NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

After a Century Apart, NOAA and Partners Reunite a Former Wetland with San Francisco Bay’s Tides

Excavator removing earth from a breached barrier between tide waters in a slough and the new wetland.

The first of four breaches of tidal levees separating Cullinan Ranch from the tide waters of San Francisco Bay. (NOAA)

Scooping away the last narrow band of mud, a bright yellow excavator released a rush of brackish water into an area cut off from the tides for more than a hundred years.

The 1,200 acre field now filling with water, known as Cullinan Ranch due to its history as a hay farm, is once again becoming a tidal wetland.

On January 6, 2015, more than 100 people celebrated the reintroduction of tide waters to Cullinan Ranch in Solano County, California. For decades before, earthen levees had separated it from the nearby Napa River and San Pablo Bay, a northern corner of the San Francisco Bay Estuary.

With three more levee breaches planned by the end of January, restoration of this 1,500 acre site is nearly complete, with efforts to monitor the project’s progress to follow. Surrounded by state and federal wildlife lands, Cullinan Ranch will fill in a gap in coastal habitat as it becomes integrated with San Pablo Bay National Wildlife Refuge.

How Low Can It Flow

For the most part, Cullinan Ranch will be covered in open water because years of farming, beginning in the 1880s, caused the land to sink below sea level. The open water will provide places for animals such as fish and birds—as well as the invertebrates they like to eat—to find food and rest after big storms.

However, some areas of the property will remain above the low tide level, creating conditions for the plant pickleweed to thrive. While a succulent like cacti, pickleweed can survive wet and salty growing conditions. (Fun fact: Some people enjoy cooking and eating pickleweed. When blanched, it apparently tastes salty and somewhat crispy.) The salt marsh harvest mouse, native to California and one of the few mammals able to drink saltwater, also will take advantage of the habitat created by the pickleweed in the recovering wetland.

Wildlife will not be the only ones enjoying the restoration of Cullinan Ranch. A major highway passes by the site, and Cullinan Ranch has experienced numerous upgrades to improve recreational access for people brought there by Highway 37. Soon anyone will be able to hike on the newly constructed trails, fish off the pier, and launch kayaks from the dock.

Turning Money into Marshes

The restoration of Cullinan Ranch from hay field to tidal wetland has been in the works for a long time, brought about by a range of partners and funding agencies, including NOAA, the U.S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, California Department of Fish and Wildlife, California Wildlife Conservation Board, and Ducks Unlimited. NOAA provided several sources of funding to help finish this restoration project.

In addition to $900,000 from the American Recovery and Reinvestment Act, NOAA contributed $650,000 through a community-based restoration partnership with Ducks Unlimited and $1.65 million awarded for natural resource damages through the Castro Cove trustee council. The latter funding was part of a $2.65 million settlement with Chevron as a result of the nearby Chevron Richmond Refinery discharging mercury and oil pollution into Castro Cove for years. Cullinan Ranch and Breuner Marsh are the two restoration projects Chevron funded to make up for this pollution.

Map of San Francisco Bay showing locations of NOAA restoration projects.

NOAA is working on a number of tidal wetland restoration projects in the north San Francisco Bay. (NOAA)

Cullinan Ranch is one of the largest restoration projects in the north San Francisco Bay, but it is far from the only one NOAA is involved with in the region. Helping reverse a century-long trend which saw many of the bay’s tidal wetlands disappear, NOAA has been working on a suite of projects restoring these historic and important coastal features in northern California.

Watch footage of the earthen levee being breached to reconnect the bay’s tide waters to Cullinan Ranch.


Leave a comment

Our Top 10 New Year’s Resolutions for 2015

2014 written in the sand.

Good bye, 2014. Credit: Marcia Conner/CC BY-NC-SA 2.0

While we have accomplished a lot in the last year, we know that we have plenty of work ahead of us in 2015.

As much as we wish it were so, we realize oil and chemical spills, vessel groundings, and marine debris will not disappear from the ocean and coasts in the next year. That means our experts have to be ready for anything, but specifically, for providing scientific solutions to marine pollution.

Here are our plans for doing that in 2015:

  1. Exercise more. We have big plans for participating in oil spill exercises and performing trainings that will better prepare us and others to deal with threats from marine pollution.
  2. Be safer. We work up and down the nation’s coastlines, from tropical to arctic environments. Many of these field locations are remote and potentially hazardous. We will continue to assess and improve our equipment and procedures to be able to work safely anywhere our services are needed.
  3. Keep others safe. We are improving our chemical response software CAMEO, which will help chemical disaster responders and planners get the critical data they need, when and where they need it.
  4. Get others involved. We are partnering with the University of Washington to explore ways average citizens can help contribute to oil spill science.
  5. Communicate more effectively. This spring, we will be hosting a workshop for Alaskan communicators and science journalists on research-based considerations for communicating about chemical dispersants and oil spills.
  6. Be quicker and more efficient. We will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive data in the Arctic to support Natural Resource Damage Assessment and other oil spill science.
  7. Sport a new look. An updated, more mobile-friendly look is in the works for NOAA’s Damage Assessment, Remediation, and Restoration Program website. Stay tuned for the coming changes at http://www.darrp.noaa.gov.
  8. Unlock access to data. We are getting ready to release public versions of an online tool that brings together data from multiple sources into a single place for easier data access, analysis, visualization, and reporting. This online application, known as DIVER Explorer, pulls together natural resource and environmental chemistry data from the Deepwater Horizon oil spill damage assessment, and also for the Great Lakes and U.S. coastal regions.
  9. Clean up our act. Or rather, keep encouraging others to clean up their act and clean up our coasts. We’re helping educate people about marine debris and fund others’ efforts to keep everyone’s trash, including plastics, out of our oceans.
  10. Say farewell. To oil tankers with single hulls, that is. January 1, 2015 marks the final phase-out of single hull tankers, a direct outcome of the 1989 Exxon Valdez oil spill.


Leave a comment

NOAA Assisting UN Spill Response Team in Bangladesh

Oily water with grasses in a bucket.

Oiled grass being tested for mobile oil at the site of the Bangladesh oil spill. (NOAA)

NOAA is offering assistance to a United Nations (UN) team that has arrived in the Sundarbans to serve as part of a larger assessment team providing assistance to the Government of Bangladesh following the release of approximately 350,000 liters of heavy oil. On December 9, 2014, the oil tanker Southern Star 7 sank near the port of Mongla in the Sundarbans region of Bangladesh after being struck by the freighter M/V Total.

The UN assessment team will be divided into six subgroups: Oiling Extent, Response, Aquatic, Mangrove, Wildlife, and Human/Livelihood. NOAA will lead the Mangrove and Wildlife groups and will advise the other teams as appropriate. After the initial assessment, the UN team hopes to be able to provide more detailed recommendations on protecting and restoring this sensitive habitat.

[UPDATED January 14, 2015: Initial findings and recommendations were prepared and presented to the Bangladesh Ministry of Environment and Forests in the capital city of Dhaka on December 31, 2014. Read a summary of the initial findings and recommendations.]

Map showing area of the oil spill in Bangladesh.

Map of the region where the spill occurred, with the approximate site of the spill denoted with a red symbol. (NOAA)

As part of NOAA’s study of oil spill impacts to mangrove shorelines, NOAA has recently updated a report summarizing current research on mangrove ecosystems. Written for those who work in spill response and planning in these sensitive habitats, it aims to help minimize environmental impacts in mangroves when oil spills threaten them.

How Oil Spills Affect Mangroves

Tangles of roots rising out of the water are a classic characteristic of mangroves. These unique coastal forests are made up of a variety of tree and shrub species that have adapted to living in areas where they are alternately flooded and exposed to air. Growing in tropical and semi-tropical environments, mangroves can also withstand high levels of salt and as a result, they are often found in salty waters along deltas, estuaries (which have a mix of salt and freshwater), lagoons, and islands.

However, their maze of aerial roots which allow them to thrive in tidal areas also presents a particular challenge for responders when an oil spill happens near mangroves. Changing water levels in tidal environments means spilled oil has the potential to coat portions of the trees from bottom to top, including the jungle of exposed roots. These specialized roots not only anchor the trees into soft mudflats, but they also absorb nutrients to feed the plants and exchange gases as part of normal metabolic processes.

When Oil Meets Mangrove

Mangroves are highly susceptible to oil exposure; oiling may kill them within a few weeks to several months. Lighter oils are more acutely toxic to mangroves than are heavier oils. Increased weathering generally lowers oil toxicity. However, heavier oils can result in substantial physical smothering and coating impacts. Oil-impacted mangroves may suffer yellowed leaves, defoliation, and even death of the tree. More subtle responses include a loss of canopy cover, increased rate of mutation, and increased sensitivity to other stresses.

Map showing mangrove regions in the world.

World map of the mangrove distribution zones and the number of mangrove species along each region. (Credit: Deltares) Click to enlarge

Mangroves have developed a complex series of physiological mechanisms to enable them to survive in a low-oxygen, high-salinity world. Many, if not most, of these adaptations depend on unimpeded exchange with either water or air. When oil coats mangroves, this ability can be compromised.

The severity of oil’s impacts on mangroves is linked to the amount of oil reaching the mangroves and the length of time spilled oil remains near them. The invertebrates and plants that live in and around mangroves recover more quickly from oiling than the mangroves themselves. This is due to the longer time for mangroves to reach maturity. Under severe oiling conditions, mangrove impacts may continue for years to decades, resulting in permanent habitat loss.

If trees die in mangrove communities, most deaths tend to occur in the first six months after being exposed to oil. In fact, obvious signs of mangrove stress often begin occurring within the first two weeks of a spill, and these can range from defoliation to tree death. Research shows seedlings and saplings, in particular, are susceptible to oil exposure.

Cleaning up Oil Spills in Mangroves

Past experience has also taught that such forests are particularly difficult to protect and clean up once a spill has occurred because they are physically intricate, relatively hard to access, and inhospitable to humans. In the rankings of coastal areas in NOAA’s Environmental Sensitivity Indices, commonly used as a tool for spill contingency planning around the world, mangrove forests are ranked as the most sensitive of tropical habitats.

Mangroves offer a variety of benefits to the surrounding ecosystem, benefits which are jeopardized in the case of oil spills. In particular, mangroves can help protect water quality, especially around coral reefs. Their massive root systems somewhat filter the water, trapping sediments and some types of contamination with them.

Read more in NOAA’s report: Oil Spills in Mangroves: Planning and Response Considerations.


1 Comment

Keep Your Holidays Happy and Your Impact Low

Red bows and evergreen bows on a fence on a beach.

Make sure your holidays leave the coasts clean and bright. (Creative Commons: Susan Smith, Attribution-NonCommercial-NoDerivs 2.0 Generic License)

Across the United States, the winter holiday season is upon us and many people are gathering with family and friends to celebrate. But as you go about trimming trees, lighting candles, and nipping eggnog, keep in mind a few tips for lowering your impact on the ocean.

After all, a clean and healthy environment sounds like a great gift to give others—along with world peace.

  • Host a no- or low-waste holiday soiree. Set out reusable dishes for guests or use recyclable items and have a clearly labeled recycling bin at the ready. Compost napkins, half-eaten gingerbread people, and that fruitcake leftover from last year. Get more tips from the Marine Debris Blog. As they point out, “According to the EPA, the volume of household waste in the United States generally increases 25 percent between Thanksgiving and New Year’s Day—about 1 million extra tons.”
  • Do your holiday shopping with reusable bags. Plastic shopping bags are among the top 10 items collected each year at the International Coastal Cleanup.
  • Consider giving gifts that won’t end up on the shelf or in the trash. It takes a lot of oil (which can spill) to produce and transport the many items for sale starting Black Friday. What about giving the people you care about gifts they can experience, such as tickets to a show or gift certificate to their favorite restaurant? Or something they can use with little or no accompanying waste, such as homemade hand salve or your famous family latke recipe, along with a tasty batch to go with it?
  • Keep your gifts under reusable wraps. Skip the plastic ribbons and bows and wrap your gifts in stylish fabric gift bags (which the recipient can then re-gift). At the very least, save what wrappings you can and use them again next time.
  • Avoid giving gifts that contain tiny plastic microbeads. It may be tempting to give your sister-in-law a bottle of Cinnamon Stick Glitterburst Exfoliating Body Scrub, but check the label first. Personal care items, such as cleansers and body wash, often contain “microscrubbers” made of plastic that go down the drain, most times making it past waste treatment and into rivers, lakes, and the ocean. Look for “polyethylene” or “polypropylene” in the ingredient list.
  • If you have a blast, clean it up. If you use fireworks to ring in the New Year, please do so responsibly. Fireworks can shatter into little plastic bits, which can be swept into storm drains and end up in lakes, rivers, and the ocean. Volunteer for a beach cleanup on January 1, track what you pick up, and make sure marine debris doesn’t pollute 2015.
  • Give public transportation the green light. Holly and mistletoe shouldn’t be the only green part of this season. When possible and safe, opt for lower-impact transportation options: walking, biking, or public transportation. NOAA responded to 138 oil and chemical spills in the past year. Less oil used means less oil transported and potentially spilled.

The U.S. Environmental Protection Agency has more great suggestions for greening your holiday season and all winter long. Do you have any tips? How are you keeping your holiday season happy and light on the planet?


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Winter 2015

Two people talking on a beach with a ferry in the background.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of February 23–27, 2015 at the NOAA Disaster Response Center in Mobile, Alabama.

We will accept applications for this class through Friday, January 9, 2015, and we will notify applicants regarding their participation status by Friday, January 16, 2015, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas, (April 27–May 1, 2015) and Seattle, Washington (date to be determined).

For more information, and to learn how to apply for the class, visit the SOS Classes page.


2 Comments

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

Staghorn coral fragments hanging on an underwater tree structure of PVC pipes.

NOAA uses coral nurseries to help corals recover after traumatic events, such as a ship grounding. Hung on a tree structure, the staghorn coral shown here will have a better chance of surviving and being transplanted back onto a reef. (NOAA)

The cringe-inducing sound of a ship crushing its way onto a coral reef is often the beginning of the story. But, thanks to NOAA’s efforts, it is not usually the end. After most ship groundings on reefs, hundreds to thousands of small coral fragments may litter the ocean floor, where they would likely perish rolling around or buried under piles of rubble. However, by bringing these fragments into coral nurseries, we give them the opportunity to recover.

In the waters around Florida, Puerto Rico, and the U.S. Virgin Islands, NOAA works with a number of partners in various capacities to maintain 27 coral nurseries. These underwater safe havens serve a dual function. Not only do they provide a stable environment for injured corals to recuperate, but they also produce thousands of healthy young corals, ready to be transplanted into previously devastated areas.

Checking into the Nursery

When they enter coral nurseries, bits of coral typically measure about four inches long. They may come from the scene of a ship grounding or have been knocked loose from the seafloor after a powerful storm. Occasionally and with proper permission, they have been donated from healthy coral colonies to help stock nurseries. These donor corals typically heal within a few weeks. In fact, staghorn and elkhorn coral, threatened species which do well in nurseries, reproduce predominantly via small branches breaking off and reattaching somewhere new.

In the majority of nurseries, coral fragments are hung like clothes on a clothesline or ornaments on trees made of PVC pipes. Floating freely in the water, the corals receive better water circulation, avoid being attacked by predators such as fireworms or snails, and generally survive at a higher rate.

After we have established a coral nursery, divers may visit as little as a few times per year or as often as once per month if they need to keep algae from building up on the corals and infrastructure. “It helps if there is a good fish population in the area to clean the nurseries for you,” notes Sean Griffin, a coral reef restoration ecologist with NOAA.

Injured corals generally take at least a couple months to recover in the nurseries. After a year in the nursery, we can transplant the original staghorn or elkhorn colonies or cut multiple small fragments from them, which we then use either to expand the nursery or transplant them to degraded areas.


One of the fastest growing species, staghorn coral can grow up to eight inches in a year while elkhorn can grow four inches. We are still investigating the best ways to cultivate some of the slower growing species, such as boulder star coral and lobed star coral.

Growing up to Their Potential

In 2014, we placed hundreds of coral fragments from four new groundings into nurseries in Puerto Rico and the U.S. Virgin Islands. This represents only a fraction of this restoration technique’s potential.

After the tanker Margara ran aground on coral reefs in Puerto Rico in 2006, NOAA divers rescued 11,000 salvageable pieces of broken coral, which were reattached at the grounding site and established a nursery nearby using 100 fragments from the grounding. That nursery now has 2,000 corals in it. Each year, 1,600 of them are transplanted back onto the seafloor. The 400 remaining corals are broken into smaller fragments to restock the nursery. We continue to grow healthy corals in this nursery and then either transplant them back to the area affected by the grounded ship, help restore other degraded reefs, or use some of them to start the process over for another year.

Nurseries in Florida, Puerto Rico, and the U.S. Virgin Islands currently hold about 50,000 corals. Those same nurseries generate another 50,000 corals which we transplant onto restoration sites each year. Sometimes we are able to use these nurseries proactively to protect and preserve corals at risk. In the fall of 2014, a NOAA team worked with the University of Miami to rescue more than 200 threatened staghorn coral colonies being affected by excessive sediment in the waters off of Miami, Florida. The sedimentation was caused by a dredging project to expand the Port of Miami entrance channel.

We relocated these colonies to the coral nurseries off Key Biscayne run by our partners at the University of Miami. The corals were used to create over 1,000 four-inch-long fragments in the nursery. There, they will be allowed to recover until dredge operations finish at the Port of Miami and sedimentation issues are no longer a concern. The corals then can either be transplanted back onto the reef where they originated or used as brood stock in the nursery to propagate more corals for future restoration.


Leave a comment

When Ships Threaten Corals in the Caribbean, NOAA Dives to Their Rescue

Growing less than a quarter inch per year, the elaborate coral reefs off the south coast of Puerto Rico originally took thousands of years to form. And over the course of two days in late April 2006, portions of them were ground into dust.

The tanker Margara ran aground on these reefs near the entrance to Guayanilla Bay. Then, in the attempt to remove and refloat the ship, it made contact with the bottom several times and became grounded again. By the end, roughly two acres of coral were lost or injured. The seafloor was flattened and delicate corals crushed. Even today, a carpet of broken coral and rock remains in part of the area. This loose rubble becomes stirred up during storms, smothering young coral and preventing the reef’s full recovery.

NOAA and the Puerto Rico Department of Natural and Environmental Resources have been working on a restoration plan for this area, a draft of which they released for public comment in September 2014 [PDF]. In order to stabilize these rubble fields and return topographic complexity to the flattened seafloor, they proposed placing limestone and large boulders over the rubble and then transplanting corals to the area.

This is in addition to two years of emergency restoration actions, which included stabilizing some of the large rubble, reattaching around 10,500 corals, and monitoring the slow comeback and survival of young coral. In the future, even more restoration will be in the works to make up for the full suite of environmental impacts from this incident.

Caribbean Cruising for a Bruising

Unfortunately, the story of the Margara is not an unusual one. In 2014 alone, NOAA received reports of 37 vessel groundings in Puerto Rico and the U.S. Virgin Islands. About half of these cases threatened corals, prompting NOAA’s Restoration Center to send divers to investigate.

After a ship gets stuck on a coral reef, the first step for NOAA is assessing the situation underwater. If the vessel hasn’t been removed yet, NOAA often provides the salvage company with information such as known coral locations and water depths, which helps them determine how to remove the ship with minimal further damage to corals. Sometimes that means temporarily removing corals to protect them during salvage or figuring out areas to avoid hitting as the ship is extracted.

Once the ship is gone, NOAA divers estimate how many corals and which species were affected, as well as how deep the damage was to the structure of the reef itself. This gives them an idea of the scale of restoration needed. For example, if less than 100 corals were injured, restoration likely will take a few days. On the other hand, dealing with thousands of corals may take months.

NOAA already has done some form of restoration at two-thirds of the 18 vessel groundings with coral damage in the region this year. They have reattached 2,132 corals to date.

What does this look like? At first, it’s a lot of preparation. Divers collect the corals and fragments knocked loose by the ship; transport them to a safe, stable underwater location where they won’t be moved around; and dig out any corals buried in debris. When NOAA is ready to reattach corals, divers clear the transplant area (sometimes that means using a special undersea vacuum). On the ocean surface, people in a boat mix cement and send it down in five-gallon buckets to the divers below. Working with nails, rebar, and cement, the divers carefully reattach the corals to the seafloor, with the cement solidifying in a couple hours.

Protecting Coral, From the Law to the High Seas

Corals freshly cemented to the seafloor.

Corals freshly cemented to the seafloor. After a couple weeks, the cement becomes colonized by algae and other marine life so that it blends in with the reef. (NOAA)

Nearly a third of the total reported groundings in Puerto Rico and the U.S. Virgin Islands this year have involved corals listed as threatened under the Endangered Species Act. In previous years, only 10 percent of the groundings involved threatened corals. What changed this year was the Endangered Species Act listing of five additional coral species in the Caribbean.

Another form of protection for corals is installing buoys to mark the location of reefs in areas where ships keep grounding on them. Since these navigational aids were put in place at one vulnerable site in Culebra, Puerto Rico this summer, NOAA hasn’t been called in to an incident there yet.

But restoring coral reefs after a ship grounding almost wouldn’t be possible without coral nurseries. Here, NOAA is able to regrow and rehabilitate coral, a technique being used at the site of the T/V Margara grounding. Stay tuned because we’ll be going more in depth on coral nurseries, what they look like, and how they help us restore these amazingly diverse ocean habitats.

Follow

Get every new post delivered to your Inbox.

Join 503 other followers