position and water pressure, we believe the chemical cargo stored on the barge was likely released into the river. The chemical is heavier than water and will mix quickly into the water column. Because elevated levels of ammonia can affect aquatic life, our focus was on predicting and tracking where the chemical would go downriver and what would happen to it. Salvage efforts for the barge itself continue.

January 26, 2016: The next day, two vessel tows collided upriver of New Orleans, Louisiana, near Mile Marker 130 on the Lower Mississippi River. The collision capsized one of two barges carrying caustic soda, or sodium hydroxide. We provided the Coast Guard with an initial chemical hazard assessment for this chemical, which is a strong base. The release of a large enough quantity of sodium hydroxide could raise the pH of the water around it, posing a risk to local fish and other aquatic life nearby. The barge is secure, but righting it is difficult in the swift currents. No pollution release has been reported to date.

Science for Spills of All Kinds

During these kinds of spills, we have to be ready to provide the same round-the-clock, science-based support to the Coast Guard and other agencies as big spills like the Deepwater Horizon in the Gulf of Mexico.

For example, if a chemical has spilled into a river, we need to know where it’s going to go, what’s going to happen to it, and what, if any, species will be harmed by it. To help answer the “where’s it going?” question, our response specialists use the spill trajectory tool, GNOME, to predict the possible route the pollutant might follow.

To better understand the pollutant and its possible effects, we use software tools such as CAMEO Chemicals to provide information about the chemical’s properties, toxicity, and behavior as it is diluted by the river water. Our Chemical Aquatic Fate and Effects (CAFE) database contains information on the effects of thousands of chemicals, oils, and dispersants on aquatic life.

The Mississippi River and its floodplain are home to a diverse population of living things. On the Lower Mississippi, there may be as many as 60 separate species of mussel. To protect vulnerable species, we use our Environmental Sensitivity Index maps and data to report what animals or habitats could be at risk, particularly those that are threatened or endangered. Keeping responders and the public safe and minimizing environmental harm are two of our top priorities during any spill, no matter the size.

Donna Roberts

Donna Roberts

Donna Roberts is a writer for the Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R). Her work supports the OR&R website and the Environmental Sensitivity Index mapping program.


Leave a comment

For Oil and Chemical Spills, a New NOAA Tool to Help Predict Pollution’s Fate and Effects

Dead crab on a beach with oily water and debris.

NOAA has released the software program CAFE to help responders dealing with pollution answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it? (Beckye Stanton, California Department of Fish and Wildlife)

Accidents happen. Sometimes, they happen at places with big consequences, such as at a fertilizer factory that uses the chemical ammonia as an active ingredient.

An accident in a place like that can lead to situations in which thousands of gallons of this chemical could, for example, be released into a drainage ditch leading to a nearby salt marsh.

When oil or chemicals are released into the environment like this, responders dealing with the pollution are often trying to answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it?

To help responders answer these questions, NOAA has just released to the public a new software program known as CAFE.

The Chemical Aquatic Fate and Effects Database

NOAA’s Chemical Aquatic Fate and Effects (CAFE) database allows anyone to determine the fate and toxicological effects of thousands of chemicals, oils, and dispersants when released into fresh or saltwater environments. CAFE has two major components: the Fate module, which predicts how a contaminant will behave in the environment, and the Effects module, which determines the chemical’s potential toxicity to different species.

In the Fate module, CAFE contains data, such as chemical properties, useful in understanding and predicting chemical behavior in aquatic environments.

For example, in our ammonia-in-water scenario, CAFE’s chemical property data would tell us that ammonia has a low volatilization rate (it doesn’t readily change in form from liquid or solid to gas) and is very soluble in water. That means if spilled into a body of water, ammonia would dissolve in the water and stay there.

In the Effects module, CAFE contains data about the acute toxicity—negative, short-term impacts from short-term exposure—of different chemicals. This module plots that data on graphs known as “Species Sensitivity Distributions.” These graphs show a curved line ranking the relative sensitivity of individual species of concern, from the most sensitive to the least sensitive, to a particular chemical over a given period of exposure (ranging from 24 to 96 hours).

Graph showing the range in sensitivity of aquatic species to 48 hour exposure to ammonia.

The reactions of different species to chemicals can vary widely. The CAFE database produces these species sensitivity graphs showing the range in sensitivity of select aquatic species to certain chemicals after a given length of exposure. (NOAA)

Again turning to our scenario of an ammonia spill in a salt marsh, the graph here shows how a range of aquatic species, which the user selects from the program, would be affected by a 48 hour exposure to ammonia. The Taiwan abalone (a type of aquatic snail) is the most sensitive species because many of these snails would be affected at lower concentrations of ammonia, falling into the orange, highly toxic zone.

On the other hand, the brine shrimp is the least sensitive of this group because these shrimp would have to be exposed to much higher concentrations of ammonia to be affected. Thus the brine shrimp falls into the green, practically nontoxic zone. However, most of the data in this graph seem to fall into the moderately or slightly toxic zones, meaning that ammonia is a toxic chemical of concern.

Using these data from CAFE, you then assess the potential impact of the ammonia spill to the aquatic environment.

Download the Software

You can download version 1.1 of the Chemical Aquatic Fate and Effects (CAFE) database from NOAA’s Office of Response and Restoration website at http://response.restoration.noaa.gov/cafe.

Adding to our collection of spill response resources, CAFE will serve as a one-stop, rapid response tool to aid spill responders in their assessment of environmental impacts from chemical and oil spills.


Leave a comment

One Step Toward Reducing Chemical Disasters: Sharing with Communities Where Those Chemicals Are Located

This is a guest post by emergency planner Tom Bergman.

Dirty label on leaking chemical drum

Attempting to access, collect, and share information on where chemicals are produced, stored, and transported is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. (killbox/Creative Commons Attribution 2.0 Generic License)

The year 2013 saw two major chemical disasters in the United States, which tragically killed 17 people and injured hundreds more. As a result, President Obama signed Executive Order 13650 (EO 13650) August 1, 2013, followed by a report the next year to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

As part of this directive, six federal agencies and departments, including the U.S. Environmental Protection Agency (EPA), formed a work group to investigate how to better help local communities plan for and respond to emergencies involving hazardous substances.

Out of these work group discussions came one area needing improvement which might sound surprising to the average person: data sharing. Specifically, the work group highlighted the need to improve data sharing among the various federal programs that regulate hazardous substances and the state and local communities where those chemicals are produced, stored, and transported.

EPA works with NOAA on the chemical spill planning and response software suite known as CAMEO. These software programs offer communities critical tools for organizing and sharing precisely this type of chemical data.

Lots of Chemicals, Lots of Data

Many parts of the federal government, including several of the agencies involved in the work group, regulate hazardous chemicals in a number of ways to keep our communities safe. That means collecting information from industry on the presence or usage of hazardous substances in communities across the nation. It also results in a lot of data reported on the hazardous materials manufactured, used, stored, and transported in the United States. Making sure these data are shared with the right people is a key goal for chemical safety.

However, federal agencies do not require industry to report all of this information in consistent formats across agencies. Furthermore, this reported information on hazardous chemicals is generally not available to local emergency planners and responders—the very people who would need quick access to that information during a disaster in their community.

Trying to access, collect, and share all of this information is a challenge for state and local emergency responders trying to prevent the type of chemical disasters that devastated West, Texas, and Geismar, Louisiana, in 2013. Fortunately, however, NOAA and EPA have a suite of software tools—known as CAMEO—that helps make this task a little easier.

One State’s Approach to Better Data Sharing

As required by the Emergency Planning and Community Right-to-Know Act (EPCRA), which was passed to help communities plan for emergencies involving hazardous substances, each state, Local Emergency Planning Committee, and local fire department receives hazardous material information via hazardous chemical inventories, or “Tier 2” reports. This information represents one part of the picture for local communities, but as the federal work group pointed out, it is not enough.

Already familiar with the CAMEO software suite, Oklahoma’s state emergency planners decided to use this complementary set of programs to tackle the goal of better sharing chemical safety data, as outlined in Executive Order 13650.

Under EPCRA, each state is required to have a State Emergency Response Commission to oversee the law’s hazardous chemical emergency planning programs. In Oklahoma, the group is known as the Oklahoma Hazardous Materials Emergency Response Commission (OHMERC).

As their first step toward improving chemical data sharing with local planners, OHMERC set out to obtain hazardous material information from the EPA, Department of Homeland Security, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Then, they sought to make that information available to all Oklahoma Local Emergency Planning Committees (LEPC). Subsequently, these federal agencies began to contact other state representatives to explore avenues to share these data.

Each of the three federal agencies OHMERC contacted provided non-sensitive hazardous material program data—plus the state already had access to some of the information—but these data were in different file formats. Some were contained in spreadsheets, others as PDF files, and still others delivered in text documents. As a result, there was no consistent format for delivering the information to local emergency planners.

Going Local

Oklahoma Local Emergency Planning Committees already use the CAMEO suite of software to manage their Tier 2 (EPA hazardous chemical inventory) reports. As a result, OHMERC decided to use the database program CAMEOfm to deliver additional information from other federal hazardous material programs to these local committees.

For each Tier 2 report, CAMEOfm has an “ID and Regs” section, which typically contains standard identifying codes for each local facility dealing with chemicals. For the appropriate facilities, OHMERC added new designations to the ID fields for the additional regulatory data from the Department of Homeland Security, EPA, and Bureau of Alcohol, Tobacco, Firearms, and Explosives. Now, local planners can search CAMEOfm to see which facilities in their jurisdiction are subject to several other hazardous material regulatory programs. If interested, local planners then can contact a facility, inquire why it is regulated by a particular program, gather more information, and plan directly with that facility.

Since all the CAMEOfm records are linked to the MARPLOT mapping program (also part of the CAMEO software suite), Local Emergency Planning Committees now have the information mapped as well. For example, a planner from Tulsa County can search CAMEOfm for locations with chemicals regulated under the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards program (CFATS) and the EPA’s Risk Management Plan and Toxics Release Inventory programs. Next, the planner can display the results on a map using MARPLOT.

In addition, Oklahoma facilities regulated under EPA’s Risk Management Plan program have been encouraged to include the non-sensitive parts of their plans in the “Site Plans” section of CAMEOfm. Many, though not all, of these sites did so, realizing this was an effective method to ensure the local first responders had access to that important information.

Getting Data in Ship Shape

Oklahoma’s Local Emergency Planning Committees now have all of this chemical safety information in a consistent format, located in a familiar program where they easily can access it for planning and response efforts.

Screen shot of CAMEOfm record with chemical information of shipment of Bakken crude oil.

Rail lines provide data that Oklahoma’s state emergency planners want to share with the local planning committees. The data include the appropriate Material Safety Data Sheets (MSDS) for Bakken crude oil, along with emergency response personnel and information for that railroad, and a report of the numbers of trains shipping more than 1 million pounds of Bakken crude. This information is added as a CAMEOfm record quickly and easily, in a way that is completely accessible to the responders and planners along with their other CAMEOfm records.

Another timely example of how Oklahoma is using this CAMEOfm and MARPLOT combination is for managing information on rail shipments of Bakken crude oil through the state. Bakken oil is a highly flammable type of oil typically shipped by train from the Bakken region of North Dakota and Montana and has been involved in a number of high-profile explosions and fires after train cars carrying it have derailed. OHMERC entered this shipment information, provided by the railroads, into CAMEOfm, where it becomes linked to the appropriate railroad map objects in MARPLOT. OHMERC then sends this material in the CAMEOfm and MARPLOT format to the relevant Local Emergency Planning Committees.

Using these programs to better share data is a step that any emergency planner or responder can take. You can find more information about the CAMEO software suite at response.restoration.noaa.gov/cameo.

This is a guest post by Oklahoma emergency planner Tom Bergman. He is the author of the CAMEO Companion and host of the www.cameotraining.org website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years. He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.


1 Comment

How NOAA Oil Spill Experts Got Involved With Chemical Spill Software

Fire and smoke on a container ship carrying hazardous materials at sea.

The aftermath of a March 2006 explosion of hazardous cargo on the container ship M/V Hyundai Fortune. The risks of transporting hazardous chemicals on ships at sea sparked the inspiration for NOAA oil spill responders to start designing chemical spill software. (Credit: Royal Netherlands Navy)

It was late February of 1979, and the Italian container ship Maria Costa [PDF] had sprung a leak. Rough seas had damaged its hull and the ship now was heading to Chesapeake Bay for repairs. Water was flooding the Maria Costa’s cargo holds.

This was a particular problem not because of its loads of carpets and tobacco, but because the vessel was also carrying 65 tons of pesticide. Stored in thick brown paper bags, this unregulated insecticide was being released from the clay it was transported with into the waters now flooding the cargo holds.

Ethoprop, the major ingredient of this organophosphate insecticide, was not only poisonous to humans but also to marine life at very low concentrations (50 parts per billion in water). Waters around Norfolk, Virginia, had recently suffered another pesticide spill affecting crabs and shrimp, and the leaking Maria Costa was denied entry to Chesapeake Bay because of the risk of polluting its waters again.

During the Maria Costa incident, two NOAA spill responders boarded the ship to take samples of the contaminated water and assess the environmental threat. Even though this event predated the current organization of NOAA’s Office of Response and Restoration, NOAA had been providing direct support to oil spills and marine accidents since showing up as hazardous materials (hazmat) researchers during the Argo Merchant oil spill in 1976.

Blood and Water

The NOAA scientists had blood samples taken before and after spending an hour and a half aboard the damaged vessel taking samples of their own. The results indicated that water in the ship’s tanks had 130 parts per million of ethoprop and the two men’s blood showed tell-tale signs of organophosphate poisoning.

After the resolution of that incident and an ensuing hospital visit by the two NOAA scientists, the head of the NOAA Hazardous Materials Response Program, John Robinson, realized that responding to releases of chemicals other than oil would take a very different kind of response. And that would take a different set of tools than currently existed.

From Book Stacks to Computer Code

John Robinson leaning on the edge of a boat.

John Robinson led the NOAA Hazardous Materials Response Program in its early years and helped guide the team’s pioneering development of chemical spill software tools for emergency responders. (NOAA)

Following the Maria Costa, Robinson got to work with the Seattle Fire Department’s newly formed hazmat team, allowing NOAA to observe how local chemical incidents were managed. Then, he initiated four large-scale exercises around the nation to test how the scientific coordination of a federal response would integrate with local first responder activities during larger-scale chemical incidents.

It didn’t take long to understand how important it was for first responders to have the right tools for applying science in a chemical response. During the first exercise, responders laid out several reference books on the hoods of cars in an attempt to assess the threat from the chemicals involved.

Researching and synthesizing complex information from multiple sources during a stressful situation proved to be the main challenge. Because the threat from chemical spills can evolve so much more rapidly than oil spills—a toxic cloud of chemical vapor can move and disappear within minutes—it was very clear that local efforts would always be front and center during these responses.

Meanwhile, NOAA scientists created a computer program employing a simple set of equations to predict how a toxic chemical gas would move and disperse and started examining how to synthesize chemical information from multiple sources into a resource first responders could trust and use quickly.

Learning from Tragedy

Then, in December of 1984, tragedy struck Bhopal, India, when a deadly chemical cloud released from a Union Carbide plant killed more than 2,000 people. This accidental release of methyl isocyanate, a toxic chemical used to produce pesticides, and its impact on the unprepared surrounding community led the U.S. government to examine how communities in the United States would have been prepared for such an accident.

By 1986, Congress, motivated by the Bhopal accident, passed the Emergency Planning and Community Right-to-Know Act (EPCRA). As a result, certain facilities dealing with hazardous chemicals must report these chemicals and any spills each year to the U.S. Environmental Protection Agency (EPA).

Apple II+ computer hooked up to Apple graphics tablet, color TV, and printer.

In the late 1970s and early 1980s, NOAA’s hazmat team wrote the first version of the ALOHA chemical plume modeling program, now part of the CAMEO software suite for hazardous material response, for this Apple II+ computer. (NOAA)

Because NOAA had already started working with first responders to address the science of chemical spill response, EPA turned to NOAA as a partner in developing tools for first responders and community awareness. From those efforts, CAMEO was born. CAMEO, which stands for Computer-Aided Management of Emergency Operations, is a suite of software products for hazardous materials response and planning.

Getting the Right Information, Right Now

The goal was to consolidate chemical information customized for each community and be able to model potential scenarios. In addition, that information needed to be readily available to the public and to first responders.

In 1986, attempting to do this on a computer was a big deal. At that time, the Internet was in its infancy and not readily accessible. Computers were large desktop affairs, but Apple had just come out with a “portable” computer. NOAA’s Robinson was convinced that with a computer on board first response vehicles, science-based decisions would become the norm for chemical preparedness and response. Today, responders can access that information from their smartphone.

NOAA and EPA still partner on the CAMEO program, which is used by tens of thousands of planners and responders around the world. Almost 30 years later, the program and technology have evolved—and continue to do so—but the vision and goal are the same: providing timely and critical science-based information and tools to people dealing with chemical accidents. Learn more about the CAMEO suite of chemical planning and response products.


Leave a comment

Latest NOAA Mapping Software Opens up New Possibilities for Emergency Responders

This is a guest post by emergency planner Tom Bergman.

Aerial view of destroyed houses in Vilonia, Arkansas, after EF4 tornado in April 2014.

NOAA and EPA’s MARPLOT mapping software was designed for emergency responders and planners dealing with chemical spills. However, its features lend it to a host of other uses, from search and rescue after a tornado to dealing with wildfires. (NOAA National Weather Service)

For 20 years, thousands of emergency planners and responders have used the MARPLOT mapping software to respond to hazardous chemical spills. But creative MARPLOT users have also employed the program for a wide range of other uses, including dispatching air ambulances and helping identify a serial arsonist.

MARPLOT is the mapping component of a suite of software programs called CAMEO, jointly developed by NOAA’s Office of Response and Restoration and the U.S. Environmental Protection Agency to help emergency planners and responders deal with chemical spills.

These agencies have just released a new version of MARPLOT (version 5.0). MARPLOT 5 offers a host of new and improved capabilities, which translate to more mapping options, greater flexibility, and even more powerful data searching capabilities.

On the Grid

To illustrate a few of the new capabilities of MARPLOT 5, let’s imagine that a category EF2/EF3 tornado is blowing through McClain County, Oklahoma. McClain County is a mostly rural area, with only three small towns. For this scenario, we will assume the tornado passes through the small town of Blanchard, Oklahoma.

Immediately following the tornado, first responders will conduct initial damage surveys of the affected area. Generally, the Incident Command, which is the multi-agency team responsible for managing the emergency response, will want to divide the area the tornado impacted into a “grid” and assign teams to survey specific areas of it. MARPLOT 5 has a new “gridding” tool, which allows those in an Incident Command to determine and display the various survey zones.

In the Ready Files

Fortunately, McClain County is well-prepared to deal with this emergency. The county already has a complete list of addresses for the affected area in the proper file format for working in maps (E911 address point shape files) and has imported them into MARPLOT 5 before the tornado hit. In addition, McClain Emergency Management has compiled information such as locations with chemicals stored on site, homes or businesses with fortified safe rooms, and any special populations such as those with impaired mobility and made that data available in MARPLOT 5. Having this information at their fingertips helps the Incident Command prioritize resources and search areas in the affected zones, as well as keep survey and search-and-rescue teams safe.

The latest version of the software allows users to upload any .png image file to serve as a map symbol. This feature provides critical information to responders in a customizable and easily interpreted way. Notice in the screen shot of the MARPLOT map below that the locations of safe rooms, E911 address points, and residences of oxygen-dependent and mobility-impaired persons are clearly identified by specific symbols. The user can select any map symbol and see an associated information box displayed for that symbol.

Screenshot showing close-up of grid zones for a hypothetical tornado. The map shows safe rooms, 911 address points, and special populations displayed in MARPLOT 5.

Close-up of grid zones for a hypothetical tornado. The map shows safe rooms, 911 address points, and special populations displayed in MARPLOT 5. (NOAA)

In MARPLOT, any square of the grid can be selected and “searched” for information associated with that area of the map, which is then displayed in the latest version of MARPLOT as a “spreadsheet.” This spreadsheet can be printed and given to the teams surveying impacted areas. Below is an example of an information spreadsheet for E911 address points in a selected one-square-mile grid zone (Grid Box 2, 4).

Screenshot of MARPLOT 5 showing addresses in a spreadsheet.

Address points in the selected Grid Box 2, 4, displayed as a spreadsheet in MARPLOT 5 which responders can print out and take on surveys of damaged areas. (NOAA)

With this feature, emergency responders have the information they need contained in both a map and a spreadsheet as they conduct their initial damage survey. In this example, responders assigned to survey Grid Box 2, 4 already know they must clear 142 address points in the area, six of which have safe rooms, two of which have mobility-impaired residents, and one with an oxygen-dependent person.

Furthermore, the emergency responders in this scenario were able to accomplish all of these operations in MARPLOT without any access to Internet or cloud servers. And the software is 100 percent free.

This is a very simple example of new ways MARPLOT 5 may be implemented by emergency planners and responders across the country. There are a host of other new operations in version 5—including real-time weather via web mapping service (WMS) access—that could be used for dealing with wildfires, search and rescue operations, floods, hazardous material releases, resource management, manhunts … In fact, MARPLOT could be used in just about any type of situation where customizable and user-operated mapping might be helpful.

Learn more about and download the latest version of MARPLOT.

Tom Bergman is the author of the CAMEO Companion and host of the www.cameotraining.org website. Tom is the EPCRA (Emergency Planning and Community Right-to-Know Act) Tier 2 Program Manager for the State of Oklahoma and has been a CAMEO trainer for many years.  He has conducted CAMEO training courses in Lithuania, Poland, England, Morocco, and 45 U.S. states.


Leave a comment

Our Top 10 New Year’s Resolutions for 2015

2014 written in the sand.

Good bye, 2014. Credit: Marcia Conner/CC BY-NC-SA 2.0

While we have accomplished a lot in the last year, we know that we have plenty of work ahead of us in 2015.

As much as we wish it were so, we realize oil and chemical spills, vessel groundings, and marine debris will not disappear from the ocean and coasts in the next year. That means our experts have to be ready for anything, but specifically, for providing scientific solutions to marine pollution.

Here are our plans for doing that in 2015:

  1. Exercise more. We have big plans for participating in oil spill exercises and performing trainings that will better prepare us and others to deal with threats from marine pollution.
  2. Be safer. We work up and down the nation’s coastlines, from tropical to arctic environments. Many of these field locations are remote and potentially hazardous. We will continue to assess and improve our equipment and procedures to be able to work safely anywhere our services are needed.
  3. Keep others safe. We are improving our chemical response software CAMEO, which will help chemical disaster responders and planners get the critical data they need, when and where they need it.
  4. Get others involved. We are partnering with the University of Washington to explore ways average citizens can help contribute to oil spill science.
  5. Communicate more effectively. This spring, we will be hosting a workshop for Alaskan communicators and science journalists on research-based considerations for communicating about chemical dispersants and oil spills.
  6. Be quicker and more efficient. We will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive data in the Arctic to support Natural Resource Damage Assessment and other oil spill science.
  7. Sport a new look. An updated, more mobile-friendly look is in the works for NOAA’s Damage Assessment, Remediation, and Restoration Program website. Stay tuned for the coming changes at http://www.darrp.noaa.gov.
  8. Unlock access to data. We are getting ready to release public versions of an online tool that brings together data from multiple sources into a single place for easier data access, analysis, visualization, and reporting. This online application, known as DIVER Explorer, pulls together natural resource and environmental chemistry data from the Deepwater Horizon oil spill damage assessment, and also for the Great Lakes and U.S. coastal regions.
  9. Clean up our act. Or rather, keep encouraging others to clean up their act and clean up our coasts. We’re helping educate people about marine debris and fund others’ efforts to keep everyone’s trash, including plastics, out of our oceans.
  10. Say farewell. To oil tankers with single hulls, that is. January 1, 2015 marks the final phase-out of single hull tankers, a direct outcome of the 1989 Exxon Valdez oil spill.


Leave a comment

Preventing Chemical Disasters by Improving our Software Tools

On April 17, 2013, in the farming community of West, Texas, the storage and distribution facility of West Fertilizer Company caught fire. As firefighters attempted to douse the flames, tons of ammonium nitrate stored at the facility detonated, resulting in an explosion [warning*] packed with the force of a small earthquake. The blast killed fifteen people, injured more than 300, and damaged or destroyed more than 150 buildings.

Just two months later, on June 13, disaster struck again—this time at one of 12 chemical plants along a 10-mile stretch of the Mississippi River. In the industrial town of Geismar, Louisiana, the Williams Olefins chemical facility exploded and caught fire, killing two workers and injuring at least 75 others. The blast sent a huge fireball and column of smoke into the air. Fueled by the petrochemical propylene, the fire burned for more than three hours. Authorities ordered residents to remain indoors for hours to avoid the billowing smoke.

Getting Information into the Right Hands Before an Emergency

One of the challenges in preventing disasters such as these is to ensure that critical information gets into the planning cycle, and into the hands of the local emergency planning and responder community. To reduce the likelihood of chemical disasters in the United States, Congress has imposed requirements for governments, tribes, and industry.

For example, the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 was created to help communities plan for emergencies involving hazardous substances. EPCRA requires federal, state, and local governments; Indian tribes; and the chemical industry to plan for hazardous chemical emergencies. It also requires industry to report on the storage, use, and releases of hazardous chemicals to federal, state, and local governments.

NOAA’s CAMEO software suite, jointly developed since 1987 with the U.S. Environmental Protection Agency’s Office of Emergency Management, is a key tool in the implementation of EPCRA. CAMEO is a suite of software tools used to plan for and respond to chemical emergencies. Developed to assist front-line chemical emergency planners and responders, CAMEO can access, store, and evaluate information critical for developing emergency plans, such as locations of hazardous chemical storage and nearby hospitals, schools, and other at-risk population centers.

From the Desk of the President

Chemical plant lit up at night.

Federal agencies are focused on changing the national landscape of chemical facility safety and security in the wake of the 2013 tragedies. (U.S. Occupational Safety and Health Administration)

After the two major chemical disasters of 2013, President Obama signed Executive Order 13650 (EO 13650) to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

In addition to several other provisions, this executive order established a senior work group from six different departments and agencies, including the EPA, all of whom are responsible for chemical facility safety and security. In a report released June 6, 2014 [PDF], this work group identified specific actions for the agencies to take, and directly called out enhancements to the CAMEO suite to help address chemical facility safety and security.

A Safer Future Is a More Mobile-Friendly One

Because the executive order specifies that the changes in CAMEO be completed by the end of fiscal year 2016, our office and our EPA partner are crafting a two-year plan for CAMEO. Here are a couple of examples of the work we have ahead.

To ensure broad access to critical chemical information for emergency planners and responders, we will be adding new standards—the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards—to the regulatory section on our chemical datasheets, which already includes information from EPCRA, the Clean Air Act, and other regulations. This addition will help provide a linkage between regulatory programs.

Another recommendation is that chemical facility data reported under EPCRA be easier for emergency responders and planners to access. As a result, we and our partners will review plans for providing online access to this data via mobile applications. Currently, our CAMEO software programs are mostly stand-alone, computer desktop applications.

To expand offline access to emergency response information for people working in the field, we plan to add a mobile app version of our chemical database tool CAMEO Chemicals, which will have all of the program’s data loaded onto an individual’s smartphone. This will be in addition to the desktop, website, and mobile website versions of CAMEO Chemicals already available.

To maximize access to our chemical plume modeling program, ALOHA, we will make an Internet browser-based ALOHA program that is available as both a website and a desktop application. In addition, we will completely redesign the CAMEO data management program, CAMEOfm, which includes creating a supplemental CAMEO mobile application for viewing the EPCRA data from the linked desktop program.

Chemical accidents are infrequent, and through work like this, we hope to keep them—and their impacts—that way.

*The video and audio recording of the explosion linked to here may be disturbing to some audiences.