NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Watch Divers Restore Coral Reefs Hit by a Huge Ship in Hawaii

Coral reefs are not to be confused with underwater highways. Unfortunately for the corals, however, navigating huge ships is a tricky business and sometimes reefs do end up on the wrong side of the “road.” (One reason why having up-to-date navigational charts is so important!)

This was the case for corals damaged off the Hawaiian island of Oahu in February of 2010 when the cargo ship M/V VogeTrader ran aground and was later removed from a coral reef in Kalaeloa/Barber’s Point Harbor.

NOAA’s Restoration Center and the State of Hawaii worked quickly to implement emergency restoration (using what look like laundry baskets), using special underwater scientific techniques and technologies, and ultimately restoring the reef after getting some help from vacuums, power washers, and even winter storms.

See divers transform these Hawaiian corals from crushed to flush with marine life:

In the end, these efforts are all part of how we work to help make the ocean a better place for corals and the many other types of marine life that rely on them.

Leave a comment

Restoration along Oregon’s Willamette River Opens up New Opportunities for Business and Wildlife

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

Salmon, mink, bald eagles, and other wildlife should be lining up to claim a spot among the lush new habitat freshly built along Oregon’s Willamette River. There, a few miles downstream from the heart of Portland, construction at the Alder Creek Restoration Project is coming to a close. Which means the reshaped riverbanks and restored wetlands are open for their new inhabitants to move in.

This 52 acre project is the first habitat restoration effort for the Portland Harbor Superfund Site and has been implemented specifically to benefit fish and wildlife affected by years of industrial contamination in the harbor.

Salmon, lamprey, osprey, bald eagle, mink, and others will now enjoy sandy beaches, native vegetation, and large pieces of wood to perch on or hide underneath. These features replace the saw mill, parking lots, and other structures present on the property before it was purchased by Wildlands, Inc. Chinook salmon and osprey have already been seen seeking refuge and searching for food in the newly constructed habitat.

Wildlands is a business that intends to sell ecological “credits” from this restoration project. The credits that the Alder Creek project generates are available for purchase to resolve the liability of those who discharged oil or hazardous substances into Portland Harbor.

Newly planted wetland vegetation on the bank of a river.

Habitat restored at Alder Creek in Oregon in 2014 was planted with native vegetation in 2015. (Photo courtesy Wildlands)

Construction on the restoration site began in the summer of 2014. First, hundreds of thousands of yards of wood chips were removed from the site of a former saw mill and several buildings were demolished. A channel was excavated on the western portion of the site, which was continued through the eastern half of the site when construction resumed in 2015.

View a time lapse video of channel construction on the Alder Creek site:

Also this year, efforts involved removing invasive vegetation, planting native vegetation, and installing large wood structures along the channel to create ideal places for young fish to rest, feed, and hide from predators.

Rowed dirt field next to river channels.

View of newly created channels on the Alder Creek site connecting to Oregon’s Willamette River. Salmon and osprey have already been seen making themselves at home in the newly constructed habitat. (Photo courtesy of Wildlands)

After a final breach of the earthen dam dividing the restoration site this September, water now flows across the newly restored area. Once additional planting is completed this winter, the project will officially be “open for business,” although some entrepreneurial wildlife are already getting a head start.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Oregon, she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.

Leave a comment

Who Pays for Oil Spills?

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

Oiled boom and marsh in Louisiana.

The Oil Pollution Act of 1990 states that those responsible for releasing oil and other hazardous materials pay for all costs associated with the cleanup operations, as well as the assessment of environmental impacts and necessary restoration. (U.S. Coast Guard)

After every major oil spill, one question comes up again and again: Who is going to pay for this mess?

While the American public and the environment pay the ultimate price (metaphorically speaking), the polluter most often foots the bill for cleanup, response, and restoration after oil spills.

In sum: You break it, you buy it. But our unspoiled coasts are priceless, and we would rather protect—or at least minimize impacts to—them as much as possible. Which means federal dollars are invested in ensuring top-notch experts are ready to act when oil spills do strike. (Stay tuned for more on that.)

So, Who Pays to Clean up an Oil Spill?

When an oil spill occurs, there are very clear rules about who pays for the direct response activities, the cost of assessing environmental damages, and implementing the necessary restoration.

The Oil Pollution Act of 1990, one legacy of the 1989 Exxon Valdez spill, spells out that those responsible for the pollution pay for all costs associated with the cleanup operations. However, similar to a car accident, insurance companies aren’t going to start writing checks without first looking at the circumstances.

But time is of the essence when oil hits the water, so oil companies and transporting vessels are required to have plans in place to respond immediately. In the rare instances when insurance companies investigate the details of legal (and hence, monetary) responsibility and hesitate to pay additional costs, the U.S. Coast Guard is able to set up an immediate source of funding for federal and state agencies and tribes who support the oil spill cleanup, which pays for their contributions to the response.

If the polluter is ultimately deemed liable for the spill, then they reimburse all expenses to the U.S. Coast Guard. Meaning the polluter pays for the cost of the oil spilled.

What About Restoration After Oil Spills?

Well, what about the environmental impacts left behind after the cleanup ends and everyone goes home? Does the American public pay to restore the animals and plants harmed by the spill?

Scientist leans over a boat to retrieve a dead Kemp's ridley sea turtle from the water.

It takes an average of four years to reach a settlement for environmental damages and then begin restoration after an oil spill. As a result, our job is not only to enforce pollution regulations but to ensure the right type and amount of restoration is achieved. (NOAA)

Nope. Again, the Oil Pollution Act states that parties that release hazardous materials and oil into the environment are responsible not only for the cost of cleaning up the release, but also for restoring any “injuries” (harm) to natural resources that result.

As the primary federal steward (“trustee”) for coastal animals and habitat, NOAA is responsible for ensuring the restoration of coastal resources in at least two specific cases.

First, for coastal resources harmed by releases of hazardous materials (e.g., oil and chemicals) and second, for national marine sanctuary resources harmed by physical impacts (e.g., when a ship grounds on coral reefs in a marine sanctuary).

But What if Polluters Don’t Have to Pay for Everything?

It is possible, though extremely rare, that a polluter can be found not to be liable (e.g., the pollution was caused by an act of war) or the polluter can reach its limit of liability under the law.

So, does the money for cleanup and restoration then come from American taxpayers?

Nope. In these cases, the costs are then covered by the Oil Spill Liability Trust Fund. This fund accrues from taxes on most domestically produced and imported oil. The oil companies, often those responsible for spills, are paying into this fund.

When a spill occurs, those involved in the response, cleanup, and damage assessment can access these funds if the polluter is unknown, unwilling, unable, or not liable for paying the spill’s full costs. For response activities, the fund will cover costs associated with preventing (in the case of a grounded ship that hasn’t released oil yet), minimizing, mitigating, or cleaning up an oil spill.

For natural resource damage assessment, the fund will cover costs associated with assessing an area’s natural resource damages, restoring the natural resources, and compensating the public for the lost use of the affected resources.

Of course, polluters aren’t always eager to accept liability, and accurately assessing environmental damages can take time. In fact, it takes an average of four years to reach a settlement for these damages and then begin restoration after an oil spill. As a result, our job is not only to enforce pollution regulations but to ensure the right type and amount of restoration is achieved.

That means, once again, dollars from polluters are essentially paying for oil spills.

So, the Public Doesn’t Pay for Anything?

Well, okay. The same as with your local fire department, public tax dollars are spent developing a highly trained group of professional emergency response and restoration experts. The more prepared we are to respond when an oil spill happens, the sooner a community can recover, environmentally and economically, from these unfortunate events.

When we aren’t providing direct support to an oil spill (or other marine pollution event), NOAA’s Office of Response and Restoration is hard at work training ourselves (and others) and developing tools and best practices for emergency response and assessment of impacts to natural resources.

Better Safe (and Prepared) Than Sorry

Oil spills can happen at any time of day and any time of year (including holidays). We have to be ready at any time to bring our scientific understanding of how oil behaves in the environment, where it might go, what it might impact, what can be done to address it, and what restoration may be needed.

And we think being prepared before a spill happens is a worthy investment.

Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.

Leave a comment

In Wake of Japan’s 2011 Tsunami, Citizen Scientists Comb California Beaches Counting Debris

Man with clipboard and bag walking on beach.

A volunteer counts and collects the marine debris washed up at Drakes Beach in the Greater Farallones National Marine Sanctuary. (NOAA)

It all started more than five years ago on the other side of the Pacific Ocean. A devastating earthquake and tsunami rocked Japan in 2011, ultimately sweeping millions of tons of debris from the coastline into the ocean. But it wasn’t until June the following year, in 2012, that a 66-foot-long Japanese dock settled on the Oregon coast and reminded the world how the ocean connects us.

NOAA’s Kate Bimrose explained how this event and the resulting concern over other large or hazardous items of Japanese debris spurred the start of NOAA monitoring programs on beaches up and down the West Coast and Pacific islands. She coordinates the program that monitors marine debris in the Greater Farallones National Marine Sanctuary off the north-central California coast.

Thanks to funding from NOAA’s Marine Debris Program, the first surveys in this sanctuary near San Francisco took place in July 2012, a month after the Oregon dock made an appearance. No previous baseline data on debris existed for the shores along this California sanctuary. The only way anyone would know if Japan tsunami marine debris started arriving is by counting how much marine debris was already showing up there on a regular basis.

Training a Wave of Citizen Scientists

Graphic showing an example 100 meter stretch of beach with four 5 meter transects.

Following NOAA Marine Debris Program monitoring protocols, volunteers survey the same 100 meter (328 foot) stretch of beach each month, randomly choosing four sections to cover. Next, they record every piece of trash bigger than a bottle cap in those areas. (NOAA)

To find out how much trash and other manmade debris was washing up, Bimrose trained a small group of dedicated, volunteer “citizen scientists” to perform monthly surveys at four regular California beach sites. Three are located in Point Reyes National Seashore and one is in Año Nuevo State Park, but all are fed by the waters of the Greater Farallones National Marine Sanctuary.

Following NOAA Marine Debris Program monitoring protocols, once a month two volunteers head to the same 100 meter (328 foot) stretch of beach, using GPS coordinates to locate it. Next, they randomly pick four sections, each five meters (nearly 16.5 feet) long, to survey that day. This ensures they cover 20 percent of the area each time.

For those areas, the volunteers record every piece of trash they find that is at least the size of a bottle cap, or roughly an inch long. Having this size standard increases the reliability of the data being collected, providing a more accurate picture of what the ocean is bringing to each beach. NOAA is confident that volunteers are able to scan the sand and find the majority of items larger than an inch sitting on the surface of the beach.

Taking Things to the Next Level

Bottle with Asian characters on the cap.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. (NOAA)

All of the data volunteers gather—from number of items to types of material found—gets entered into a national online database, which will allow NOAA to determine trends in where, what, and how much marine debris is showing up. Leaving the items behind reveals how debris concentrates and persists on shorelines, information which is lost when debris is hauled off the beach.

While gathering this information is useful, Bimrose admitted to one sticking point for her: none of the debris is cleaned up from these four beach locations.

“We want to be able to remove the debris,” she said. “It’s painful for all my volunteers to be out there and record it and not remove it.” However, the good news is that a June 2015 expansion to this monitoring program has added two new beach locations to the rotation, and after volunteers record the debris there, they pack it out. In addition, Bimrose takes out larger groups of one-time volunteers to those locations and trains them on site, creating a broader educational reach for the program.

Bimrose hopes to recruit local school groups as well as businesses to volunteer. Before each survey at the new locations, she introduces the sanctuary and the monitoring program, while passing around mason jars filled with the trash collected at past surveys to give volunteers an idea of what to expect.

These new monitoring sites receive more recreational use than the previous ones, and at least for the one at Ocean Beach, a heavily used shoreline in the heart of San Francisco, that means finding a lot more consumer trash left on the beach.

From clothes and cigarette butts to food wrappers and even toilet paper, the surveys at Ocean Beach are markedly different from those surveys further north at Drakes Beach, the other new site. There, volunteers count and remove mostly small, hard fragments of plastic that appear worn down by sun and sea, indicating the majority of the debris there is brought to shore by the waves, not beachgoers.

Survey Says

Long blue piece of boat insulation sitting on a table.

A volunteer surveying a beach in the Greater Farallones National Marine Sanctuary found this piece of insulation from an elite sailboat that broke apart in San Francisco Bay in 2012. The debris took two months to travel to a shoreline 60 miles north. (NOAA)

After four years of monitoring and roughly 150 surveys, what have they found so far on the north-central California coast? More than 5,000 debris items recorded in all, which, as Bimrose said, is “a good amount but not too crazy.”

Expanding to six survey sites from four only increases what they can learn about debris patterns in this area. As more data roll in, NOAA will able to outline the regional scope of the problem and see patterns between seasons, years, categories, and locations of debris accumulation. One thing that is likely not to change, however, is that plastic debris dominates. It constitutes about 80 percent of the trash found at all sites.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. Through other partners associated with beach cleanups however, three pieces of Japan tsunami debris have been confirmed in California. The most recent was a large green pallet with Kanji lettering that landed on Mussel Beach just south of San Francisco. The discovery reinforces the importance of continuing to monitor debris along sanctuary beaches and shows us how items can persist in the ocean for years before sinking, breaking up, or landing on shore.

Another unusual example linking a piece of debris to the exact event that released it occurred in 2012. During a training run for the America’ Cup sailing race, an $8 million boat capsized and broke apart in San Francisco Bay on October 16, 2012. Two months later, one of Bimrose’s volunteers discovered a piece of insulation from that boat on a beach about 60 miles north.

Every month, Bimrose tags along with at least one pair of volunteers for their survey of one of the four “survey-only” beach sites. On one such occasion, one volunteer, an older gentleman, brought along his wife, who was puzzled by her husband’s constant chatter about “his” beach. According to Bimrose, a lot of the surveys could be considered rather clean or even monotonous. But even so, after a day walking and counting with him, the volunteer’s wife told her, “I totally get it, why he comes out here and rearranges his schedule to do this.”

Leave a comment

NOAA Is Supporting Oil Spill Response in Kentucky After Tugs Collide on Mississippi River

On the evening of September 2, 2015, two tug boats collided on the Mississippi River near Columbus, Kentucky, spilling slurry oil into the river.

Early reports, which later may be corrected, indicate an estimated 120,500 gallons of oil were released from a hole in the cargo tank of a barge being towed by the tug Dewey R during the collision. The spill and ensuing response closed the river between mile markers 938 and 922, south of Paducah, Kentucky, but the waterway was reopened to vessel traffic as of September 8.

At the request of the U.S. Coast Guard, NOAA’s Office of Response and Restoration is supporting the response and sending oil spill and data management experts to the scene of the spill. NOAA scientific support coordinators are providing a variety of information for the response, including river flow forecasts, chemistry of the spilled oil, a submerged oil assessment (because this heavier oil may sink), and other information to help determine where the spill will go and what can be done to protect our waterways and keep commerce moving.

The natural resource agencies also are beginning to assess potential impacts to natural resources, a first step to determining whether restoration is needed as a result of the spill.

Updates from NOAA about this oil spill may be available on IncidentNews.

What Is Slurry Oil?

Slurry oil is a residual oil resulting from the refining process and when spilled, most of it will sink or become suspended in the water column. A U.S. Coast Guard overflight the morning of September 3 revealed a floating sheen of oil four to five miles downstream of the discharge, which is not unexpected with this type of heavy oil.

Learn more about different types of oil and their behaviors when spilled and read about a 2005 slurry oil spill in the Gulf of Mexico.

How Is an Oil Spill in a River Different Than One in the Ocean?

From dams and density to muddy waters and vegetation, rivers offer a very different environment than the ocean during an oil spill.

Read more about the kinds of unique challenges we have to consider during an oil spill in a river.

More Information About Oil Spills

Find basic information related to oil spills, cleanup, impacts, and restoration, as well as NOAA’s role during and after oil spills.

Leave a comment

Podcast: What Was It Like Responding in the Aftermath of Hurricane Katrina?

On today’s episode of Diving Deeper, we remember one of the most devastating natural disasters to hit U.S. shores: Hurricane Katrina, which made landfall 10 years ago this week.

What was it like working in New Orleans and the surrounding area in the wake of such a storm?

In this podcast, we talk with Charlie Henry and Dave Wesley, two pollution responders from NOAA’s Office of Response and Restoration who were working in the area in the aftermath of not just one massive hurricane, but two, as Hurricane Rita swept across the Gulf Coast just a few short weeks later.

Hear about their experiences responding to these storms, find out which memories stand out the most for them, and reflect on the toll of working in a disaster zone:

Learn more about our work after Hurricanes Katrina and Rita, explore the progress made in the 10 years since, and see photos of the destruction these storms left across the heavily industrialized coast of the Gulf of Mexico.

Leave a comment

Surveying What Hurricane Katrina Swept out to Sea

This is a post by Nir Barnea of NOAA’s Marine Debris Program.

Sunken boat next to a house in Louisiana.

Hurricane Katrina’s storm surge, over 25 feet high in places, destroyed houses, boats, and infrastructure along the Gulf Coast, and when it receded, it washed out to sea massive amounts of what became marine debris. (U.S. Coast Guard)

Hurricane Katrina was a powerful storm, one which brings a variety of powerful images to people’s minds: The satellite image of the huge storm moving toward the Gulf Coast, the flooded neighborhoods of New Orleans, damaged boats strewn all over like discarded toys.

But for me, the image I remember most vividly is one of stairways leading to homes no longer there. Driving along Mississippi’s Route 90 from Biloxi to Pass Christian on a hot August day in 2006, I saw dozens of them. They were the only remnants left of the beautiful beachfront houses that once lined that road, an area devastated by Hurricane Katrina’s overwhelming storm surge.

Swept Away

The same massive storm surge that demolished these houses was the reason I was in the region a year after Hurricane Katrina struck the Gulf Coast. The storm surge, over 25 feet high in places, destroyed houses and infrastructure, and when it receded, it washed out to sea massive amounts of what became marine debris.

In the wake of Hurricane Katrina and less than a month later, Hurricane Rita, the marine debris in ports and navigation channels was cleared quickly. However, the remaining debris, outside of navigation channels and in fishing and boating areas, posed a safety hazard to people, damaged boats and fishing gear, and hampered recreation and commercial activities.

To help deal with this debris, Congress appropriated funding in 2006 and again in 2007 to NOAA’s Office of Coast Survey and Office of Response and Restoration to survey traditional fishing grounds, map items found, disseminate survey information to assist with removal, and inform the public.

The project took three years. During the first phase, areas off the coast of Alabama, Mississippi, and eastern Louisiana were surveyed with side scan sonar. The survey teams generated maps of suspected underwater debris items (called “targets”) and placed them on the Gulf of Mexico Marine Debris Project website. We also shared with the public the locations of debris items determined to be a danger to navigation.

In the second phase of the project, our survey covered nearshore areas along the central and western Louisiana coastline. In addition to side scan sonar, survey teams used multi-beam survey technology for major targets, which is a powerful tool that provided us with vivid images of the objects detected.

NOAA, Federal Emergency Management Agency (FEMA), U.S. Coast Guard, and the State of Louisiana collaborated closely to determine which targets were the result of Hurricanes Katrina or Rita and therefore eligible for removal. Many of the targets we detected were actually not the result of these two major storms.

Dealing with Disaster Debris

Overturned boat in water awaiting salvage with another boat salvaged in background.

To help deal with the debris not yet cleared after Hurricanes Katrina and Rita, Congress appropriated funding to NOAA to survey traditional fishing grounds, map items found, and share that information to assist with removal and public notification. (NOAA)

On September 2, 2009, the project partners met in Baton Rouge, Louisiana, for a workshop summarizing the project. Participants provided insights and suggestions for improving the process, which were later gathered into the workshop proceedings [PDF]. We learned many lessons from this project, which should be put to good use in the future.

One of the things I liked most about the project was its collaborative nature. Project partners included two NOAA offices and eight contractors, Coast Guard, FEMA, a host of state agencies from the three impacted states, NOAA Sea Grant, and of course, the general public in the Gulf of Mexico. This collaborative effort did not go unnoticed, and the project received the Gulf Guardian Award for Partnership.

Hurricane Katrina was the first severe marine debris event for the young NOAA Marine Debris Program, established in 2005. It was not the last.

Over the last 10 years, our program, along with other parts of NOAA, have dealt with marine debris from Hurricane Sandy, a tsunami in American Samoa, and most recently, the influx of debris from the Japan tsunami of 2011.

Sadly, this trend suggests more such events in the future. NOAA and other agencies have learned a lot over the past 10 years, and we are better prepared for the next disaster which might sweep debris out to sea or bring large amounts of it onto shore (what we call “severe marine debris events”). Learn more at and


Get every new post delivered to your Inbox.

Join 631 other followers