NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

NOAA, Deepwater Horizon Trustees announce draft restoration plans for Gulf of Mexico following 2010 disaster

Bulldozers doing construction in a Gulf of Mexico marsh.

These efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident. (NOAA)

NOAA and the other Deepwater Horizon Natural Resource Trustees today released 15-year comprehensive, integrated environmental ecosystem restoration plans for the Gulf of Mexico in response to the April 20, 2010 Deepwater Horizon oil rig explosion and spill.

Implementing the plan will cost up to $8.8 billion. The explosion killed 11 rig workers and the subsequent spill lasted 87 days and impacted both human and natural resources across the Gulf.

The Draft Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement allocates Natural Resource Damage Assessment  monies that are part of a comprehensive settlement agreement in principle  among BP, the U.S. Department of Justice on behalf of federal agencies, and the five affected Gulf States announced on July 2, 2015. The Department of Justice lodged today in U.S. District Court a consent decree as part of the more than $20 billion dollar settlement.

In the draft plan, the Trustees provide documentation detailing impacts from the Deepwater Horizon oil spill to:

  • wildlife, including fish, oysters, plankton, birds, sea turtles, and marine mammals across the Gulf
  • habitat, including marshes, beaches, floating seaweed habitats, water column, submerged aquatic vegetation, and ocean-bottom habitats
  • recreational activities including boating, fishing, and going to the beach

The Trustees determined that “overall, the ecological scope of impacts from the Deepwater Horizon spill was unprecedented, with injuries affecting a wide array of linked resources across the northern Gulf ecosystem.” As a result of the wide scope of impacts identified, the Trustees “have determined that the best method for addressing the injuries is a comprehensive, integrated, ecosystem restoration plan.”

Both the consent decree and the draft plan are available for 60 days of public comment. The Trustees will address public comment in adopting a final plan. For the consent decree, once public comment is taken into account the court will be asked to make it final.

Public comments on the draft plan will be accepted at eight public meetings to be held between October 19 and November 18 in each of the impacted states and in Washington, DC. Comments will also be accepted online and by mail sent to: U.S. Fish and Wildlife Service, P.O. Box 49567, Atlanta, GA 30345. The public comment period will end on December 4, 2015.

The Trustees are proposing to accept this settlement, which includes, among other components, an amount to address natural resource damages of $8.1 billion for restoration and up to $700 million for addressing unknown impacts or for adaptive management. These amounts include the $1 billion in early restoration funds which BP has already committed.

“NOAA scientists were on the scene from day one as the Deepwater spill and its impacts unfolded. NOAA and the Trustees have gathered thousands of samples and conducted millions of analyses to understand the impacts of this spill,” said Kathryn D. Sullivan, Ph.D., undersecretary of commerce for oceans and atmosphere and NOAA administrator. “The scientific assessment concluded that there was grave injury to a wide range of natural resources and loss of the benefits they provide. Restoring the environment and compensating for the lost use of those resources is best achieved by a broad-based ecosystem approach to restore this vitally important part of our nation’s environmental, cultural and economic heritage.”

People in boat and in marsh assessing oiling impacts.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals. (NOAA)

NOAA led the development of the 1,400 page draft damage assessment and restoration plan, with accompanying environmental impact statement, in coordination with all of the natural resource Trustees. The draft plan is designed to provide a programmatic analysis of the type and magnitude of the natural resources injuries that have been identified through a Natural Resource Damage Assessment conducted as required by the Oil Pollution Act of 1990 and a programmatic restoration plan to address those injuries. Alternative approaches to restoration are evaluated in the plan under the Oil Pollution Act and the National Environmental Policy Act.

Specific projects are not identified in this plan, but will be proposed in future project-specific restoration proposals. The Trustees will ensure that the public is involved in their development through public notice of proposed restoration plans, opportunities for public meetings, and consideration of all comments received.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals.

The five overarching goals of the proposed plan are to:

  • restore and conserve habitat
  • restore water quality
  • replenish and protect living coastal and marine resources
  • provide and enhance human use recreational activities
  • provide for long term monitoring, adaptive management, and administrative oversight of restoration efforts.

The 13 proposed restoration activities are:

  1. Restoration of wetlands, coastal, and nearshore habitats
  2. Habitat projects on federally managed lands
  3. Nutrient reduction
  4. Water quality
  5. Fish and water column invertebrates
  6. Sturgeon
  7. Submerged aquatic vegetation
  8. Oysters
  9. Sea turtles
  10. Marine mammals
  11. Birds
  12. Low-light and deep seafloor communities
  13. Provide and enhance recreational opportunities

Together, these efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident.

Once the plan is finally approved and the settlement is finalized, NOAA will continue to work with all of the Trustees to plan, approve, and implement restoration projects. NOAA will bring scientific  expertise and focus on addressing remedies for living marine resources — including fish, sturgeon, marine mammals, and sea turtles — as well as coastal habitats and water quality. NOAA scientists developed numerous scientific papers for the NRDA case including documentation of impacts to bottlenose dolphins, pelagic fish, sea turtles, benthic habitat and deep water corals.

The Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement is available for public review and comment through December 4. It is posted at and will be available at public repositories throughout the Gulf and at the meetings listed at

Leave a comment

Transforming Dusty Fields into Vibrant Salt Marshes in San Francisco Bay

Vibrant marsh with lots of ducks and trucks on the highway in the background.

Just after the Cullinan Ranch restoration site was re-flooded, huge flocks of waterfowl began using the marsh, including Canvasback, Scaup, Northern Pintail, Mallards, and American Wigeon. (Ducks Unlimited)

What happens when you fill a dry, dusty 1,200 acre field at the northern edge of San Francisco Bay with tide waters unseen in that place for more than a century?

You get a marsh with a brand new lease on life.

In January 2015, this is exactly what took place at the salt marsh restoration site called Cullinan Ranch (known as that due to its history as a hay farm).

Check out the photos taken of the restoration site in November 2013, after the new boat ramp and wildlife viewing platform were built but before the levees holding back the bay were breached, and compare them with those taken in the same spot in January 2015, after the waters returned.

Brackish waters once again cover the low-lying area, long pushed down below sea level due to farming dating back to the 1880s. The presence of salt water has transformed this arid field into tidal wetland habitat, where birds, fish, and wildlife, such as the endangered Ridgway’s rail, the salt marsh harvest mouse, steelhead, Chinook salmon, and other fish can thrive.

According to Ducks Unlimited biologist Craig Garner, whose organization has been a key player in this site’s restoration, “When the ranch was newly flooded, we saw a tremendous response by waterfowl. Large numbers of birds were recorded using the area, particularly Canvasback,” a species of diving duck.

Could it be that Cullinan Ranch provides California wildlife with a new refuge from the current scarcity of freshwater habitats further inland? Garner suggests, “Though it is tough to gauge without waterfowl survey data, I would say that Cullinan Ranch could be offsetting the effects of drought conditions on diving duck habitat at all” levels of the tidal cycle.

Of course, people will also be able to enjoy this transformation occurring at Cullinan Ranch via the new recreational facilities. (Launching your boat into a dry field probably wouldn’t be much fun, after all.)

But it’s not just fun and games. People will benefit from this renewed salt marsh acting as a natural filter, increasing the quality of the water passing through it on the way to the bay and its fisheries, and as a sponge for moderating flooding during storms. The plant life growing in the marsh also serves to capture and hold excess carbon dioxide from the nearby urban areas. In addition, taking out the 19th-century levees holding out the bay’s tides reduces the chances of a catastrophic failure and cuts out the expense of maintaining poorly built levees.

Watch as the last satisfying scoops of the muddy barrier disappear and salty waters rush in:

Excavator removing a dirt levee and allowing tide waters to rush into a dry marsh.

Taking out the first levee at the Cullinan Ranch marsh restoration project in central California in January 2015. (NOAA)

Learn more about the efforts to restore this tidal wetland and another long-dry area known as Breuner Marsh. Both of these restoration projects were made possible with funding from a natural resource damage assessment settlement paid by Chevron to make up for years of dumping mercury and oil pollution from its Richmond, California, refinery into the shallow waters of nearby Castro Cove. NOAA partnered with the U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife to achieve the 2010 Chevron settlement and contribute to these two important restoration projects.

In the fall of 2014, Breuner Marsh also saw the return of its daily infusion of saltwater and is looking more and more like a natural salt marsh and less like the next site of urban development.

Aerial view of marsh with tide waters channeling across the shore.

An aerial view of the tide waters retaking their normal course at the restoration site Breuner Marsh on San Francisco Bay in the fall of 2014. (Castro Cove Natural Resource Damage Trustees)

Leave a comment

Restoration Efforts Hatch Hope for Endangered Seabirds on California’s Channel Islands

This is a post by Jennifer Boyce, biologist with NOAA’s Restoration Center and Montrose Settlements Restoration Program.

Santa Barbara Island is a world apart. Only one square mile in area, it is the smallest island in the Channel Islands National Park, located off the coast of Southern California and lone dwelling place for some unique species of animals and plants.

The island has no land predators, which makes it a haven for seabirds. But human threats to seabirds, including industrial pollution and introduced species, have left their mark even on this haven. Seabird populations began dropping as pollution thinned their eggshells to the breaking point and exotic plants replaced their native nesting habitat.

So imagine the excitement when biologists recently discovered the first ever nests of the rare and threatened Scripps’s Murrelet among two areas restored on the island for their benefit.

A petite, black-and-white seabird, the Scripps’s Murrelet also is threatened by predators introduced to its breeding colonies and by oil spills. While Santa Barbara Island has the largest colony of Scripps’s Murrelet in the United States, the State of California listed this bird as a threatened species [PDF] in 2004 and it currently is a candidate for protection under the federal Endangered Species Act (under a previous name, Xantus’s Murrelet).

Hatching a Better Home

Close up of a murrelet chick's head.

This newly hatched chick was born at Landing Cove, a habitat restoration area on Santa Barbara Island. Its birth gives hope to a threatened species of seabird, the Scripps’s Murrelet. (Andrew Yamagiwa, California Institute of Environmental Studies)

Each spring, murrelets lay one or two eggs in crevices and burrows beneath Santa Barbara Island’s native shrubs. They need the structure and cover provided by native plant communities to protect their nests. Unfortunately, the native shrubs on Santa Barbara Island have been decimated for decades by introduced grazers. Ranchers used to graze sheep on the island, inadvertently bringing non-native plants with them. These and other grazers allowed the non-native plants to proliferate and prevent the few remaining patches of native vegetation from recolonizing the island.

Since 2006, NOAA’s Montrose Settlements Restoration Program has been restoring this habitat for murrelets and other seabirds on Santa Barbara Island, caring for the thousands of native plants they have placed along its dry slopes. Uncovering two nests in two different restoration plots this spring means the project has reached a major milestone.

The older of the two restoration plots where eggs were found, Landing Cove was first planted with native shrubs in December 2008. It can take several years for the shrubs to mature enough to become suitable seabird nesting habitat. One egg was discovered there—on Earth Day, of all days—under a large native shrub planted during restoration efforts. Then, just this week, biologists confirmed that this egg had in fact hatched into a healthy murrelet chick.

The second restored area, Beacon Hill, was planted more recently in 2012, giving biologists both a thrill and surprise to find a second murrelet nest under a native bush planted as part of the project. These nests are a testament to all of the hard work of scientists, restoration experts, and volunteers over the last ten years.

More Than One Way to Break an Egg

Funding to restore these threatened seabirds actually originates in events dating more than half a century earlier.

From the late 1940s to the early 1970s, millions of pounds of the pesticide DDT and the industrial chemicals known as PCBs were discharged into ocean waters off the southern California coast. Most of the DDT originated from the Montrose Chemical Corporation manufacturing plant located in Torrance, California.

DDT released into the ocean near California’s Palos Verdes shelf spread through the food chain, eventually reaching seabirds and causing thinning in their eggs laid on the Channel Islands. The eggshells became so thin that when the adults would sit on the eggs to warm them they would break.

In 2001, following a lengthy period of litigation, NOAA and other federal and state agencies reached a settlement with the responsible parties, establishing the Montrose Settlements Restoration Program. The program is working to restore populations of these rare seabirds and their habitat in the Channel Islands.

Restoration Efforts Taking Flight

Adult murrelet with a chick.

Scripps’s Murrelets only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts. (Gaby Keeler, California Institute of Environmental Studies)

A member of the auk family (which includes Puffins), Scripps’s Murrelets take the term “seabird” to new limits. Murrelets spend almost their entire lives at sea, only coming to land to lay their eggs and hatch their young. Their chicks live up to being a seabird as well, spending only two days on the island before tumbling into the ocean to join their parents—leaving before they can even fly.

These small birds only breed on islands off California and Mexico, and their limited time on land creates a short window of opportunity for restoration efforts.

One of the goals of the Santa Barbara Island restoration project is to remove the non-native plants at selected areas identified as high quality nesting habitat. Biologists are restoring these areas by then planting native species with the help of lots of volunteers.

This work is by no means easy. To date, over 30,000 plants have been put into the ground. All of the native plants in the project are grown from seed on the island, and growing a mature plant takes six to eight months. One of the challenges to growing these plants is that Santa Barbara is a desert island with no natural water source. All the water needed for raising the native plants must be transported by a National Park Service boat, and moved onto the island by crane in large 400 gallon tanks.

A permanent nursery, which employs water-saving techniques, was constructed on the island to reduce the amount of water that needs to be sent to the island. Recently a drip irrigation system also has been installed at the restoration sites and is greatly improving plant survivorship while reducing water needs.

The two nests found this spring are great signs that the restoration efforts are successful and helping to restore this endangered seabird and others to this unique island. We look forward to finding many more nests in the future. In the meantime, check out this video detailing our efforts to restore seabird habitat on Santa Barbara Island:

Jennifer BoyceJennifer Boyce works for the NOAA Restoration Center, based in Long Beach, California. Jennifer serves as the NOAA trustee on several oil spill restoration Trustee Councils throughout California and is the Program Manager for the Montrose Settlements Restoration Program.

Leave a comment

When Oil Spills Take You to Hawaii and the Yellowstone River in Two Days

Overview of the Yellowstone River at the site of the pipeline spill.

Overview of the Yellowstone River at the site of the pipeline spill on Jan. 19, 2015. (U.S. Environmental Protection Agency)

We get called for scientific support between 100 and 150 times a year for oil spills, chemical releases, and other marine pollution events around the nation. That averages to two or three calls per week from the U.S. Coast Guard or U.S. Environmental Protection Agency, but those calls aren’t nicely scheduled out during the week, or spread out regionally among staff in different parts of the country.

The date of an oil spill is just the starting point. Many of these pollution incidents are resolved in a day or two, but some can lead to years of work for our part of NOAA. Some oil spills make the national and regional news while others might only be a local story for the small coastal town where the spill took place.

To give you an idea, some of the incidents we worked on just last week took us from Hawaii one day to eastern Montana the next day—and we were already working on two others elsewhere. These incidents included a pipeline break and oil spill in the Yellowstone River in Montana; a mystery spill of an unknown, non-oil substance that resulted in birds stranded in San Francisco Bay, California; a tug boat sinking and releasing diesel fuel off of Oahu, Hawaii; and a fishing vessel grounded near Sitka, Alaska.

Aerial view of oil spilled along the edge of Yellowstone River.

View from an aerial survey of the spill site on the Yellowstone River, taken about six miles upstream from Glendive, Montana. (Montana Department of Environmental Quality)

The Yellowstone River spill involved a pipeline releasing oil as it ran under a frozen river. The source of the leaking oil has been secured, which means no more oil is leaking, but response operations are continuing. It is an interesting spill for several reasons. One is because the oil type, Bakken crude, is an oil that has been in the news a lot recently. More Bakken crude oil is being transported by train these days because the location of the oil fields is far from ports or existing pipelines. Several rail car accidents involving this oil have ended in explosions. Another reason the Yellowstone River spill is of particular interest is because the response has to deal with ice and snow conditions along with the usual challenges of dealing with an oil spill.

Watch footage of an aerial survey over the Yellowstone River and spilled oil:

The mystery spill in the San Francisco Bay Area is still a mystery at this point (both what it is and where it came from), but hundreds of birds are being cleaned in the meantime. The response is coordinating sampling and chemical analysis to figure out the source of the “mystery goo” coating these seabirds.

Marine diesel fuel dyed red in the ocean.

Marine diesel fuel, dyed red, is shown approximately seven miles south of Honolulu Airport on January 23, 2015. The spill came from a tugboat that sank off Barbers Point Harbor, Oahu, on January 22. (U.S. Coast Guard)

Meanwhile, the tugboat accident in Hawaii involved about 75,000 gallons of fuel oil leaking from a tugboat that sank in over 2,000 feet of water. All 11 crewmembers of the tugboat were safely rescued. We were helping forecast what was happening to the spilled oil and where it might be drifting. In addition, there was a lot of concern about endangered Hawaiian monk seals and sea turtles in the area, but no oiled wildlife have been reported.

And that brings us to the fishing vessel grounded in Alaska. At this time the vessel is still intact and hasn’t spilled any of the 700 gallons of fuel believed to be onboard. Salvors are working to refloat the vessel. Fortunately, the crew had time to cap some of the fuel tank vents before abandoning ship, which may be helping prevent oil from being released. All four crew were safely rescued.

That makes four very different spills in four very different areas … and we have to be ready to respond with oil spill models and environmental expertise for all of them at the same time. But that’s just all in a day’s work at NOAA.

Leave a comment

Despite Threats, Celebrating Restoration Successes for Seabirds in California

Flocking seabirds on ocean surface with humpback whale tale and NOAA ship in the distance.

Thousands of seabirds flock around a diving humpback whale off Alaska’s Unalaska Island. The NOAA Ship OSCAR DYSON is in the distance. (NOAA)

Seabirds: You may see them perched along a fishing pier poised to scavenge or swooping for fish by the thousands out in the open ocean. This diverse group of marine birds serves as a valuable indicator [PDF] of the health of the ocean and what they have been telling us lately is that they face many threats.

Often victims of oil spills and other pollution, seabirds are threatened by a changing climate, hunting, and introduced species (such as rats or feral cats). In addition, they frequently get caught in fishing nets, a serious concern for many seabirds, particularly if they dive for food.

Yet it’s not all bad news for our feathered friends. Help is on the way.

Bait and Switch

While nearly 7,000 birds were estimated killed after the container ship Cosco Busan spilled heavy oil into San Francisco Bay in 2007, restoration projects are already underway. In 2014 alone, over $15 million was spread across more than 50 projects to enhance and restore beaches and habitat, including seabird habitat, around the Bay Area.

One project in particular is aimed at undoing the damage done to the threatened Marbled Murrelet. In order for these small, chubby seabirds to recover from this oil spill, they need some help keeping jays from eating their eggs. For three years in a row, a restoration project has been working on this in the old growth forests around campgrounds in the Santa Cruz Mountains.

From the Cosco Busan Oil Spill Trustee Council [PDF]: “In order to train jays not to eat murrelet eggs, hundreds of chicken eggs were painted to look like murrelet eggs, injected with a chemical that makes the jays throw up, and placed throughout the forest. Monitoring suggests the jays learn to avoid the eggs and may teach their offspring as well.”

Cleaning up the Neighborhood

Meanwhile, down the California coast, seabirds in the Channel Islands were suffering as a result of the pesticide DDT and industrial chemicals that were dumped into the ocean by local industries years ago. The birds themselves were contaminated by the pollution and their eggshells became dangerously thin, reducing reproduction—a notorious effect of DDT. On top of all that, human activities had been altering seabird habitat on these islands for years.

NOAA’s Montrose Settlements Restoration Program has been focused on reversing this harmful trend with a number of projects to restore seabird nesting habitat, attract seabirds to the restored sites, and to remove non-native plants and animals on the Channel Islands and Baja California Pacific Islands.

On Scorpion Rock, a small islet located off the northeast coast of Santa Cruz Island, biologists have been transforming the inhospitable landscape for Cassin’s Auklets, a small open-ocean seabird. Scorpion Rock had been overrun with dense, non-native ice plant which prevented the seabirds from digging burrows to nest and provided little protection from predators.

Begun in 2008, the restoration of Scorpion Rock is nearly complete. The island now boasts a lush cover of 17 different native plant species, including shrubs that stabilize the soil and offer cover for nesting birds. That work has been paying off.

According to the Montrose Settlements Restoration Program: “Biologists have seen a 3-fold increase in the number of natural Cassin’s Auklets burrows since the project started. Over the last few years, biologists have also observed a lower number of dead adult auklets which means that the native plants are providing adequate cover from predators.”

In the final year of the project, the plan is to use sounds of breeding seabirds to attract greater numbers to the restored habitat on Scorpion Rock, and continue maintaining the native vegetation and monitoring the birds’ recovery.

Learn more about this and other seabird restoration projects in the Channel Islands and watch a video from 2010 about the restoration at Scorpion Rock during its earlier stages:


Why Are Seabirds so Vulnerable to Oil Spills?

Out of the squawking thousands of black and white birds crowding the cliff, a single male sidled up to the rocky edge. After arranging a few out-of-place feathers with his sleek beak, the bird plunged like a bullet into the ocean below. These penguin look-alikes (no relation) are Common Murres. Found along the U.S. coast from Alaska to California, this abundant species of seabird dives underwater, using its wings to pursue a seafood dinner, namely small fish.

During an oil spill, however, these classic characteristics of murres and other seabirds work to their disadvantage, upping the chance they will encounter oil—and in more ways than one. To understand why seabirds are so vulnerable to oil spills, let’s return to our lone male murre and a hypothetical oil spill near his colony in the Gulf of Alaska.

Preening in an Oil Sheen

After diving hundreds of feet beneath the cold waters of the North Pacific Ocean, the male murre pops back to the surface with a belly full of fish—and feathers laminated in oil. This bird has surfaced from his dinner dive into an oil slick, a common problem for diving birds during oil spills. His coat of feathers, once warm and waterproof, is now matted. The oil is breaking up his interlocking layer of feathers, usually maintained by the bird’s constant arranging and rearranging, known as preening.

With his sensitive skin suddenly exposed not just to the irritating influence of oil but also to the cold, the male murre becomes chilled. If he does not repair the alignment of his feathers soon, hypothermia could set in. This same insulating structure also traps air and helps the bird float on the water’s surface, but without it, the bird would struggle to stay afloat.

Quickly, the freshly oiled seabird begins preening. But with each peck of his pointed beak into the plumage, he gulps down small amounts of oil. If the murre ingests enough oil, it could have serious effects on his internal organs. Impacts range from disrupted digestion and diarrhea to liver and kidney damage and destruction of red blood cells (anemia).

But oil can find yet another way of entering the bird: via the lungs. When oil is spilled, it begins interacting with the wind, water, and waves and changing its physical and chemical properties through the process of weathering. Some components of the oil may evaporate, and the murre, bobbing on the water’s surface, could breathe in the resulting toxic fumes, leading to potential lung problems.

Birds’-Eye View

Colony of murres on a rocky outcropping on the California coast.

Murres are very social birds, living in large colonies on rocky cliffs and shores along the U.S. West Coast. If disturbed by an oil spill, many of these birds may set off temporarily to find a more suitable home. (Creative Commons: Donna Pomeroy, Attribution-NonCommercial 3.0 Unported License)

This single male murre is likely not the only one in his colony to experience a run-in with the oil spill. Even those seabirds not encountering the oil directly can be affected. With oil spread across areas where the birds normally search for food and with some of their prey potentially contaminated or killed by the oil, the colony may have to travel farther away to find enough to eat. On the other hand, large numbers of these seabirds may decide to up and move to another home for the time being.

At the same time that good food is becoming scarcer, these birds will need even more food to keep up their energy levels to stay warm, find food, and ward off disease. One source of stress—the oil spill—can exacerbate many other stresses that the birds often can handle under usual circumstances.

If the oil spill happens during mating and nesting time, the impacts can be even more severe. Reproducing requires a lot of energy, and on top of that, exposure to oil can hinder birds’ ability to reproduce. Eggs and very young birds are particularly sensitive to the toxic and potentially deadly properties of oil. Murres lay only one egg at a time, meaning they are slower to replace themselves.

The glossy-eyed male murre we are following, even if he manages to escape most of the immediate impacts of being oiled, would soon face the daunting responsibility of taking care of his fledgling chick. As young as three weeks old, his one, still-developing chick plops off the steep cliff face where the colony resides and tumbles into the ocean, perhaps a thousand feet to its waiting father below. There, the father murre is the chick’s constant caregiver as they travel out to sea, an energy-intensive role even without having to deal with the potential fallout from an oil spill.

Birds of a Feather Get Oiled Together

Like a bathtub filled with rubber ducks, murres form giant floating congregations on the water, known as “rafts,” which can include up to 250,000 birds. In fact, murres spend all but three or four months of the year out at sea. Depending on where the oil travels after a spill, a raft of murres could float right into it, a scenario which may be especially likely considering murre habitat often overlaps with major shipping channels.

After the 1989 Exxon Valdez oil spill in Prince William Sound, responders collected some 30,000 dead, oil-covered birds. Nearly three-quarters of them were murres, but the total included other birds which dive or feed on the ocean surface as well. Because most bird carcasses never make it to shore intact where researchers can count them, they have to make estimations of the total number of birds killed. The best approximation from the Exxon Valdez spill is that 250,000 birds died, with 185,000 of them murres.

While this population of seabirds certainly suffered from this oil spill (perhaps losing up to 40 percent of the population), murres began recovering within a few years of the Exxon Valdez oil spill. Surprisingly resilient, this species is nonetheless one of the most studied seabirds [PDF] precisely because it is so often the victim of oil spills.

1 Comment

After Opening up a Pennsylvania Creek for Fish, Watching Recovery Follow

This is a guest post by Laura Craig, Ph.D., Associate Director of River Restoration, American Rivers.

Excavator removes a rock dam from a stream.

Restoring Darby Creek, a tributary of the Delaware River, meant tearing down three now-defunct mill dams. Here, the Hoffman Park dam at Lansdowne, Pennsylvania, comes down. (American Rivers)

Early settlement along Pennsylvania’s Darby Creek relied upon dams to turn the water wheels of mills, powering economic growth. However, as time wore on, the dams on this tributary of the Delaware River fell into disrepair and these days no longer serve a function. Instead, they have been blocking the passage of fish along this creek. That is, until now.

In late summer of 2012, American Rivers and our project partners, NOAA’s Damage Assessment, Remediation, and Restoration Program  and the Pennsylvania Fish and Boat Commission, began tearing down some of those now-defunct dams as part of a multi-year effort to restore Darby Creek. Initiated in 2007, the effort involved removing three dams near Philadelphia: Darby Borough Dam, Hoffman Park Dam, and Kent Park Dam. In addition, we took out a set of abandoned railroad piers and realigned an 800 foot section of the creek.

We removed these barriers to improve passage for a range of resident and migratory fish, including American shad, hickory shad, alewife, river herring, American eel, bass, shiners, and suckers. The project also aims to enhance stream habitat, alleviate flooding, benefit public safety, and restore free-flowing conditions along the creek.

Green plants growing along a stream.

Shown in 2014, this portion of Darby Creek now features restored shoreline habitat with stabilizing structures. (American Rivers)

Overall, the Darby Creek Restoration Project connected 2.6 miles of upper stream to the lower 9.7 miles, which link directly to the Delaware River. It was here in 2004 when the Athos I tanker spilled oil that would spread along miles of the Delaware and its tributaries similar to Darby Creek.

This $1.6 million dollar effort to restore Darby Creek was funded primarily by the Natural Resource Damage Assessment settlement from the Athos I oil spill. Additional funding came from the Pennsylvania Department of Environmental Protection’s Growing Greener Program and the National Fish and Wildlife Foundation. All restoration activities were completed in June 2013, but we are still monitoring the restored areas to ensure the area is recovering.

At the former dam locations we are already seeing recovery of shoreline areas planted with a diverse mix of seed, shrubs, and trees. Restoring vegetation along the creek stabilizes exposed soil and reduces erosion in the short term and provides shade, habitat, and food sources over the long term. We are also observing positive changes to stream habitat as a result, including fewer actively eroding banks and less fine sediment clouding the creek’s waters.

In terms of fisheries, we are noting a shift since the dams were removed toward a resident community of fish that prefer free-flowing water conditions. While we haven’t yet encountered any migratory fish at the former dam locations, this fall fisheries biologists with the Pennsylvania Fish and Boat Commission came across several pods of very young blueback herring in the tidal portion of the creek, near where it joins the Delaware River at the John Heinz National Wildlife Refuge. This is great news, because it suggests that blueback herring are using the lower part of the tributary as a nursery. In future years we hope to see them advance up the creek to the locations where the dams were removed.

For more information on the Athos I oil spill and the resulting restoration, visit and


Get every new post delivered to your Inbox.

Join 631 other followers