NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Polar Bears and Response Drills in Alaska

Two boats in fog with man on beach. Image: NOAA.

NOAA scientists scout for polar bears prior to disembarking for fieldwork at Beaufort Sea, Alaska. Image credit: NOAA.

How do you handle a polar bear covered in oil?  That was just one aspect of the annual Mutual Aid Deployment exercise last month on Alaska’s North Slope oil field.

Staff members from our Emergency Response Division and the Assessment and Restoration Division as well as other NOAA offices participated in the three-day exercise. Each year government agencies, oil companies, and oil spill removal organizations in the region work together to respond to a simulated oil spill in Alaska.

The scenario for this year’s drill was the simulation of an oil pipeline leak in the Beaufort Sea and the rescue of an oiled polar bear. In the exercise, the pipeline that was leaking belonged to Hilcorp, Alaska LLC. It was the first year the oil company hosted the event.

In addition to our office, participants included:

The exercise included field equipment deployment, an Incident Command Center, and remote operations in Anchorage.

Emergency Response Division staff participated in the Incident Management Team at the command center established at Hilcorp’s Endicott Facility on the Beaufort Sea north of Prudhoe Bay.

Staff from the Assessment and Restoration Division led the Natural Resource Damage Assessment component of the drill, that included a tabletop exercise with representatives from the state and federal agencies, and staff from Hilcorp. One Damage Assessment liaison was at the Endicott facility and the rest of the team participated remotely from Anchorage. The drill provided an opportunity to practice how a natural resource damage assessment would work with response early in a spill situation.

NOAA provides scientific support to the Coast Guard during oil and chemical spills, and the tools we’ve developed are an extension of that support. During the exercise, our GNOME trajectory-forecasting tool kept participants updated on where the spilled oil could go.

Arctic ERMA, our online Environmental Response Management Application, was continuously being updated with information on where the oil was as well as the location all the responders and their equipment. Environmental Sensitivity Index maps, which identify vulnerable wildlife and habitat potentially at risk from the spill, were displayed in ERMA.

Arctic ERMA display from response drill. Image: NOAA.

Information visualized on Arctic ERMA during the Mutual Aid Deployment exercise on Alaska’s North Slope oil field. Image credit: NOAA.

So how do you handle an oiled polar bear?

Very carefully and with a close eye on a timer.

Part of the drill was to see if an oil-injured polar bear could be tranquilized, pulled from the water, cleaned and caged before waking up.

Standing in for a real polar bear was an industrial-sized drum, filled with sand, covered with white cloth, and sporting a molded-foam head. The idea was to put the bear in the ocean and have emergency responders rescue the bear.

The rescue went well although some miscommunication early in the day added an unexpected element of realism—the team setting the fake bear in the lagoon did not anchor it, and due to heavy seas and winds on drill day, the bear drifted out into open water. However, the polar bear response team performed expertly and the fake bear was successfully located and rescued within the time allotted.

Fake polar bear on beach near dock. Image: NOAA.

The fake polar bear used for the Mutual Aid Deployment exercise on Alaska’s North Slope oil field. Image credit: NOAA.

You can read more about other simulated oil (and oranges and rubber ducks) spills in these articles:

 

Zachary Winters-Staszak, Catherine Berg, and Sarah Allan of the Office of Response and Restoration contributed to this article.

 


Leave a comment

Oils Spills and Animal Rescue in Alaska and Beyond

This week, NOAA’s Office of Response and Restoration is looking at the impacts of pollutants on wildlife and endangered species. We’ll explore tools we’ve developed to map sensitive species and habitats, how marine debris endangers marine life, how restoring toxic waste sites improves the health of wildlife, and the creation of a mobile wildlife hospital.

 

Harbor seal. Image ASLC.

This harbor seal was discovered hurt and alone on a beach South Naknek, Alaska. She was admitted to Alaska SeaLife Center’s Wildlife Response Program and after gaining her health, was release back into the wild. You can read more of her story here. All activities involving animals are authorized under ASLC’s NOAA Stranding Agreement. Image credit: Alaska SeaLife Center.

By Carrie Goertz, Alaska SeaLife Center

I love working with animals but being a bit of an organizational geek, I also enjoy the logistical side of preparation. The right tool for the job, a place for everything, and everything in its place gives me great satisfaction.

Here in Seward, Alaska, we have built a well-equipped facility with depth in space, resources, and personnel. But chances are oil spills will occur somewhere other than our home base. We have partnered with oil spill response organizations to provide support in other key areas with a large industrial and civic presence. These and other fixed facilities have the advantage of being close to population centers, providing shelter, and meeting the needs of stranded animals and our staff.

However, Alaska is a bit on the large side and has thousands of miles of remote coastlines dotted with small communities. As trans-Arctic shipping increases, so does the risk of accidents potentially affecting these shores, and we cannot count on spills happening where our equipment is conveniently available. In fact, we need to be prepared to be completely self-sufficient and independent of even the smallest communities so as not to over-tax their resources with our activities.

So how do we take our rehab center on the road? Or rather, how do we take it down the beach, since most of Alaska’s shore is not accessible by road? We need a deployable set of equipment to treat impacted animals that will also meet the needs of the staff required to care for them.

Something like a MASH unit, a mobile army surgical hospital, or perhaps a ‘Mobile Animal Stranding Hospital!’ The team at Alaska Sea Life Center had already come up with an easily shipped seal pool and a list of equipment needed to support the oiled, stranded animals at fixed facilities as part of our partnerships with oil spill response organizations.

Now we needed to focus on those additional items needed if we were required to provide our own electricity, water, shelter, and staff needs, all of which needed to be compact and deployable.

Ultimately, we settled on a tiny-house-meets-Transformers approach in which we fill specially designed shipping container units with the necessary supplies and equipment, ready to be deployed where needed. Once on site, they transform into a veterinary clinic, food storage and kitchen, animal housing—including a pool, totes, crates, and dry area—and staff area.

Drawing of a mobile vet clinic. Image: Alaska SeaLife Center.

Tiny-house-meets-Transformers in the Alaska SeaLife Center’s design for a mobile animal hospital. Each unit is filled with the necessary supplies and equipment to help wildlife, ready to be deployed where needed. Image credit: Alaska SeaLife Center.

But how will we staff our responses? Initially, we plan to draw from our own staff, as many are both Hazardous Waste Operations and Emergency Response certified and experienced with caring for marine mammals and are based right here in Alaska. We have also partnered with the Association of Zoos and Aquariums to train additional personnel experienced with the unique challenges of caring for marine mammals. Their home institutions have agreed to allow trained staff to deploy in support of events, but their staff are also trained to assist with events in their local area.

In combination, these efforts keep us ready, keep Alaska ready, and keep zoos and aquaria across the country ready.

To read more about the Association of Zoos and Aquariums program to train members for wildlife spill response:

Zoos and Aquariums Training for Oil Spill Emergency Response

Read more stories in our series on the effects of pollutants on wildlife:

 

Carrie Goertz is the staff veterinarian at the Alaska SeaLife Center overseeing the program of veterinary care for collection, research, and stranded animals. Special interests include helping the center and other zoological facilities being prepared to respond to disasters as well as how information about animals in zoological facilities and free ranging wildlife can help provide the best care for both groups.

Opened in 1998, the Alaska SeaLife Center is a private, non-profit research institution and public aquarium. ASLC generates and shares scientific knowledge to promote understanding and stewardship of Alaska’s marine ecosystems, and is an accredited member of the Association of Zoos and Aquariums. To learn more, visit www.alaskasealife.org.

 


Leave a comment

Chinese Delegation Visits NOAA Office of Response and Restoration

People standing together with lake in background. Image credit: NOAA.

The Office of Response and Restoration hosted a delegate from China’s National Marine Hazard Mitigation Service in Seattle. From L: Yufei Lin, Jun Tan, Yijun Zhang, NOAA staff John Tarpley, Scott Lundgren, Glen Watabayshi, and Aijun Zhang. Image credit: NOAA

As part of our ongoing commitment to share our expertise in spill response with other nations, the Emergency Response Division recently hosted a delegation from China’s National Marine Hazard Mitigation Service.

The Chinese agency requested the meeting to learn about our strategies and tools for responding to environmental hazards and to exchange information about China’s marine emergency response programs.

The goal of the two-day meeting in Seattle was to learn about each other’s emergency response programs and to discuss the possibilities of collaborate in the future, according to Glen Watabayshi, chief of the Emergency Response Division’s Technical and Scientific Services Branch.

During the meeting, Watabayshi presented our oil spill response and planning tools including the GNOME modeling software and TAP trajectory planning software. Jill Petersen explained Environmental Sensitivity Index mapping and methodology. Mark Miller presented the CAMEO software suite and CAFE tool. Other emergency division staff participants included Scott Lundgren, Mark Dix, John Tarpley, Kristen Faiferlick, and Brianne Connolly.

The visiting contingent included executive director Yijun Zhang, senior research scientist Yufei Lin and senior research scientist Jun Tan.

“We spent a valuable two days with the staff from China’s National Marine Hazard Mitigation Service,” said Scott Lundgren, chief of the Emergency Response Division. “Staying in touch with other national counterparts on how they conduct and advance response and restoration is valuable. As large spills have declined in frequency with a strong prevention focus in oil production and transportation, it is even more important to stay current with practices and advances around the world.”

The Assessment and Restoration Division also participated in the meeting with Mary Baker presenting information on our environmental damage assessment techniques and tools and Ben Shorr explaining our online response management mapping tool, ERMA®. Jason Lehto from NOAA’s Restoration Center also presented. In addition, Aijun Zhang from NOAA’s Center for Operational Oceanographic Products and Services attended the meeting to help facilitate and act as an interpreter.

 

Glen Watabayshi, chief of the Emergency Response Division’s Technical and Scientific Services Branch, contributed to this article.


Leave a comment

Science of Oil Spills Training: Apply for Fall 2017

Two people closely examining rocks and seaweed on a shoreline. Image credit: NOAA.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a local beach to apply newly learned skills. Image credit: NOAA

We are now accepting applications for our next Science of Oil Spills class. The class will run the week of Nov. 13 in Anchorage, Alaska.

The Office of Response and Restoration is a leader in providing scientific support to the U.S. Coast Guard in spill response and in training emergency responders.

Our Emergency Response Division created the Science of Oil Spills class –called SOS– for the new and mid-level spill responder to educate them on the fundamentals of spill response. We offer several classes a year and train about 160 students annually.

Science of Oil Spills class topics include:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

Throughout the training, an overarching theme will be answering the five key questions that help guide spill response:

  • What was spilled?
  • Where could it go?
  • What will it affect?
  • What harm could it cause?
  • What can be done to help?

To reinforce the classroom lectures and exercise, the students will also participate in field activities.

We will accept applications for the Anchorage class until Friday, Sept. 8. Applicants will be notified of their acceptance status by Friday, Sept. 29, via email.

To view the topics for the next class, download a sample agenda [PDF, 170 KB]. Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Safe Boating and Prevention of Small Oil Spills

Marina with recreational boats. Image credit: NOAA.

Recreational boaters and other small vessel operators can help protect marine life with a few simple precautions aimed at preventing oil from getting into the water. Image credit: NOAA

What does wearing a life jacket have in common with preventing oil spills? Wearing life jackets can save people’s lives; preventing small oil spills helps protect marine life.

National Safe Boating Week is May 22-26. As part of the campaign launch, the National Safe Boating Council, in partnership with the U.S. Coast Guard, is encouraging people to wear life jackets to work on May 19. The Coast Guard estimates that over 80 percent of the lives lost to drowning could have been preventing by wearing life jackets.

In addition to protecting themselves and their passengers, recreational boaters and other small vessel operators can help protect marine life with a few simple precautions aimed at preventing oil from getting into the water.

Though each one is small in volume, oil spills from small vessels add up. In Washington State, when you multiply this volume by the thousands of fishing and recreational boats on the water, they make up the largest source of oil pollution in Puget Sound, according to Washington Sea Grant.

“Small oils spills, whether a cup, a gallon or just a few drops, add up to a huge water quality problem; it is death by a thousand tiny cuts. Over time, it all adds up,” said Aaron Barnett, boating specialist at Washington Sea Grant.

Small Spills Prevention Checklist

It’s not difficult to prevent small-vessel oil spills, Washington Sea Grant has put together a checklist for simple maintenance and fueling tips.

Vessel maintenance

  • Tighten bolts on your engine to prevent oil leaks. Bolts can shake loose with engine use.
  • Replace cracked or worn hydraulic lines and fittings before they fail. Lines can wear out from sun and heat exposure or abrasion.
  • Outfit your engine with an oil tray or drip pan. You don’t need anything fancy or expensive; a cookie sheet or paint tray will do the trick.
  • Create your own bilge sock out of oil absorbent pads to prevent oily water discharge. Here’s a helpful how-to guide from Coast Guard Auxiliary Instructor Mike Brough.

At the pump

  • Avoid overflows while refueling by knowing the capacity of your tank and leaving some room for fuel expansion.
  • Shut off your bilge pump while refueling – don’t forget to turn it back on when done.
  • Use an absorbent pad or a fuel collar to catch drips. Always keep a stash handy.

Even following these tips, accidents can still happen. When they do it’s important that boaters manage them effectively. Spills should immediately be contained and cleaned up with absorbent pads or boomed to prevent their spread. Notify the Coast Guard and your state spill response office, per federal law, and let the marina or fuel dock staff know about the incident, so they can assist.

To report an oil spill call the U.S. Coast Guard National Response Center 800-424-8802.


Leave a comment

Preventing and Preparing for Oil Spills in the Arctic

Talking with NOAA Scientist Amy Merten about her time chairing the Arctic Council’s Emergency Prevention, Preparedness and Response working group.

Ice bank in the Arctic ocean. Image credit: NOAA.

View off the coast of Longyearbyen, Svalbard, Norway. Taken during a search and rescue demonstration for an Arctic Council’s Emergency Prevention, Preparedness and Response working group meeting. Image Credit: NOAA

As rising temperatures and thinning ice in the Arctic create openings for increased human activities, it also increases the potential for oil spills and chemical releases into the remote environment of the region.

Planning emergency response operations for the Arctic falls to the Emergency Prevention, Preparedness and Response working group, an Arctic Council body. The emergency working group has representatives from each of the member states with expertise in oil spill response, search and rescue, and response to radiological events.

NOAA’s Amy Merten, chief of the Spatial Data Branch, will finish her two-year stint as chair of the working group in May 2017. The chair is elected every two years from among the working group’s members including: Canada, Kingdom of Denmark, Finland, Iceland, Norway, Russian Federation, Sweden, the United States and permanent participants. Merten served on the working group for 5 years before becoming chair. She will leave the position on May 11, 2017. Jens Peter Holst-Andersen, from the Kingdom of Denmark will be the new chair at the next meeting in Vologda, Russia.

Merten, who holds a doctorate in marine sciences/environmental chemistry, shared her insights into the complexities of planning for emergencies in the remote regions of the Arctic and about what it’s like working with other nations to protect the Arctic environments.

What are the biggest challenges facing spill response in the Arctic? 

There are many; remote locations, short windows of open-water and daylight in which to respond, and lack of infrastructure—you can’t send a massive response community to Arctic communities there is not enough food, hotel space, or fuel to sustain larger groups.  Lack of communication is another challenge. Things that we take for granted working at moderate temperatures (cameras, GPS), don’t work at cold temperatures. For search and rescue, there is not adequate hospital space or expertise. Therefore, if a large cruise ship gets into trouble in the Arctic, the rescue, triage and sustainability of the passengers will be a major challenge.

Why is it important to have international cooperation when developing response plans?

Each country has unique experiences and may have developed a way to respond to oil spills in ice or Arctic conditions that can be shared with other countries facing potential spills in ice. Because of the remoteness of the Arctic, with little to no infrastructure, particularly in the United States and Canada, countries will have to rely on equipment and support from others.

Additionally, there are parts of the Arctic Ocean that are international waters, and should a vessel founder there, the countries would collectively respond. We share thoughts on high-risk scenarios, best practices, and identification of research needs. We also share ideas and findings on the latest technologies in communications, oil-in-ice modeling, data management and response technologies.

How does communication with other countries during an emergency work?

We have an up-to-date communication list and protocol. This is part of our agreement, the Agreement on Cooperation on Marine Oil Pollution, Preparedness and Response in the Arctic. We also practice our communication connectivity once a year, and conduct an international exercise every two years.

What role do satellites have in preparing for and responding to emergencies in the region?

We rely on satellite information for monitoring conditions (weather and ice) and vessel traffic. We would certainly rely on satellite data for an incident in order to plan the response, monitor the extent of the oiling, and understand the weather and ice conditions.

How do the member countries work to share plans so that emergency response is not being duplicated?

This is one of the functions of Emergency Prevention, Preparedness and Response working group. It ensures we communicate about domestic projects and plans that may benefit the other nations to maximize the collective effectiveness and avoid duplications.

NOAA’s online environmental mapping tool for the region, Arctic ERMA, now includes polar projections; do the other council countries use Arctic ERMA?

They use it during our joint exercises, and we use it to visualize other working group projects, like the Bureau of Safety and Environmental Enforcement-led Pan-Arctic response assets database. We also discuss sharing data across systems and are developing data sharing agreements.

What are the three biggest threats to the Arctic environment? 

Keeping it a peaceful governance, climate change, and oil spills/chemical spills.

Why is the Arctic environment important to the United States?

Arctic weather and climate affects the world’s oceans, weather, and climate, including the Lower 48. The Arctic is replete with energy, mineral, and fishing resources. The Arctic is inhabited by indigenous communities with unique lifestyles that are threatened and need protection. The Arctic is also home to unique flora and fauna that are important for biodiversity, ecological services, and overall healthy environments.  As the Arctic becomes more accessible, national security pressures increase.

 What would be the worst types of oil spills in the Arctic?

This is a hard question to answer but I’d say a spill of a persistent oil that occurs in broken ice during freeze up or thawing periods. During freeze up because it will be difficult to respond, and difficult to track the oil.

During thawing because it’s the emergence of primary production for the food web, hunting subsistence practices would be threatened and it could be unsafe to respond due to of the changing ice conditions. It all depends on how far away and difficult it is to get vessels, aircraft, people, and skimmers onsite, and in a way they can operate safely in a meaningful way.

A “worst spill” doesn’t have to be a “large” spill if it impacts sensitive resources at key reproductive and growth cycles, or if it impacts Arctic communities’ food security, subsistence activities, and ways of life.

How has being chair added to your understanding of the emergency response in the Arctic?

I think it’s increased my concern that it’s not a matter of “if” but a matter of “when” a spill will happen. The logistics of a response will be complicated, slow, and likely, fairly ineffective. The potential for long-term impacts on stressed communities and stressed environments is high. I do have a good feeling that international cooperation will be at its best, but the challenges are daunting for all of us.

Amy Merten on boat with sea and ice behind her. Image credit: NOAA.

NOAA scientist Amy Merten in the Arctic. Merten is chief of the Spatial Data Branch of the Office of Response and Restoration and served as chair of the Arctic Council’s Emergency Prevention, Preparedness and Response working group. Image credit: NOAA.


Leave a comment

Using Dogs to Find Oil During Spill Response

Man and woman with black dog. IMage credit: NOAA.

Catherine Berg, Pepper, and Gary Shigenaka. Image credit: NOAA.

NOAA’s Office of Response and Restoration’s Emergency Response Division returned to Prince William Sound to use some of the old buried oil from the Exxon Valdez oil spill to improve how we can find oil on the shoreline in the future.

This time, the key player was an enthusiastic black Labrador retriever named Pepper. This project is to validate and better understand the capabilities of trained oil detection canines to locate and delineate subsurface stranded oil. The results of the study have a high probability of immediate, short-term applications and long-term real benefits in the design and implementation of shoreline cleanup and assessment technique surveys for stranded oil.

Usually, teams of people trained in the shoreline assessment techniques, called SCAT, comb for oil buried along shorelines and other areas affected by oil spills. The technique has been an integral part of oil spill response since the Exxon Valdez spill in 1989.  It is a systematic approach to describing the “where” and “how much” for spilled oil, and directs cleanup activities during moderate and larger spill incidents.

The process is labor-intensive and time-consuming, and requires trained personnel to survey areas possibly impacted by an oil spill. In certain habitats—like gravel or sand beaches—oil either penetrates deeply below the surface or becomes buried by material deposited on top, making oil assessment even more difficult. In these cases, SCAT teams must dig pits to determine the existence and extent of buried oil that would require excavation and other more complicated cleanup approaches.

The limitations of human-centric SCAT surveys led one of the originators of the first SCAT programs during Exxon Valdez, Ed Owens of Owens Coastal Consultants, to begin discussions with Paul Bunker’s K2 Solutions to determine if the high sensitivity, accuracy and precision of canine noses could be adapted and applied to the task of oil spill shoreline assessment.

Three people on rocky shore with black dog. Image credit: NOAA>

Paul Bunker and Haiden Montgomery assessing the odor of residual Exxon Valdez oil, while Pepper closely supervises the collection of an oil sample by Scott Pegau of the Oil Spill Recovery Institute. Image credit: NOAA.

This is what led Ed, Paul, Pepper the black lab, her handler Haiden Montgomery, and a host of interested observers from NOAA, the Coast Guard, Exxon-Mobil, Chevron, Polaris Environmental, and the Oil Spill Recovery Institute to make the trip to Prince William Sound, the Alaskan region impacted by Exxon Valdez. The Oil Spill Recovery Institute sponsored the project.

Dog teams are already being productively employed for oil assessment in actual spills (Pepper will be traveling to Canada to join her canine colleagues for a river spill assessment).

Scientists from the Office of Response and Restoration observed the trials, assisted in the verification of oil presence, and provided feedback on the use of oil detection dogs in real-time spill situations.

Canine detection of buried oil holds real promise for improving the effectiveness and efficiency of oil spill assessment surveys. The methodology will continue to be refined and improved as it is used in real oil spill situations, and as we increase our understanding of how and what the dogs are actually detecting.

 

Gary Shigenaka and Catherine Berg with the Office of Response and Restoration contributed to this article.