NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

From Natural Seeps to a Historic Legacy, What Sets Apart the Latest Santa Barbara Oil Spill

Cleanup worker and oiled boulders on Refugio State Beach where the oil from the pipeline entered the beach.

The pipeline release allowed an estimated 21,000 gallons of crude oil to reach the Pacific Ocean, shown here where the oil entered Refugio State Beach. (NOAA)

The response to the oil pipeline break on May 19, 2015 near Refugio State Beach in Santa Barbara County, California, is winding down. Out of two* area beaches closed due to the oil spill, all but one, Refugio State Beach, have reopened.

NOAA’s Office of Response and Restoration provided scientific support throughout the response, including aerial observations of the spill, information on fate and effects of the crude oil, oil detection and treatment, and potential environmental impacts both in the water and on the shore.

Now that the response to this oil spill is transitioning from cleanup to efforts to assess and quantify the environmental impacts, a look back shows that, while not a huge spill in terms of volume, the location and timing of the event make it stand out in several ways.

Seep or Spill: Where Did the Oil Come From?

This oil spill, which allowed an estimated 21,000 gallons of crude oil to reach the Pacific Ocean, occurred in an area known for its abundant natural oil seeps. The Coal Oil Point area is home to seeps that release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011) and are among the most active in the world. Oil seeps are natural leaks of oil and gas from subterranean reservoirs through the ocean floor.

The pipeline spill released a much greater volume of oil than the daily output of the local seeps. Furthermore, because it was from a single source, the spill resulted in much heavier oiling along the coast than you would find from the seeps alone.

A primary challenge, for purposes of spill response and damage assessment, was to determine whether oil on the shoreline and nearby waters was from the seeps or the pipeline. Since the oil from the local natural seeps and the leaking pipeline both originated from the same geologic formation, their chemical makeup is similar.

However, chemists from Woods Hole Oceanographic Institution, the University of California at Santa Barbara, Louisiana State University, and the U.S. Coast Guard Marine Safety Lab were able to distinguish the difference by examining special chemical markers through a process known as “fingerprinting.”

Respecting Native American Coastal Culture

The affected shorelines include some of the most important cultural resource areas for California Native Americans. Members of the Chumash Tribe populated many coastal villages in what is now Santa Barbara County prior to 1800. Many local residents of the area trace their ancestry to these communities.

To ensure that impacts to cultural resources were minimized, Tribal Cultural Resource Monitors were actively engaged in many of the upland and shoreline cleanup activities and decisions throughout the spill response.

Bringing Researchers into the Response

The massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010 highlighted the need for further research on issues surrounding oil transport and spill response. As a result, there was a great deal of interest in this spill among members of the academic community, which is not always the case for oil spills. In addition, the spill occurred not far from the University of California at Santa Barbara.

From the perspective of NOAA’s Office of Response and Restoration, this involvement with researchers was beneficial to the overall effort and will potentially serve to broaden our scientific resources and knowledge base for future spills.

The Legacy of 1969

Another unique aspect of the oil spill at Refugio State Beach was its proximity to the site of one of the most historically significant spills in U.S. history. Just over 46 years ago, off the coast of Santa Barbara, a well blowout occurred, spilling as much as 4.2 million gallons of oil into the ocean. The well was capped after 11 days.

The 1969 Santa Barbara oil spill, which was covered widely in the media, oiled miles of southern California beaches as well. It had such a devastating impact on wildlife and habitat that it is credited with being the catalyst that started the modern-day environmental movement. Naturally, the 2015 oil spill near the same location serves as a reminder of that terrible event and the damage that spilled oil can do in a short period of time.

Moving Toward Restoration

In order to assess the environmental impacts from the spill and cleanup, scientists have collected several hundred samples of sediment, oil, water, fish, mussels, sand crabs, and other living things. In addition, they have conducted surveys of the marine life before and after the oil spill.

The assessment, which is being led by the state of California, involves marine ecology experts from several California universities as well as federal and state agencies.

After a thorough assessment of the spill’s harm, the focus will shift toward restoring the injured natural and cultural resources and compensating the public for the impacts to those resources and the loss of use and enjoyment of them as a result of the spill. This process, known as a Natural Resource Damage Assessment, is undertaken by a group of trustees, made up of federal and state agencies, in cooperation with the owner of the pipeline, Plains All American Pipeline. This group of trustees will seek public input to help guide the development of a restoration plan.

*UPDATED 7/10/2015: This was corrected to reflect the fact that only two area beaches were closed due to the spill while 20 remained open in Santa Barbara.


Leave a comment

After an Oil Spill, How—and Why—Do We Survey Affected Shorelines?

Four people walking along a beach.

A team of responders surveying the shoreline of Raccoon Island, Louisiana, on May 12, 2010. They use a systematic method for surveying and describing shorelines affected by oil spills, which was developed during the Exxon Valdez spill in 1989. (U.S. Navy)

This is part of the National Ocean Service’s efforts to celebrate our role in the surveys that inform our lives and protect our coasts.

In March of 1989, oil spill responders in Valdez, Alaska, had a problem. They had a very large oil spill on their hands after the tanker Exxon Valdez had run aground on Bligh Reef in Prince William Sound.

At the time, many aspects of the situation were unprecedented—including the amount of oil spilled and the level of response and cleanup required. Further complicating their efforts were the miles and miles of remote shoreline along Prince William Sound. How could responders know which shorelines were hardest hit by the oil and where they should focus their cleanup efforts? Plus, with so many people involved in the response, what one person might consider “light oiling” on a particular beach, another might consider “heavy oiling.” They needed a systematic way to document the oil spill’s impacts on the extensive shorelines of the sound.

Out of these needs ultimately came the Shoreline Cleanup and Assessment Technique, or SCAT. NOAA was a key player involved in developing this formal process for surveying coastal shorelines affected by oil spills. Today, we maintain the only SCAT program in the federal government although we have been working with the U.S. Environmental Protection Agency (EPA) to help develop similar methods for oil spills on inland lakes and rivers.

Survey Says …

SCAT aims to describe both the oil and the environment along discrete stretches of shoreline potentially affected by an oil spill. Based on that information, responders then can determine the appropriate cleanup methods that will do the most good and the least harm for each section of shoreline.

The teams of trained responders performing SCAT surveys normally are composed of representatives from the state and federal government and the organization responsible for the spill. They head out into the field, armed with SCAT’s clear methodology for categorizing the level and kind of oiling on the shoreline. This includes standardized definitions for describing how thick the oil is, its level of weathering (physical or chemical change), and the type of shoreline impacted, which may be as different as a rocky shoreline, a saltwater marsh, or flooded low-lying tundra.

After carefully documenting these data along all possibly affected portions of shoreline, the teams make their recommendations for cleanup methods. In the process, they have to take a number of other factors into account, such as whether threatened or endangered species are present or if the shoreline is in a high public access area.

It is actually very easy to do more damage than good when cleaning up oiled shorelines. The cleanup itself—with lots of people, heavy equipment, and activity—can be just as or even more harmful to the environment than spilled oil. For sensitive areas, such as a marsh, taking no cleanup action is often the best option for protecting the stability of the fragile shoreline, even if some oil remains.

Data, Data Everywhere

Having a common language for describing shoreline oiling is a critical piece of the conversation during a spill response. Without this standard protocol, spill responders would be reinventing the wheel for each spill. Along that same vein, responders at NOAA are working with the U.S. EPA and State of California to establish a common data standard for the mounds of data collected during these shoreline surveys.

Managing all of that data and turning it into useful products for the response is a lot of work. During bigger spills, multiple data specialists work around the clock to process the data collected during SCAT surveys, perform quality assurance and control, and create informational products, such as maps showing where oil is located and its level of coverage on various types of shorelines.

Data management tools such as GPS trackers and georeferenced photographs help speed up that process, but the next step is moving from paper forms used by SCAT field teams to electronic tools that enable these teams to directly enter their data into the central database for that spill.

Our goal is to create a data framework that can be translated into any tool for any handheld electronic device. These guidelines would provide consistency across digital platforms, specifying exactly what data are being collected and in which structure and format. Furthermore, they would standardize which data are being shared into a spill’s central database, whether they come from a state government agency or the company that caused the spill. This effort feeds into the larger picture for managing data during oil spills and allows everyone working on that spill to understand, access, and work with the data collected, for a long time after the spill.

Currently, we are drafting these data standards for SCAT surveys and incorporating feedback from NOAA, EPA, and California. In the next year or two, we hope to offer these standards as official NOAA guidelines for gathering digital data during oiled shoreline surveys.

To learn more about how teams perform SCAT surveys, check out NOAA’s Shoreline Assessment Manual and Job Aid.


Leave a comment

Back to the Shore after Hurricane Sandy

GIS specialist Jay Coady, Environmental Sensitivity Index map specialist Jill Petersen, John Tarpley of the OR&R Emergency Response Division, and Jason Rolfe of the NOAA Marine Debris Program also contributed to this post.

: Two boys take a break on the beach in Ocean City, Maryland, during the summer of 2012, before Hurricane Sandy. (Glenda Powell/all rights reserved)

Two boys take a break on the beach in Ocean City, Md., during the summer of 2012, before Hurricane Sandy. (Glenda Powell/all rights reserved)

With Memorial Day approaching and summer weather returning, folks in the northeast will once again be flocking to the shore, as they have for generations.  This summer season is the first since Hurricane Sandy hit the region in late October of 2012, with devastating effects to beaches from Connecticut to Virginia. Much of the damage has been repaired and many visitors likely will find their favorite beaches as enjoyable as ever, but there is much work remaining to do.

Headed for Calmer Shores

A response team formed by the Hurricane Sandy Pollution Response Unified Command prior to an overflight during which the U.S. Coast Guard worked with NOAA to map areas of possible pollution threats in New York and New Jersey. LTJG Alice Drury of OR&R is in the middle of the group. (U.S. Coast Guard)

A response team formed by the Hurricane Sandy Pollution Response Unified Command prior to an overflight during which the U.S. Coast Guard worked with NOAA to map areas of possible pollution threats in New York and New Jersey. LTJG Alice Drury of OR&R is in the middle of the group. (U.S. Coast Guard)

The NOAA Office of Response and Restoration (OR&R) responded immediately in the wake of the massive storm. OR&R’s Emergency Response Division provided scientific support to the U.S. Coast Guard to contain a major diesel spill at the Motiva Refinery in Sewaren, N.J., next to New York’s Staten Island and Raritan Bay. We also provided support for the many smaller petroleum product spills in northern New Jersey and southern New York.  Aerial and ground surveys helped identify and prioritize the cleanup of pollution sources from boats, displaced hazardous material containers, and other debris.

OR&R was on scene working with other state and federal agencies to lead a preliminary assessment of natural resource impacts from the oil spills for possible Natural Resource Damage Assessment claims and restoration. In addition, the Coast Guard and other responders used OR&R’s collaborative online mapping tool, Environmental Response Management Application (ERMA®) for the Atlantic Coast, as the “common operational picture,” that is, the official “big picture” tool for coordinating pollution response activities.

Atlantic ERMA, which is customized for New York and New Jersey waters, was involved in mapping the Hurricane Sandy response and recovery efforts since before the storm hit land. In the days leading up to landfall, OR&R started populating Atlantic ERMA with storm-specific data, such as predicted storm surge models, hurricane track and wind speeds, and NOAA facility locations.

A partially submerged vessel in Navesink River, N.J., Nov. 10, 2012. Boom was placed around the vessel to mitigate pollution during the response efforts. (U.S. Coast Guard)

A partially submerged vessel in Navesink River, N.J., Nov. 10, 2012. Boom was placed around the vessel to mitigate pollution during the response efforts. (U.S. Coast Guard)

In the aftermath of Hurricane Sandy, Atlantic ERMA served as the common operational picture for the Hurricane Sandy pollution response. It aided the NOAA Scientific Support Coordinators (our pollution first responders), U.S. Coast Guard, and U.S. Environmental Protection Agency in the removal and cleanup of identified pollution sources and threats.

Atlantic ERMA integrated these response efforts with environmental data (like locations of sensitive habitat) to give responders a better idea of how to deal with pollution threats while minimizing environmental damages.

As the common operational picture, ERMA provided a single platform for responders to view all of the storm-related data and imagery as well as various cleanup efforts by the states and other federal agencies. Our team of Geographic Information Systems (GIS) specialists working on ERMA also helped provide data management support in tracking the progress made by the pollution response field teams.

Making it Safe to Get Back in the Water

In the Hurricane Sandy Relief Bill, Congress provided the NOAA Marine Debris Program with funds to address marine debris issues resulting from Sandy. In addition, funds were allocated to OR&R’s Emergency Response Division to update our Environmental Sensitivity Index maps on the east coast, with particular emphasis on areas affected by Hurricane Sandy and other coastal storms over the past several years. These maps identify coastal shorelines, wildlife, and habitat that may be especially vulnerable to an oil spill and also include the resources people use, such as a fishery or recreational beach.

Click on this map to view the complete Environmental Sensitivity Index map, created by OR&R’s Emergency Response Division. The map shows sensitive habitats and species that are typically present in the Staten Island area in November and December, the months following Hurricane Sandy. (NOAA)

Click on this map to view the complete Environmental Sensitivity Index map, created by OR&R’s Emergency Response Division. The map shows sensitive habitats and species that are typically present in the Staten Island area in November and December, the months following Hurricane Sandy. (NOAA)

Marine debris can be found in concentrations across the impacted region both on the shoreline and below the water surface.  These items pose potential hazards to navigation, commercial fishing grounds, and sensitive ecosystems.

We are using Atlantic ERMA to provide mapping support and tools to show aerial imagery, debris dispersion models, and identified marine debris locations supplied by stakeholders. Our mapping support also helps with the planning efforts for debris cleanup.

A combination of aerial, underwater, and shoreline surveys are necessary to assess the quantity and location of marine debris in the impacted coastal areas.  These assessments will allow NOAA to estimate the debris impacts to economies and ecosystems, identify priority items for removal, support limited removal efforts, and help bring our northeastern shores back to a sunnier state.

Read about more examples of our work protecting and restoring the shores the nation loves to visit.


Leave a comment

NOAA at the Jersey Shore

Lifeguards prepare for another day of keeping swimmers safe.

Lifeguards prepare for another day of keeping swimmers safe on Brigantine. (NOAA)

Imagine your first trip to the ocean: walking along a sandy beach, listening to the sounds of waves and shorebirds, appreciating the smell of salt in the wind.  I was surprised to read recently that beaches only gained popularity as places to relax and enjoy during the past century. Before that, according to author John Gillis, the coast was associated with ship wrecks, danger, and the hard labor accompanying fishing and maritime industry. This trend changed when beaches became more accessible, and people began to see the shore as a refuge and even “sanctuary.”

My family vacationing on Brigantine in the 1960s.

My family vacationing on Brigantine in the 1960s. (Vicki Loe)

I still return to the same beach in Brigantine, New Jersey, which I visited every year as a child. I am happy to say that, in spite of the increased residential development of that island, it seems not much has changed since I started vacationing there in the 1960s. However, the future of our beaches is uncertain when faced with threats such as climate change and sea level rise, severe hurricanes, overdevelopment, oil spills, and marine debris.

With all of this in mind during my annual visit there last week, I looked at the Jersey shore with new eyes. I realized how appreciative I am of the work that NOAA and other organizations do to preserve our beaches so that future generations can continue to enjoy them the way I have been able to.

A little girl takes tentative steps into the surf while holding on to mom's hand.

A little girl takes tentative steps into the surf while holding on to mom’s hand. (NOAA)

Brigantine is only one of the many small ocean communities that generations of Americans look forward to visiting along our coasts each year. It is a barrier island just north of Atlantic City. Settled in 1890, it is now home to nearly 9,500 residents.  The island is less than seven miles long, with the entire northern third of the island devoted to a wildlife refuge.

Uninhabited by humans, the refuge is composed of sand dunes, maritime forest, and tidal marsh. During the summer visitors can see a variety of endangered birds, including Piping Plover, Black Skimmer, American Oystercatcher, and Least Tern. When I was there last September, I watched a pod of bottlenose dolphins playing near the shore. That was shortly after Hurricane Irene made landfall near Brigantine on the morning of August 28, causing significant beach erosion and flooding.

A young girl goes surf fishing with her father in the early evening.

A young girl goes surf fishing with her father in the early evening. (NOAA)

In the developed area to the south, most of the beaches are guarded during the day in the summer to keep swimmers safe. In the evenings, after people have gone home with their umbrellas and beach chairs, the remainder surf, fish, and walk the beach. Boating and recreational fishing are a big part of life on the bay side of the island.

What does NOAA do to protect coastal areas like this around the country? The National Weather Service provides valuable information on weather conditions, including severe weather warnings.

Recently, they helped guide the development of a smartphone application that gives the U.S. Coast Guard, beach lifeguards, and researchers a way to report and receive up-to-date warnings on dangerous rip currents, which have been a particular problem for swimmers this past year.

NOAA also provides nautical charts for the coastal waterways surrounding islands like Brigantine to ensure safe navigation for commercial and recreational boating and fishing as well as commercial shipping.

Kids play in the sand the same way they have for generations.

Kids play in the sand the same way they have for generations. (NOAA)

NOAA’s Office of Response and Restoration works closely with the U.S. Environmental Protection Agency on hazardous waste sites in coastal areas to protect human health and minimize damage to NOAA marine resources. When an accident or hazardous substance release occurs, NOAA’s Damage Assessment, Remediation, and Restoration Program works to assess injury and implements rehabilitation and restoration.

Additionally, the Office of Response and Restoration has customized an online mapping tool called ERMA® (Environmental Response Management Application) for this part of the Atlantic coast. ERMA integrates data such as ship locations, weather, and ocean currents, in a centralized, easy-to-use format for environmental responders and decision makers. This tool would be especially valuable in the case of an oil spill, for example.

Guidelines for visitors reduce the risk of injury or stress to the North Brigantine Natural Area.

Guidelines for visitors reduce the risk of injury or stress to the North Brigantine Natural Area. (NOAA)

The NOAA Marine Debris Program provides education on the harm caused by man-made litter polluting the ocean and coasts. Even this year, beaches not far from Brigantine reported sightings of medical waste washing up near the shore. The program also provides valuable information to fishers on the proper disposal of monofilament fishing line, which can entangle and injure birds and other wildlife.

Through a partnership with NOAA’s National Marine Fisheries Service, the Marine Mammal Stranding Center (based on Brigantine) responds to marine mammals and turtles in distress along all of New Jersey’s waterways and oversees their rehabilitation and release back into the wild.

NOAA Scientific Support Coordinator Frank Csulak.

NOAA Scientific Support Coordinator Frank Csulak.

Frank Csulak is a good example of one of the many individuals who has devoted his career to the preservation of our coastal resources. Csulak is NOAA’s Scientific Support Coordinator and has worked for the Office of Response and Restoration in New Jersey for years. Raised on the New Jersey shore, he is the primary scientific adviser to the U.S. Coast Guard for oil and chemical spill planning and response in the area. Through his tireless work, he helps reduce the influence of pollution on the waterways and shores of the Mid-Atlantic states.

So, the next time you visit the Jersey shore, you can thank Frank Csulak, NOAA, and our many partners for delivering another beautiful day at the beach.