NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

NOAA’s Online Mapping Tool ERMA Opens up Environmental Disaster Data to the Public

Six men looking at a map with a monitor in the background.

Members of the U.S. Coast Guard using ERMA during the response to Hurricane Isaac in 2012. (NOAA)

This is a post by the NOAA Office of Response and Restoration’s Jay Coady, Geographic Information Systems Specialist.

—-

March 15-21, 2015 is Sunshine Week, an “annual nationwide celebration of access to public information and what it means for you and your community.” Sunshine Week is focused on the idea that open government is good government. We’re highlighting NOAA’s Environmental Response Management Application (ERMA) as part of our efforts to provide public access to government data during oil spills and other environmental disasters.    

Providing access to data is a challenging task during natural disasters and oil spill responses—which are hectic enough situations on their own. Following one of these incidents, a vast amount of data is collected and can accumulate quickly. Without proper data management standards in place, it can take a lot of time and effort to ensure that data are correct, complete, and in a useful form that has some kind of meaning to people. Furthermore, as technology advances, responders, decision makers, and the public expect quick and easy access to data.

NOAA’s Environmental Response Management Application (ERMA®) is a web-based mapping application that pulls in and displays both static and real-time data, such as ship locations, weather, and ocean currents. Following incidents including the 2010 Deepwater Horizon oil spill and Hurricane Sandy in 2012, this online tool has aided in the quick display of and access to data not only for responders working to protect coastal communities but also the public.

From oil spill response to restoration activities, ERMA plays an integral part in environmental data dissemination. ERMA reaches a diverse group of users and maintains a wide range of data through a number of partnerships across federal agencies, states, universities, and nations.

Because it is accessible through a web browser, ERMA can quickly communicate data between people across the country working on the same incident. At the same time, ERMA maintains a public-facing side which allows anyone to access publically available data for that incident.

ERMA in the Spotlight

During the Deepwater Horizon oil spill in the Gulf of Mexico, ERMA was designated as the “common operational picture” for the federal spill response. That meant ERMA displayed response-related activities and provided a consistent visualization for everyone involved—which added up to thousands of people.

Screen grab of ERMA map.

ERMA map showing areas of dispersant application during the response to the Deepwater Horizon oil spill in 2010. (NOAA)

To date, the ERMA site dedicated solely to the Deepwater Horizon spill contains over 1,500 data layers that are available to the public. Data in ERMA are displayed in layers, each of which is a single set of data. An example of a data layer is the cumulative oil footprint of the spill. This single data layer shows, added together, the various parts of the ocean surface the oil spill affected at different times over the entire course of the spill, as measured by satellite data. Another example is the aerial dispersant application data sets that are grouped by day into a single data layer and show the locations of chemical dispersant that were applied to oil slicks in 2010.

Even today, ERMA remains an active resource during the Natural Resource Damage Assessment process, which evaluates environmental harm from the oil spill and response, and NOAA releases data related to these efforts to the public as they become available. ERMA continues to be one of the primary ways that NOAA shares data for this spill with the public.

ERMA Across America

While the Deepwater Horizon oil spill may be one ERMA’s biggest success stories, NOAA has created 10 other ERMA sites customized for various U.S. regions. They continue to provide data related to environmental response, cleanup, and restoration activities across the nation’s coasts and Great Lakes. These 10 regional ERMA sites together contain over 5,000 publicly available data layers, ranging from data on contaminants and environmentally sensitive resources to real-time weather conditions.

For example, in 2012, NOAA used Atlantic ERMA to assist the U.S. Coast Guard, Environmental Protection Agency, and state agencies in responding to pollution in the wake of Hurricane Sandy. Weather data were displayed in near real time as the storm approached the East Coast, and response activities were tracked in ERMA. The ERMA interface was able to provide publically available data, including satellite and aerial imagery, storm inundation patterns, and documented storm-related damages. You can also take a look at a gallery of before-and-after photos from the Sandy response, as viewed through Atlantic ERMA.

Screen grab of an ERMA map.

An ERMA map showing estimated storm surge heights in the Connecticut, New York and New Jersey areas during Hurricane Sandy. (NOAA)

In addition, the ERMA team partnered with NOAA’s Marine Debris Program to track Sandy-related debris, in coordination with state and local partners. All of those data are available in Atlantic ERMA.

Looking to the north, ERMA continues to be an active tool in Arctic oil spill response planning. For the past two years, members of the ERMA team have provided mapping support using Arctic ERMA during the U.S. Coast Guard’s Arctic Technology Evaluation exercises, which took place at the edge of the sea ice north of Barrow, Alaska. During these exercises, the crew and researchers aboard a Coast Guard icebreaker tested potential technologies for use in Arctic oil spill response, such as unmanned aircraft systems. You can find the distributions of sensitive Alaskan bird populations, sea ice conditions, shipping routes, and pictures related to these Arctic exercises, as well as many more data sets, in Arctic ERMA.

Screen grab of an Arctic ERMA map.

ERMA is an active tool in Arctic oil spill response planning. (NOAA)

To learn more about the online mapping tool ERMA, visit http://response.restoration.noaa.gov/erma.

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch and is based in Charleston, South Carolina. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy.


Leave a comment

For Alaska’s Remote Pribilof Islands, a Tale of Survival and Restoration for People and Seals

Set in the middle of Alaska’s Bering Sea, a string of five misty islands known as the Pribilof Islands possess a long, rich, and at times, dark history. A history of near extinction, survival, and restoration for both people and nature. A history involving Alaska Natives, Russians, the U.S. government and military, and seals.

It begins with the native people, known as the Unangan, who live there. They tell a story that, as they say, belongs to a place, not any one person. The story is of the hunter Iggadaagix, who first found these islands many years ago after being swept away in a storm and who wanted to bring the Unangan back there from the Aleutian Islands. When the Unangan finally did return for good, it was in the 18th century, and their lives would become intimately intertwined with those of the northern fur seals (Callorhinus ursinus). Each summer roughly half of all northern fur seals breed and give birth in the Pribilof Islands.

Map of fur seal distributions in Bering Sea and Pacific Ocean, with location of Pribilof Islands.

An 1899 map of the distribution (in red) and migrations of the American and Asiatic Fur Seal Herds in the Bering Sea and North Pacific Ocean. Based on data collected 1893-1897. The Pribilof Islands (St. Paul and St. George) are visible north of the main Aleutian Islands, surrounded by the center collections of red dots. Click to enlarge. (U.S. Government)

But these seals and their luxurious fur, along with the tale of Iggadaagix, would eventually bring about dark times for the seals, the Unangan, and the islands themselves. After hearing of Iggadaagix and searching for a new source of furs, Russian navigator Gavriil Loginovich Pribylov would land in 1786 on the islands which would eventually bear his name. He and others would bring the Unangan from the Aleutian Islands to the Pribilof’s St. George and St. Paul Islands, where they would be put to work harvesting and processing the many fur seals.

In these early years on the islands, Russian hunters so quickly decimated the fur seal population that the Russian-American Company, which held the charter for settling there, suspended hunting from 1805 to 1810. The annual limit for taking fur seals was then set at 8,000 to 10,000 pelts, allowing the population to rebound significantly.

The United States Arrives at the Islands

Fast forward to 1867, when the United States purchased Alaska, including the Pribilof Islands, from Russia for $7.2 million.

Some people considered the lucrative Pribilof Islands fur seal industry to have played a role in this purchase. In fact, this industry more than repaid the U.S. government for Alaska’s purchase price, hauling in $9,473,996 between 1870 and 1909.

The late 19th and early 20th centuries saw various U.S. military branches establish stations on the Pribilof Islands, as well as several (at times unsuccessful) attempts to control the reckless slaughter of fur seals. From 1867 until 1983, the U.S. government managed the fur seal industry on the Pribilof Islands.

In 1984, the Unangan finally were granted control of these islands, but the government had left behind a toxic legacy from commercial fur sealing and former defense sites: hazardous waste sites, dumps, contaminants, and debris.

Making Amends with the Land

This is where NOAA comes into the picture. In 1996, the Pribilof Islands Environmental Restoration Act called on NOAA to restore the environmental degradation on the Pribilof Islands. In particular, a general lack of historical accountability on the islands had led to numerous diesel fuel spills and leaks and improperly stored and disposed waste oils and antifreeze. By 1997 NOAA had removed thousands of tons of old cars, trucks, tractors, barrels, storage tanks, batteries, scrap metal, and tires from St. Paul and St. George Islands. Beginning in 2002, NOAA’s efforts transitioned to cleaning up soil contamination and assessing potential pollution in groundwater.

However, the Department of Defense has also been responsible for environmental cleanup at the Pribilof Islands. The U.S. Army occupied the islands during World War II and left behind debris and thousands of 55-gallon drums, which were empty by 1985 but had previously contained petroleum, oils, and lubricants, which could have leaked into the soil.

By 2008, NOAA’s Office of Response and Restoration had fulfilled its responsibilities for cleaning up the contamination on the Pribilof Islands, closing a dark chapter for this remote and diverse area of the world and hopefully continuing the healing process for the Unangan and fur seals who still call these islands their home.

Learn More about the Pribilof Islands

Man posing with schoolchildren.

Dr. G. Dallas Hanna with a class of Aleut schoolchildren on St. George Island, Alaska, circa 1914. (National Archives)

You can dig even deeper into the wealth of historical information about the Pribilof Islands at pribilof.noaa.gov.

There you can find histories, photos, videos, and documents detailing the islands’ various occupations, the fur seal industry, the relocation of the Unangan during World War II, the environmental contamination and restoration, and more.

You can also watch:


Leave a comment

When Oil Spills Take You to Hawaii and the Yellowstone River in Two Days

Overview of the Yellowstone River at the site of the pipeline spill.

Overview of the Yellowstone River at the site of the pipeline spill on Jan. 19, 2015. (U.S. Environmental Protection Agency)

We get called for scientific support between 100 and 150 times a year for oil spills, chemical releases, and other marine pollution events around the nation. That averages to two or three calls per week from the U.S. Coast Guard or U.S. Environmental Protection Agency, but those calls aren’t nicely scheduled out during the week, or spread out regionally among staff in different parts of the country.

The date of an oil spill is just the starting point. Many of these pollution incidents are resolved in a day or two, but some can lead to years of work for our part of NOAA. Some oil spills make the national and regional news while others might only be a local story for the small coastal town where the spill took place.

To give you an idea, some of the incidents we worked on just last week took us from Hawaii one day to eastern Montana the next day—and we were already working on two others elsewhere. These incidents included a pipeline break and oil spill in the Yellowstone River in Montana; a mystery spill of an unknown, non-oil substance that resulted in birds stranded in San Francisco Bay, California; a tug boat sinking and releasing diesel fuel off of Oahu, Hawaii; and a fishing vessel grounded near Sitka, Alaska.

Aerial view of oil spilled along the edge of Yellowstone River.

View from an aerial survey of the spill site on the Yellowstone River, taken about six miles upstream from Glendive, Montana. (Montana Department of Environmental Quality)

The Yellowstone River spill involved a pipeline releasing oil as it ran under a frozen river. The source of the leaking oil has been secured, which means no more oil is leaking, but response operations are continuing. It is an interesting spill for several reasons. One is because the oil type, Bakken crude, is an oil that has been in the news a lot recently. More Bakken crude oil is being transported by train these days because the location of the oil fields is far from ports or existing pipelines. Several rail car accidents involving this oil have ended in explosions. Another reason the Yellowstone River spill is of particular interest is because the response has to deal with ice and snow conditions along with the usual challenges of dealing with an oil spill.

Watch footage of an aerial survey over the Yellowstone River and spilled oil:

The mystery spill in the San Francisco Bay Area is still a mystery at this point (both what it is and where it came from), but hundreds of birds are being cleaned in the meantime. The response is coordinating sampling and chemical analysis to figure out the source of the “mystery goo” coating these seabirds.

Marine diesel fuel dyed red in the ocean.

Marine diesel fuel, dyed red, is shown approximately seven miles south of Honolulu Airport on January 23, 2015. The spill came from a tugboat that sank off Barbers Point Harbor, Oahu, on January 22. (U.S. Coast Guard)

Meanwhile, the tugboat accident in Hawaii involved about 75,000 gallons of fuel oil leaking from a tugboat that sank in over 2,000 feet of water. All 11 crewmembers of the tugboat were safely rescued. We were helping forecast what was happening to the spilled oil and where it might be drifting. In addition, there was a lot of concern about endangered Hawaiian monk seals and sea turtles in the area, but no oiled wildlife have been reported.

And that brings us to the fishing vessel grounded in Alaska. At this time the vessel is still intact and hasn’t spilled any of the 700 gallons of fuel believed to be onboard. Salvors are working to refloat the vessel. Fortunately, the crew had time to cap some of the fuel tank vents before abandoning ship, which may be helping prevent oil from being released. All four crew were safely rescued.

That makes four very different spills in four very different areas … and we have to be ready to respond with oil spill models and environmental expertise for all of them at the same time. But that’s just all in a day’s work at NOAA.


3 Comments

Why Are Seabirds so Vulnerable to Oil Spills?

Out of the squawking thousands of black and white birds crowding the cliff, a single male sidled up to the rocky edge. After arranging a few out-of-place feathers with his sleek beak, the bird plunged like a bullet into the ocean below. These penguin look-alikes (no relation) are Common Murres. Found along the U.S. coast from Alaska to California, this abundant species of seabird dives underwater, using its wings to pursue a seafood dinner, namely small fish.

During an oil spill, however, these classic characteristics of murres and other seabirds work to their disadvantage, upping the chance they will encounter oil—and in more ways than one. To understand why seabirds are so vulnerable to oil spills, let’s return to our lone male murre and a hypothetical oil spill near his colony in the Gulf of Alaska.

Preening in an Oil Sheen

After diving hundreds of feet beneath the cold waters of the North Pacific Ocean, the male murre pops back to the surface with a belly full of fish—and feathers laminated in oil. This bird has surfaced from his dinner dive into an oil slick, a common problem for diving birds during oil spills. His coat of feathers, once warm and waterproof, is now matted. The oil is breaking up his interlocking layer of feathers, usually maintained by the bird’s constant arranging and rearranging, known as preening.

With his sensitive skin suddenly exposed not just to the irritating influence of oil but also to the cold, the male murre becomes chilled. If he does not repair the alignment of his feathers soon, hypothermia could set in. This same insulating structure also traps air and helps the bird float on the water’s surface, but without it, the bird would struggle to stay afloat.

Quickly, the freshly oiled seabird begins preening. But with each peck of his pointed beak into the plumage, he gulps down small amounts of oil. If the murre ingests enough oil, it could have serious effects on his internal organs. Impacts range from disrupted digestion and diarrhea to liver and kidney damage and destruction of red blood cells (anemia).

But oil can find yet another way of entering the bird: via the lungs. When oil is spilled, it begins interacting with the wind, water, and waves and changing its physical and chemical properties through the process of weathering. Some components of the oil may evaporate, and the murre, bobbing on the water’s surface, could breathe in the resulting toxic fumes, leading to potential lung problems.

Birds’-Eye View

Colony of murres on a rocky outcropping on the California coast.

Murres are very social birds, living in large colonies on rocky cliffs and shores along the U.S. West Coast. If disturbed by an oil spill, many of these birds may set off temporarily to find a more suitable home. (Creative Commons: Donna Pomeroy, Attribution-NonCommercial 3.0 Unported License)

This single male murre is likely not the only one in his colony to experience a run-in with the oil spill. Even those seabirds not encountering the oil directly can be affected. With oil spread across areas where the birds normally search for food and with some of their prey potentially contaminated or killed by the oil, the colony may have to travel farther away to find enough to eat. On the other hand, large numbers of these seabirds may decide to up and move to another home for the time being.

At the same time that good food is becoming scarcer, these birds will need even more food to keep up their energy levels to stay warm, find food, and ward off disease. One source of stress—the oil spill—can exacerbate many other stresses that the birds often can handle under usual circumstances.

If the oil spill happens during mating and nesting time, the impacts can be even more severe. Reproducing requires a lot of energy, and on top of that, exposure to oil can hinder birds’ ability to reproduce. Eggs and very young birds are particularly sensitive to the toxic and potentially deadly properties of oil. Murres lay only one egg at a time, meaning they are slower to replace themselves.

The glossy-eyed male murre we are following, even if he manages to escape most of the immediate impacts of being oiled, would soon face the daunting responsibility of taking care of his fledgling chick. As young as three weeks old, his one, still-developing chick plops off the steep cliff face where the colony resides and tumbles into the ocean, perhaps a thousand feet to its waiting father below. There, the father murre is the chick’s constant caregiver as they travel out to sea, an energy-intensive role even without having to deal with the potential fallout from an oil spill.

Birds of a Feather Get Oiled Together

Like a bathtub filled with rubber ducks, murres form giant floating congregations on the water, known as “rafts,” which can include up to 250,000 birds. In fact, murres spend all but three or four months of the year out at sea. Depending on where the oil travels after a spill, a raft of murres could float right into it, a scenario which may be especially likely considering murre habitat often overlaps with major shipping channels.

After the 1989 Exxon Valdez oil spill in Prince William Sound, responders collected some 30,000 dead, oil-covered birds. Nearly three-quarters of them were murres, but the total included other birds which dive or feed on the ocean surface as well. Because most bird carcasses never make it to shore intact where researchers can count them, they have to make estimations of the total number of birds killed. The best approximation from the Exxon Valdez spill is that 250,000 birds died, with 185,000 of them murres.

While this population of seabirds certainly suffered from this oil spill (perhaps losing up to 40 percent of the population), murres began recovering within a few years of the Exxon Valdez oil spill. Surprisingly resilient, this species is nonetheless one of the most studied seabirds [PDF] precisely because it is so often the victim of oil spills.


1 Comment

An Oiled River Restored: Salmon Return to Alaskan Stream to Spawn

Last summer NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) traveled to the remote Adak Island in Alaska to help salmon return to their historical home by removing barriers from Helmet Creek. We headed back out this September to see how things were going. As you can see from our photos, the salmon seem to be big fans of our 2013 restoration work.

Our mission this September was to monitor the success of these habitat restoration efforts and make sure no new problems have occurred since then. A survey of the creek quickly showed that salmon are now pushing as far upstream as naturally possibly, allowing them to enter formerly impassable areas with ease. Now the only thing preventing salmon from continuing further upstream is a natural waterfall.

During this visit, Helmet Creek was teaming with Pink and Chum salmon. One walk of the roughly two kilometer (one and a quarter mile) portion of stream resulted in our counting more than 600 adult salmon, over half of which were beyond the areas where we had removed fish passage barriers.

Salmon swimming underwater in a creek.

Salmon make their way upstream in Helmet Creek, further than they have been able to access in years thanks to our restoration work. (NOAA)

Before we stepped in to restore Helmet Creek, salmon were hitting a number of man-made obstacles preventing them from getting to the natural areas where they reproduce, known as their spawning grounds. In 2013 we removed these fish barriers, pulling out a number of 55-gallon drums and grates, all of which were impeding the salmon’s ability to swim upstream and covering their spawning grounds.

While seeing all these active fish is exciting, we are also looking forward to the ways these fish will continue helping the environment after they die. As salmon are now able to travel further upstream, they will take valuable nutrients with them too. After spawning, these pink and chum salmon will die and their decaying carcasses will return extremely valuable nutrients to the stream habitat and surrounding area. These nutrients will provide benefits to resident trout, vegetation, and birds nearby.

Restoration of Helmet Creek resulted from our work to restore the environment after a 2010 oil spill on the remote Adak Island, part of Alaska’s Aleutian Island chain. Through DARRP, we worked with our partners to determine how the environment was injured and how best to restore habitat. You can read more about our efforts in—and the unusual challenges of—assessing these environmental impacts to salmon and Helmet Creek.


Leave a comment

When the Clock Is Ticking: NOAA Creates Guidelines for Collecting Time-Sensitive Data During Arctic Oil Spills

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

The risk of an oil spill in the Alaskan Arctic looms large. This far-off region’s rapid changes and growing ship traffic, oil and gas development, and industrial activity are upping those chances for an accident. When Shell’s Arctic drilling rig Kulluk grounded on a remote island in the Gulf of Alaska in stormy seas in December 2012, the United States received a glimpse of what an Arctic oil spill response might entail. While no fuel spilled, the Kulluk highlighted the need to have a science plan ready in case we needed to study the environmental impacts of an oil spill in the even more remote Arctic waters to the north. Fortunately, that was exactly what we were working on.

Soon, the NOAA Office of Response and Restoration’s Assessment and Restoration Division will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive, ephemeral data in the Arctic to support Natural Resource Damage Assessment (NRDA) and other oil spill science. These guidelines improve our readiness to respond to an oil spill in the Alaskan Arctic. They help ensure we collect the appropriate data, especially immediately during or after a spill, to support a damage assessment and help the coastal environment bounce back.

Why Is the Arctic a Special Case?

NOAA’s Office of Response and Restoration is planning for an oil spill response in the unique, remote, and often challenging Arctic environment. Part of responding to an oil spill is carrying out Natural Resource Damage Assessment. During this legal process, state and federal agencies assess injuries to natural and cultural resources and the services they provide. They then implement restoration to help return those resources to what they were before the oil spill.

The first step in the process often includes collecting time-sensitive ephemeral data to document exposure to oil and effects of those exposures. Ephemeral data are types of information that change rapidly over time and may be lost if not collected immediately, such as the concentration of oil chemicals in water or the presence of fish larvae in an area.

It will be especially challenging to collect this kind of data in the Alaskan Arctic because of significant scientific and logistical challenges. The inaccessibility of remote sites in roadless areas, limited resources and infrastructure, extreme weather, and dangerous wildlife make it very difficult to safely deploy a field team to collect information.

However, the uniqueness of the fish, wildlife, and habitats in the Arctic and the lack of baseline data for many of them mean collecting pre- and post-impact ephemeral data is even more important and makes advance planning essential.

What Do We Need and How Do We Get It?

The first step in developing these guidelines was to identify the highest priority ephemeral data needs for damage assessment in the Arctic. We accomplished this by developing a conceptual model of oil exposure and injury, conducting meetings with communities in the Alaskan Arctic, and consulting with NRDA practitioners and Artic experts.

Our guidelines do not cover marine mammals and birds because the NOAA National Marine Fisheries Service and U.S. Fish and Wildlife Service already have developed such guidelines. Instead, our guidelines are focused on nearshore habitats and natural resources, which in the Arctic include sand, gravel, rock, and tundra shorelines and estuarine lagoons. These environments are at risk of being affected by onshore and nearshore oil spills and offshore spills when oil drifts toward the coast. Though Arctic lagoons and coastlines are covered with ice most of the year, they are important habitat for a wide range of organisms, many of which are important subsistence foods for local communities.

Once we defined our high-priority ephemeral data needs, we developed the data collection guidelines based on guidance documents for other regions, published sampling methods, lessons learned from other spills, and shared traditional knowledge. Draft versions of the guidelines were reviewed by NRDA practitioners and Arctic resource experts, including people from federal and state agencies, Alaskan communities, academia, nonprofit organizations, consulting companies, and industry groups.

With their significant and valuable input, we developed 17 guidelines for collecting data from plankton, fish, environmental media (e.g., oil, water, snow, sediments, tissues), and nearshore habitats and the living things associated with them.

What’s in One of These Guidelines?

Marine invertebrate measured next to a ruler.

Arctic isopod collected for a tissue sample along the Chukchi coast in 2014. (NOAA)

Our Arctic ephemeral data collection guidelines cover a lot, from a sampling equipment list and considerations to address before heading out, to field data sheets and detailed sampling strategies and methods. In addition, we developed a document with alternative sampling equipment and methods to address what to do if certain required equipment, facilities, or conditions—such as preservatives for tissue samples—are not available in remote Alaskan Arctic locations.

These guidelines are focused, concise, detailed, Arctic-specific, and adaptable. They are intended to be used by NRDA personnel as well as other scientists doing baseline data collection or collecting samples for damage assessment and oil spill science, and may also be used by emergency responders.

Meanwhile, Out in the Real World

Though we often talk about the Arctic’s weather, wildlife, access, and logistical issues, it is always humbling and instructive to actually work in those conditions. This is why field validating the ephemeral data collection guidelines was an essential part of their development. We needed to make sure they were feasible and effective, improve them based on lessons learned in the field, and gauge the level of effort required to carry them out.

Many of the guidelines can only be used when there is no shore-fast ice present, while others are specific to ice habitats or can be used in any season. We field tested versions of the guidelines’ methods near Barrow, Alaska, in the summer of 2013 and spring and summer of 2014, adding important details and making other corrections as a result. More importantly, we know in practice, not just in theory, that these methods are a reasonable and effective way to collect samples for damage assessment in the Alaskan Arctic.

People preparing an inflatable boat on a shoreline with broken sea ice.

Preparing to deploy a beach seine net around broken sea ice on the Chukchi coast in 2013. (NOAA)

UPDATE: The guidelines for collecting high priority ephemeral data for oil spills in the Arctic are now available at response.restoration.noaa.gov/arctic-sampling-guidelines.

Acknowledgements

Thank you to everyone who reviewed the Arctic ephemeral data collection guidelines and provided valuable input to their development.

A special thanks to Kevin Boswell, Ann Robertson, Mark Barton, Sam George, and Adam Zenone for allowing me to join their field team in Barrow and helping me get the samples I needed.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during Arctic Shield’s Technology Evaluations and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013’s Technology Evaluation, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the evaluation. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.

Follow

Get every new post delivered to your Inbox.

Join 527 other followers