NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Preventing and Preparing for Oil Spills in the Arctic

Talking with NOAA Scientist Amy Merten about her time chairing the Arctic Council’s Emergency Prevention, Preparedness and Response working group.

Ice bank in the Arctic ocean. Image credit: NOAA.

View off the coast of Longyearbyen, Svalbard, Norway. Taken during a search and rescue demonstration for an Arctic Council’s Emergency Prevention, Preparedness and Response working group meeting. Image Credit: NOAA

As rising temperatures and thinning ice in the Arctic create openings for increased human activities, it also increases the potential for oil spills and chemical releases into the remote environment of the region.

Planning emergency response operations for the Arctic falls to the Emergency Prevention, Preparedness and Response working group, an Arctic Council body. The emergency working group has representatives from each of the member states with expertise in oil spill response, search and rescue, and response to radiological events.

NOAA’s Amy Merten, chief of the Spatial Data Branch, will finish her two-year stint as chair of the working group in May 2017. The chair is elected every two years from among the working group’s members including: Canada, Kingdom of Denmark, Finland, Iceland, Norway, Russian Federation, Sweden, the United States and permanent participants. Merten served on the working group for 5 years before becoming chair. She will leave the position on May 11, 2017. Jens Peter Holst-Andersen, from the Kingdom of Denmark will be the new chair at the next meeting in Vologda, Russia.

Merten, who holds a doctorate in marine sciences/environmental chemistry, shared her insights into the complexities of planning for emergencies in the remote regions of the Arctic and about what it’s like working with other nations to protect the Arctic environments.

What are the biggest challenges facing spill response in the Arctic? 

There are many; remote locations, short windows of open-water and daylight in which to respond, and lack of infrastructure—you can’t send a massive response community to Arctic communities there is not enough food, hotel space, or fuel to sustain larger groups.  Lack of communication is another challenge. Things that we take for granted working at moderate temperatures (cameras, GPS), don’t work at cold temperatures. For search and rescue, there is not adequate hospital space or expertise. Therefore, if a large cruise ship gets into trouble in the Arctic, the rescue, triage and sustainability of the passengers will be a major challenge.

Why is it important to have international cooperation when developing response plans?

Each country has unique experiences and may have developed a way to respond to oil spills in ice or Arctic conditions that can be shared with other countries facing potential spills in ice. Because of the remoteness of the Arctic, with little to no infrastructure, particularly in the United States and Canada, countries will have to rely on equipment and support from others.

Additionally, there are parts of the Arctic Ocean that are international waters, and should a vessel founder there, the countries would collectively respond. We share thoughts on high-risk scenarios, best practices, and identification of research needs. We also share ideas and findings on the latest technologies in communications, oil-in-ice modeling, data management and response technologies.

How does communication with other countries during an emergency work?

We have an up-to-date communication list and protocol. This is part of our agreement, the Agreement on Cooperation on Marine Oil Pollution, Preparedness and Response in the Arctic. We also practice our communication connectivity once a year, and conduct an international exercise every two years.

What role do satellites have in preparing for and responding to emergencies in the region?

We rely on satellite information for monitoring conditions (weather and ice) and vessel traffic. We would certainly rely on satellite data for an incident in order to plan the response, monitor the extent of the oiling, and understand the weather and ice conditions.

How do the member countries work to share plans so that emergency response is not being duplicated?

This is one of the functions of Emergency Prevention, Preparedness and Response working group. It ensures we communicate about domestic projects and plans that may benefit the other nations to maximize the collective effectiveness and avoid duplications.

NOAA’s online environmental mapping tool for the region, Arctic ERMA, now includes polar projections; do the other council countries use Arctic ERMA?

They use it during our joint exercises, and we use it to visualize other working group projects, like the Bureau of Safety and Environmental Enforcement-led Pan-Arctic response assets database. We also discuss sharing data across systems and are developing data sharing agreements.

What are the three biggest threats to the Arctic environment? 

Keeping it a peaceful governance, climate change, and oil spills/chemical spills.

Why is the Arctic environment important to the United States?

Arctic weather and climate affects the world’s oceans, weather, and climate, including the Lower 48. The Arctic is replete with energy, mineral, and fishing resources. The Arctic is inhabited by indigenous communities with unique lifestyles that are threatened and need protection. The Arctic is also home to unique flora and fauna that are important for biodiversity, ecological services, and overall healthy environments.  As the Arctic becomes more accessible, national security pressures increase.

 What would be the worst types of oil spills in the Arctic?

This is a hard question to answer but I’d say a spill of a persistent oil that occurs in broken ice during freeze up or thawing periods. During freeze up because it will be difficult to respond, and difficult to track the oil.

During thawing because it’s the emergence of primary production for the food web, hunting subsistence practices would be threatened and it could be unsafe to respond due to of the changing ice conditions. It all depends on how far away and difficult it is to get vessels, aircraft, people, and skimmers onsite, and in a way they can operate safely in a meaningful way.

A “worst spill” doesn’t have to be a “large” spill if it impacts sensitive resources at key reproductive and growth cycles, or if it impacts Arctic communities’ food security, subsistence activities, and ways of life.

How has being chair added to your understanding of the emergency response in the Arctic?

I think it’s increased my concern that it’s not a matter of “if” but a matter of “when” a spill will happen. The logistics of a response will be complicated, slow, and likely, fairly ineffective. The potential for long-term impacts on stressed communities and stressed environments is high. I do have a good feeling that international cooperation will be at its best, but the challenges are daunting for all of us.

Amy Merten on boat with sea and ice behind her. Image credit: NOAA.

NOAA scientist Amy Merten in the Arctic. Merten is chief of the Spatial Data Branch of the Office of Response and Restoration and served as chair of the Arctic Council’s Emergency Prevention, Preparedness and Response working group. Image credit: NOAA.


Leave a comment

Below Zero: Partnership between the Coast Guard and NOAA

Red and white large ship on ocean with ice.

Coast Guard icebreaker Cutter Healy perches next to a shallow melt pond on the ice in the Chukchi Sea, north, of the Arctic Circle July 20, 2016. During Cutter Healy’s first of three missions during their West Arctic Summer Deployment, a team of 46 researchers from the University of Alaska-Anchorage and the National Oceanic and Atmospheric Administration (NOAA) studied the Chukchi Sea ecosystem. U.S. Coast Guard photo by Ensign Brian P. Hagerty/CGC Healy

By Lt. Cmdr. Morgan Roper, U.S. Coast Guard

For more than 200 years, the U.S. Coast Guard and National Oceanic and Atmospheric Administration have partnered together in maritime resiliency, environmental sustainability and scientific research. In fact, a variety of NOAA projects encompassed over 50 percent of Coast Guard Cutter Healy operations for 2016, including a Coast Guard and NOAA collaborative effort to chart the extended continental shelf and survey marine habitats and biodiversity. Today, more than ever in the past, the Coast Guard and NOAA are working together on numerous levels of profession in the U.S. Arctic Region, which happens to be Coast Guard Alaska‘s northern area of responsibility, or AOR. From daily sector operations and district-led full scale exercises to partnering on the national level in workgroups under the Arctic Council, Coast Guard and NOAA have a strong working relationship supporting and representing the U.S. in cold weather operations and Arctic initiatives.

In a recent search and rescue case off the coast of the Pribilof Islands, where the fishing vessel Destination sank suddenly in the frigid seas, NOAA’s National Weather Service (NWS) Regional Operations Center was the Coast Guard’s ‘first call’ to get current weather information in support of search plan development. NOAA and NWS also played a role in setting the stage for the potential cause of the incident by providing sea state information and the dangerous effects of sea spray icing on vessels. For SAR planning and other mission support, NOAA’s NWS Ice Program also works with the Port of Anchorage on a daily basis with regards to ice conditions all along the coastline of Alaska, and provides bi-weekly regional weather briefs for the district and sector command centers; they are part of the ‘team’ when it comes to response planning and preparation. NOAA and the Coast Guard continue to work diligently together to ensure all possible capabilities from the U.S. Government enterprise are available to support homeland security and Arctic domain awareness on a broader, high level position.

On a national level, personnel from Coast Guard and NOAA headquarters partner together as members of the Arctic Council’s Emergency Prevention Preparedness and Response  working group. This group addresses various aspects of prevention, preparedness and response to environmental emergencies in the Arctic. The Coast Guard and NOAA jointly play a large role in ensuring operational support and training mechanisms are in place for vital response capacities and capabilities.

Man on ship deck launching mini aircraft.

National Oceanographic and Atmospheric Administration scientist Kevin Vollbrecht launches a Puma unmanned aerial vehicle from the bow of the Coast Guard Cutter Healy July 11, 2015. The Puma is being tested for flight and search and rescue capabilities. (U.S. Coast Guard photo)

The Coast Guard also fully employs the use of NOAA’s Environmental Response Management Application (ERMA) in the Arctic. ERMA is NOAA’s online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a common operational picture for environmental responders and decision makers to use during incidents. Also used for full scale exercises, in 2016, the Healy employed ERMA onboard to help provide a centralized display of response assets, weather data and other environmental conditions for the incident response coordinators. In the same exercise, NOAA tested unmanned aerial systems for use with Coast Guard operations in the Arctic. Furthermore, NOAA and the Coast Guard are working together with indigenous communities to learn how ERMA can best be used to protect the natural resources and unique lifestyle of the region. ERMA has been in use by the Coast Guard in other major response events, such as Deepwater Horizon; where it was the primary tool providing Coast Guard and other support agency leadership a real-time picture of on-scene environmental information.

Among a number of future projects, the Coast Guard and NOAA are developing a focused approach on how to best handle the damage of wildlife in the areas of subsistence living in the northern Arctic region of Alaska during and following a spill event. The Coast Guard and NOAA are also collaborating on how to better integrate environmental information and intelligence to proactively support Arctic marine traffic safety as a whole.

The partnership between Coast Guard and NOAA continues to thrive and grow stronger as maritime and environmental conditions, caused by both natural and man-made effects, shift and change over time.

 

This story was first posted Feb. 17, 2017, on Coast Guard Compass, official blog of the U.S. Coast Guard as part of  a series about all things cold weather – USCG missions, operations, and safety guidance. Follow the Coast Guard on FacebookTwitter and Instagram, and look for more #belowzero stories, images, and tips!