NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

1 Comment

Stepping on Board the Most Eerie, Neglected Ship I Had Ever Seen

This is a post by the Office of Response and Restoration’s LTJG Rachel Pryor, Northwest Regional Response Officer.

Before Friday, October 9, 2015, I had never set foot on an abandoned ship. Or for that matter, any other manmade structure so neglected that trees were growing out of it.

But on that day, I was invited to accompany three members of the U.S. Coast Guard here in Seattle, Washington, to investigate a tugboat which was reported to be abandoned and only four inches away from sinking. After a quick glance at the rusting, eerie hulk barely afloat in a ship canal, my bets were on it being abandoned too.

Once at the docks, we met pollution responders from the State of Washington and a local salvage company. After taking stock of the neglected vessel and its surrounding conditions, we boarded the vessel and began conducting an investigation. The Coast Guard inspected the engine room first, where they measured how much water currently was flooding the tug’s engine room. Then, they made note of any hazardous materials nested in cupboards and on shelves—large industrial batteries, paint cans, or lubricants—that would require special disposal.

My favorite part was rummaging through the galley, captain’s quarters, and the bridge. The living areas on board the vessel appeared ransacked. For starters, the helm had been removed and copper wires from the fire panel were missing.

However, we were looking for any information on the layout of the vessel in order to answer a number of questions. How many fuel tanks were on board and how large were they? Where were the ballast tanks? Who was the last owner or when was the last log entry in the book recording the engine’s oil changes?

Unfortunately, our search that day turned up empty, aside from a cluttered mess of clothes, a half-used bottle of aspirin, some books, and a pile of empty beer cans resembling bones in an open graveyard.

Our only clues leading to who owned this boat were a chalkboard message left to the owner by a shipmate and a left-behind DVD from the movie rental kiosk company Redbox. The movie was Couples Retreat, which was released in 2009, suggesting someone previously on board had a soft spot for romantic comedies and now owes Redbox a sizable bill for this dollar-per-day rental.

The last moorage payment the dock facility received for this boat was in 2008. Since then, the vessel has been slowly withering away and nature is creeping in. Trees and moss grow freely in cracks and crevices, eating away at the ship’s structure.

While the Coast Guard will pay for the salvage company to pump the water out of the engine room and fix the leak to keep the vessel from sinking, they do not have the funds or jurisdiction to get rid of the derelict tug. The problem of abandoned vessels is a recurring, expensive, and polluting one, which a NOAA colleague also learned firsthand:

“These neglected ships often pose significant threats to fish, wildlife, and nearby habitat, in addition to becoming eyesores and hazards to navigation. Derelict vessels are a challenge to deal with properly because of ownership accountability issues, potential chemical and oil contamination, and the high cost of salvage and disposal. Only limited funds are available to deal with these types of vessels before they start sinking.”

And, tied to a pier in Seattle, yet another decaying vessel will remain haunted by the remnants of those who abandoned it and will continue to haunt our waterways as well.

Editor’s note: Stay tuned for a special series in early November when we’ll be diving deeper into the issues of sunken, abandoned, and derelict vessels—covering everything from when they become maritime heritage sites to how we deal with those that turn into polluting eyesores.

Woman in hard hat next to a tree on a boat.

LTJG Rachel Pryor and a tree (right) growing on a derelict vessel.

NOAA Corps Officer LTJG Rachel Pryor has been with the Office of Response and Restoration’s Emergency Response Division as an Assistant Scientific Support Coordinator since the start of 2015. Her primary role is to support the West Coast Scientific Support Coordinators in responding to oil discharge and hazardous material spills.

Leave a comment

NOAA Involved After Barge Argo, the Lake Erie Shipwreck Lost in 1937, Resurfaces with Oily Leak in U.S. Waters

Divers exit small boats into the waters of Lake Erie.

Contractors conduct dive operations at the site of a sunken barge near the Kelley’s Island Shoal in Lake Erie, Oct. 21, 2015. The divers were trying to establish the identity of the barge and if it or any of its cargo poses an environmental threat. (U.S. Coast Guard)

The 1937 sinking of a small barge in Lake Erie went largely unnoticed at the time, but the ill-fated tank barge Argo is in the news now that the wreck’s exact location—along with a leak—has been discovered.

And it wasn’t in Canadian waters, as previously thought.

Ship Down, Pollution Rising

That piece of underwater detective work by the Cleveland Underwater Explorers, combined with historical research done as part of NOAA’s RULET program (Remediation of Underwater Legacy Environmental Threats) which in 2013 identified it as a potentially polluting shipwreck, have been key factors in the developing response to the Argo.

Recently found to be on the U.S. side of the border with Canada, the wreck has been traced to reports of pollution on Lake Erie in both nations, indicating that the Argo is leaking. At the time of the sinking, the barge was reportedly loaded with 4,762 barrels of crude oil and the chemical benzol. The U.S. Coast Guard, with support from NOAA’s Office of Response and Restoration and in collaboration with Canada, is ramping up pollution response efforts to address the leaking Great Lakes wreck.

While underwater response technologies do exist to address wrecks filled with oil, there are a lot of steps involved before a wreck can be safely remediated. Early efforts will focus on identifying whether the barge is leaking petroleum or benzol (or both) and determining whether the source of the leaks can be controlled immediately.

The Coast Guard is evaluating whether and how to safely remove the cargo from the sunken barge to reduce the likelihood of future pollution. NOAA is providing environmental and chemical data, weather forecasting, modeling of observed oil sheens back to the wreck, and other observations to support the response.

Linking Leaks to Potential Harm

Evaluating the magnitude of the leaks will alert us to any significant threats to people or to fish, birds, or other wildlife in the lake. NOAA and other organizations are analyzing samples of lake water and zebra mussels attached to the wreck to determine whether concentrations of hazardous chemicals are present or exceed levels of concern.

If it appears that the Argo has been leaking for some time or if the concentrations of detected pollutants are expected to be toxic to fish or wildlife, NOAA and other agencies would consider pursuing a natural resource damage assessment, with the goal of evaluating harm to public natural resources and determining whether and which restoration actions would compensate for injuries. As “natural resource trustee” agencies, NOAA, U.S. Fish and Wildlife Service, and the State of Ohio would perform these assessments over the next few months.

From Another Time

One of the compelling aspects of shipwrecks is the way they capture a moment in time. Looking back at the major events of that time, it is easy to see how a barge accident in the Great Lakes would barely garner a mention in the local papers. In 1937 Franklin Roosevelt had just been re-elected president, Adolf Hitler was chancellor of Germany, Benito Mussolini was prime minister of Italy, and Joseph Stalin was in power in the Soviet Union.

Even in the area of transportation, other momentous events dominated the news. The Golden Gate Bridge had just opened, the zeppelin Hindenburg was destroyed by fire while landing in New Jersey, and American aviation pioneer Amelia Earhart disappeared over the Pacific.

Yes, 1937 was a long time ago. It was well before the Oil Pollution Act of 1990 and other laws and regulations for the transport of oil and response to spills. When the Argo sank in a storm on October 20—79 years ago—the crew was safely rescued and the barge was left on the bottom, slowly sinking into the lake bed sediments.

The location wasn’t well known, even to maritime historians. We weren’t even sure if the wreck was in the U.S. or Canada, which shows how little is often known about the thousands of shipwrecks in North American waters—that is, until they start releasing their long-hidden cargo.

Stay tuned for a special series in early November when we’ll be diving deeper into the issues of sunken, abandoned, and derelict vessels—covering everything from when they become maritime heritage sites to how we deal with those that turn into polluting eyesores.

Leave a comment

Deepwater Horizon Oil Spill Tied to Further Impacts in Shallower Water Corals, New Study Reports

Sick sea fan with discolored branches and hydroids covering it.

After the Deepwater Horizon oil spill, researchers found significant injuries in at least four species of sea fans along the Gulf’s continental shelf. Damage primarily took the form of overgrowth by hydroids (fuzzy marine invertebrates characteristic of unhealthy corals) and broken or bare branches of coral. (Credit: Ian MacDonald/Florida State University)

In the months and years after the 2010 Deepwater Horizon oil spill, damage and poor health were found in a swath of deep-sea coral reefs and related marine life at the bottom of the Gulf of Mexico.

Within roughly 16 miles of the leaking wellhead, researchers discovered sickened and damaged deep-sea corals, often coated in a clumpy brown material containing petroleum, and the sediments showed evidence of out-of-balance communities of tiny invertebrates inhabiting the seafloor sediments, whose diversity took a nose dive after the spill.

Now, a study published in October 2015 in the journal Coral Reefs reveals that this footprint of damage also extends to coral communities in shallower Gulf waters, up to 67 miles from the wellhead. In this latest study, researchers from NOAA, Florida State University, and JHT Inc. used video and images from remotely operated vehicles (ROV) to compare the health of corals on hard-bottom reefs in the “mesophotic zone” before and after the oil spill.

The mesophotic zone of the ocean receives low levels of light but supports abundant fish, corals, and sponges. The reefs in this study are important sources of habitat, food, and shelter for various marine life. These vibrant reefs also support recreational and commercial fishing for species such as snapper and grouper. Located in a region called the “Pinnacle Trend,” they are at the edge of the continental shelf off Louisiana, Mississippi, and Alabama, roughly 200-300 feet below the surface.

Previous oil spill studies focused on deep-sea coral communities 4,000 feet under the ocean, located near the leaking wellhead. While the Pinnacle Trend reefs are shallower and more remote, they were below the surface oil slick that persisted for several weeks.

What Lies Beneath

Three of the largest reefs at Pinnacle Trend—bearing the colorful names Alabama Alps Reef, Roughtongue Reef, and Yellowtail Reef—were located beneath the surface slick of Deepwater Horizon oil for three to five weeks in the summer of 2010. Located between 35 and 67 miles from the leaking well, corals on the reefs were likely to have been exposed to oil and dispersant that sank from the surface down toward the seafloor. These reefs were measured against two other reef sites more than 120 miles beyond the leaking well and below the Deepwater Horizon oil slick less than three days.

Graphic showing a profile of the Gulf of Mexico's seafloor habitats from shore out to the leaking wellhead.

A profile of the Gulf of Mexico seafloor habitats extending from the shore to depths around the Macondo wellhead. The mesophotic coral reefs in this study were located at the edge of the continental shelf. (NOAA/Kate Sweeney)

Because researchers had access to ROV footage of these coral reefs dating back as far as 1989, they could directly measure what level of injury could be considered “normal” for each reef. After all, this area of the Gulf is known to be susceptible to impacts from fishing methods that contact the sea bottom. Researchers suspect that fishing was the cause of injuries observed at the two sites far from the spill because lines were wrapped around many of the coral colonies.

Not a (Sea) Fan of Damaged Corals

The three reefs closer to the wellhead had less evidence of fishing but showed major declines in health after the oil spill in 2010. More than half of the coral colonies at these sites showed signs of damage by 2011, compared with less than 10% before the spill. In comparison, the sites further from the wellhead had no significant change before and after the Deepwater Horizon oil spill.

In addition, injured corals the scientists noted in 2011 continued to deteriorate in the years that followed, “suggesting recovery of injured corals is unlikely,” said lead author Dr. Peter Etnoyer of NOAA. Healthy corals noted after the incident in 2011 remained healthy through the end of the study in 2014, suggesting the injured corals would have been healthy but for the spill.

The researchers in this most recent study noted significant injuries among at least four species of large gorgonian octocorals (sea fans) in the three impacted reefs. Injuries took the form of overgrowth by hydroids (fuzzy marine invertebrates characteristic of unhealthy corals) and broken or bare branches of coral. To a lesser extent, corals also appeared severely discolored, with eroded polyps, had lost limbs, or toppled over entirely.

An earlier study of these mesophotic reefs by some of the same scientists in the journal Deep Sea Research detected low levels of a petroleum compound known as polycyclic aromatic hydrocarbons (PAHs) in coral tissues and nearby seafloor sediments. The levels were low compared to sites near the wellhead, but at this point, no one yet has established what constitutes a toxic level of these compounds to marine life in mesophotic coral communities.

“The corals of the Pinnacle Trend require decades to reach maturity,” said Florida State University scientist Ian MacDonald, who also contributed to the study. “Recovery will require years and it may not be immediately apparent whether the injured colonies are being replaced with new settlements. Our task is to study the process—to learn as much as we can and to ensure that nothing impedes this vital natural process.”

“The results presented here may vastly underestimate the extent of impacts to mesophotic reefs in the northern Gulf of Mexico,”  the researchers commented, since the reefs in this study represent less than 3 percent of the mesophotic reef habitat that was known to occur beneath the oil slick. “The reefs have some prospects for recovery since many healthy colonies remain,” said Etnoyer. NOAA and its partners on this study recommend efforts to protect and restore the Pinnacles Trend reefs in order to conserve the corals and fish along this part of the ocean floor.

Leave a comment

Visualizing How Ocean Currents Help Create the Garbage Patches

Plastic water bottle floating in the ocean.

The “garbage patches” are not giant, floating islands of trash, but rather, ocean gathering places for what are mainly tiny bits of plastic dispersed throughout the water column, with some larger items as well. (NOAA)

The data whizzes at NASA recently decided to turn their attention from the sky to the ocean as they attempted to model how ocean currents help drive the formation of the “garbage patches.” From NASA:

“We start with data from floating, scientific buoys that NOAA has been distributing in the oceans for the last 35 years represented here as white dots … If we let all of the buoys go at the same time, we can observe buoy migration patterns … The buoys migrate to 5 known gyres also called ocean garbage patches.

We can also see this in a computational model of ocean currents called ECCO-2. We release particles evenly around the world and let the modeled currents carry the particles. The particles from the model also migrate to the garbage patches.”

Check out their data visualization here:

As you might gather from the visualization, the gyres, where “garbage patches” are located, represent massive, dynamic areas of the ocean that are constantly moving and changing—and as a result, are also bringing trash and other marine debris with them. Rather than giant, floating islands of trash that you can see from satellites (you can’t), “garbage patches” are ocean gathering places for what are mainly tiny bits of plastic dispersed throughout the water column.

Still fuzzy on what the garbage patches are and are not? Check out this video from the NOAA Marine Debris Program:

And tune in to this National Ocean Service podcast to learn what we know and don’t know about the garbage patches and what we can do about this ocean-sized problem:

You can also read about our own efforts to model where marine debris travels across the ocean.

Leave a comment

What Happens When Oil Spills Meet Massive Islands of Seaweed?

Floating bits of brown seaweed at ocean surface

Floating rafts of sargassum, a large brown seaweed, can stretch for miles across the ocean. (Credit: Sean Nash/Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic license)

The young loggerhead sea turtle, its ridged shell only a few inches across, is perched calmly among the floating islands of large brown seaweed, known as sargassum. Casually, it nibbles on the leaf-like blades of the seaweed, startling a nearby crab. Open ocean stretches for miles around these large free-floating seaweed mats where myriad creatures make their home.

Suddenly, a shadow passes overhead. A hungry seabird?

Taking no chances, the small sea turtle dips beneath the ocean surface. It dives through the yellow-brown sargassum with its tangle of branches and bladders filled with air, keeping everything afloat.

Home Sweet Sargassum

This little turtle isn’t alone in seeking safety and food in these buoyant mazes of seaweed. Perhaps nowhere is this more obvious than a dynamic stretch of the Atlantic Ocean off the East Coast of North America named for this seaweed: the Sargasso Sea. Sargassum is also an important part of the Gulf of Mexico, which contains the second most productive sargassum ecosystem in the world.

Some shrimp, crabs, and fish are specially suited to life in sargassum. Certain species of eel, fish, and shark spawn there. Each year, humpback whales, tuna, and seabirds migrate across these fruitful waters, taking advantage of the gathering of life that occurs where ocean currents converge.

Cutaway graphic of ocean with healthy sargassum seaweed habitat supporting marine life.

Illustration of sargassum and associated marine life, including fish, sea turtles, birds, and marine mammals. Sargassum is a brown algae that forms a unique and highly productive floating ecosystem on the surface of the open ocean. (NOAA) Click to enlarge.

The Wide and Oily Sargasso Sea

However, an abundance of marine life isn’t the only other thing that can accumulate with these large patches of sargassum. Spilled oil, carried by currents, can also end up swirling among the seaweed.

If an oil spill made its way somewhere like the Sargasso Sea, a young sea turtle would encounter a much different scene. As the ocean currents brought the spill into contact with sargassum, oil would coat those same snarled branches and bladders of the seaweed. The turtles and other marine life living within and near the oiled sargassum would come into contact with the oil too, as they dove, swam, and rested among the floating mats.

That oil can be inhaled as vapors, be swallowed or consumed with food, and foul feathers, skin, scales, shell, and fur, which in turn smothers, suffocates, or strips the animal of its ability to stay insulated. The effects can be toxic and deadly.

Cutaway graphic of ocean with potential impacts of oil on sargassum seaweed habitat and marine life.

Illustration of the potential impacts of an oil spill on sargassum and associated marine life in the water column. (NOAA) Click to enlarge.

While sea turtles, for example, as cold-blooded reptiles, may enjoy the relatively warmer waters of sargassum islands, a hot sun beating down on an oiled ocean surface can raise water temperatures to extreme levels. What starts as soothing can soon become stressful.

Depending on how much oil arrived, the sargassum would grow less, or not at all, or even die. These floating seaweed oases begin shrinking. Where will young sea turtles take cover as they cross the unforgiving open ocean?

As life in the sargassum starts to perish, it may drop to the ocean bottom, potentially bringing oil and the toxic effects with it. Microbes in the water may munch on the oil and decompose the dead marine life, but this can lead to ocean oxygen dropping to critical levels and causing further harm in the area.

From Pollution to Protection

Young sea turtles swims through floating seaweed mats.

The floating habitat that sargassum creates provides food, refuge, and breeding grounds for an array of marine species, including sea turtles. (NOAA)

NOAA and the U.S. Fish and Wildlife Service have designated sargassum as a critical habitat for threatened loggerhead sea turtles.

Sargassum has also been designated as Essential Fish Habitat by Gulf of Mexico Fishery Management Council and National Marine Fisheries Service since it also provides nursery habitat for many important fishery species (e.g., dolphinfish, triggerfishes, tripletail, billfishes, tunas, and amberjacks) and for ecologically important forage fish species (e.g., butterfishes and flyingfishes).

Sargassum and its inhabitants are particularly vulnerable to threats such as oil spills and marine debris due to the fact that ocean currents naturally tend to concentrate all of these things together in the same places. In turn, this concentrating effect can lead to marine life being exposed to oil and other pollutants for more extended periods of time and perhaps greater impacts.

However, protecting sargassum habitat isn’t impossible and it isn’t out of reach for most people. Some of the same things you might do to lower your impact on the planet—using less plastic, reducing your demand for oil, properly disposing of trash, discussing these issues with elected officials—can lead to fewer oil spills and less trash turning these magnificent islands of sargassum into floating islands of pollution.

And maybe protect a baby sea turtle or two along the way.

Leave a comment

How Do Oil Spills Get Cleaned up on Shore?

Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag on a beach.

Cleaning up oil from shorelines is a messy job. Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag as they clean up along a beach near Refugio State Beach, California, May 21, 2015. Cleanup teams used shovels and their hands to gather affected soil and ocean debris along oil impacted beaches north of Santa Barbara. (U.S. Coast Guard)

We often say that no two oil spills are alike, but one thing spills have in common is that cleaning oil off of shorelines is a messy business.

If a ship sinks or an oil pipeline ruptures, the primary goals of spill responders are to contain the oil source to stop any (more) oil from leaking and to prevent already spilled oil from spreading. However, weather conditions and ocean currents may overwhelm containment booms and other offshore oil spill response strategies. That means escaping oil may reach shorelines both near to and far from the initial oil spill location.

But when oil stains shorelines, what methods and equipment do responders use to remove it? And how is that different from cleaning up oil out at sea?

Here at NOAA, we have a library full of spill response manuals, technical reports, scientific journal articles, job aids, case histories, and guidance documents describing the methods used to clean up shorelines. And after every major oil spill there are advances in shoreline cleanup methods and equipment.

Here we present some commonly used shoreline cleanup options. Keep in mind that all response options, including what responders call “natural recovery” (letting oil break down naturally in the environment), have potential trade-offs. This means we have to take into consideration the impact of the cleanup methods themselves as we assess the overall environmental impacts of any action.

There are, of course, nuances in cleanup strategies at every oil spill that reflect the specific oil type, local environmental conditions, shoreline habitats, shore access, and a host of safety and logistical considerations. These variables will influence the particular cleanup strategy responders use at any one spill.

And at most oil spills, a combination of cleanup methods will be used (but not necessarily in the order shown here). Let’s take a look at each of these methods.

Responding to oil spills on shore: This graphic shows an overview of people using eight methods for cleaning up oil from shorelines. 1. Shoreling flushing/washing: Water hoses can rinse oil from the shoreline into water, where it can be more easily collected. 2. Booms: Long, floating, interconnected barriers are used to minimize the spread of spilled oil. 3. Vacuums: Industrial-sized vacuum trucks can suction oil from the shoreline or on the water surface. 4. Sorbents: Specialized absorbent materials act like a sponge to pick up oil but not water. 5. Shoreline cleaners and biodegradation agents: Chemical cleaners that act like saops may be used to remove oil, but require special permission. Nutrients may be added to help microbes break down oil. 6. Burning. Also referred to as

Responding to oil spills on shore: This is an overview of the various methods for cleaning up oil from shorelines, from flushing and vacuums to sorbents and heavy machinery. (NOAA)

1) Shoreline Flushing: This method uses water to remove or refloat stranded oil, which allows it to be more easily recovered as a slick on the water. One of the lessons learned from the 1989 Exxon Valdez oil spill was to be very careful about water pressure and temperature to avoid causing more harm to the shoreline.

2) Booms: These long, floating barriers are used to keep spilled oil off the beach, or to collect it after being flushed from the beach into the immediate waters.

3) Vacuums: Large industrial vacuums can suction oil off the beach or shoreline vegetation.

4) Sorbents: These specialized materials, which can take forms such as square pads or long booms, are engineered to absorb oil but not water.

5) Shoreline cleaners and bioremediation agents: There are a variety of chemical cleaners for oiled shorelines that usually require special approval for their use. Surface washing agents [PDF] are used to soften and lift oil off of surfaces or structures that have been oiled, such as beach rocks, docks, and riprap. Bioremediation agents, on the other hand, often take the form of fertilizers that help speed up natural microbial degradation processes. However, conventional cleanup methods (e.g., booms and sorbents) typically are used first to their fullest extent to remove the worst oiling, while these alternative measures usually play a secondary role (if any).

6) Burning: Responders sometimes will perform controlled burns, also referred to as “in situ burning,” of freshly spilled oil floating on the water’s surface or on marsh vegetation.

7) Manual recovery: This method involves using good old buckets, shovels, rakes, and other hand tools to remove oil from shorelines. It is very labor-intensive but is often a primary tool for a response when access for larger equipment is impractical, such as on remote beaches or those without road access.

8) Mechanical removal: When access is possible and won’t cause too much damage to the shoreline, responders may bring in heavy machinery, such as back hoes or front-end loaders, to scoop up and haul away oiled materials in bulk.

Two bobcat digging machines scoop oil from a beach.

Heavy machinery was brought in to remove oil from a beach in Puerto Rico in 2007. (NOAA)

Leave a comment

NOAA, Deepwater Horizon Trustees announce draft restoration plans for Gulf of Mexico following 2010 disaster

Bulldozers doing construction in a Gulf of Mexico marsh.

These efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident. (NOAA)

NOAA and the other Deepwater Horizon Natural Resource Trustees today released 15-year comprehensive, integrated environmental ecosystem restoration plans for the Gulf of Mexico in response to the April 20, 2010 Deepwater Horizon oil rig explosion and spill.

Implementing the plan will cost up to $8.8 billion. The explosion killed 11 rig workers and the subsequent spill lasted 87 days and impacted both human and natural resources across the Gulf.

The Draft Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement allocates Natural Resource Damage Assessment  monies that are part of a comprehensive settlement agreement in principle  among BP, the U.S. Department of Justice on behalf of federal agencies, and the five affected Gulf States announced on July 2, 2015. The Department of Justice lodged today in U.S. District Court a consent decree as part of the more than $20 billion dollar settlement.

In the draft plan, the Trustees provide documentation detailing impacts from the Deepwater Horizon oil spill to:

  • wildlife, including fish, oysters, plankton, birds, sea turtles, and marine mammals across the Gulf
  • habitat, including marshes, beaches, floating seaweed habitats, water column, submerged aquatic vegetation, and ocean-bottom habitats
  • recreational activities including boating, fishing, and going to the beach

The Trustees determined that “overall, the ecological scope of impacts from the Deepwater Horizon spill was unprecedented, with injuries affecting a wide array of linked resources across the northern Gulf ecosystem.” As a result of the wide scope of impacts identified, the Trustees “have determined that the best method for addressing the injuries is a comprehensive, integrated, ecosystem restoration plan.”

Both the consent decree and the draft plan are available for 60 days of public comment. The Trustees will address public comment in adopting a final plan. For the consent decree, once public comment is taken into account the court will be asked to make it final.

Public comments on the draft plan will be accepted at eight public meetings to be held between October 19 and November 18 in each of the impacted states and in Washington, DC. Comments will also be accepted online and by mail sent to: U.S. Fish and Wildlife Service, P.O. Box 49567, Atlanta, GA 30345. The public comment period will end on December 4, 2015.

The Trustees are proposing to accept this settlement, which includes, among other components, an amount to address natural resource damages of $8.1 billion for restoration and up to $700 million for addressing unknown impacts or for adaptive management. These amounts include the $1 billion in early restoration funds which BP has already committed.

“NOAA scientists were on the scene from day one as the Deepwater spill and its impacts unfolded. NOAA and the Trustees have gathered thousands of samples and conducted millions of analyses to understand the impacts of this spill,” said Kathryn D. Sullivan, Ph.D., undersecretary of commerce for oceans and atmosphere and NOAA administrator. “The scientific assessment concluded that there was grave injury to a wide range of natural resources and loss of the benefits they provide. Restoring the environment and compensating for the lost use of those resources is best achieved by a broad-based ecosystem approach to restore this vitally important part of our nation’s environmental, cultural and economic heritage.”

People in boat and in marsh assessing oiling impacts.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals. (NOAA)

NOAA led the development of the 1,400 page draft damage assessment and restoration plan, with accompanying environmental impact statement, in coordination with all of the natural resource Trustees. The draft plan is designed to provide a programmatic analysis of the type and magnitude of the natural resources injuries that have been identified through a Natural Resource Damage Assessment conducted as required by the Oil Pollution Act of 1990 and a programmatic restoration plan to address those injuries. Alternative approaches to restoration are evaluated in the plan under the Oil Pollution Act and the National Environmental Policy Act.

Specific projects are not identified in this plan, but will be proposed in future project-specific restoration proposals. The Trustees will ensure that the public is involved in their development through public notice of proposed restoration plans, opportunities for public meetings, and consideration of all comments received.

The draft plan has an array of restoration types that address a broad range of impacts at both regional and local scales. It allocates funds to meet five restoration goals, and 13 restoration types designed to meet these goals.

The five overarching goals of the proposed plan are to:

  • restore and conserve habitat
  • restore water quality
  • replenish and protect living coastal and marine resources
  • provide and enhance human use recreational activities
  • provide for long term monitoring, adaptive management, and administrative oversight of restoration efforts.

The 13 proposed restoration activities are:

  1. Restoration of wetlands, coastal, and nearshore habitats
  2. Habitat projects on federally managed lands
  3. Nutrient reduction
  4. Water quality
  5. Fish and water column invertebrates
  6. Sturgeon
  7. Submerged aquatic vegetation
  8. Oysters
  9. Sea turtles
  10. Marine mammals
  11. Birds
  12. Low-light and deep seafloor communities
  13. Provide and enhance recreational opportunities

Together, these efforts will restore wildlife and habitat in the Gulf by addressing the ecosystem injuries that resulted from the Deepwater Horizon incident.

Once the plan is finally approved and the settlement is finalized, NOAA will continue to work with all of the Trustees to plan, approve, and implement restoration projects. NOAA will bring scientific  expertise and focus on addressing remedies for living marine resources — including fish, sturgeon, marine mammals, and sea turtles — as well as coastal habitats and water quality. NOAA scientists developed numerous scientific papers for the NRDA case including documentation of impacts to bottlenose dolphins, pelagic fish, sea turtles, benthic habitat and deep water corals.

The Deepwater Horizon Oil Spill Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement is available for public review and comment through December 4. It is posted at and will be available at public repositories throughout the Gulf and at the meetings listed at


Get every new post delivered to your Inbox.

Join 631 other followers