NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

From Kayaking to Carbon Storage, What We Stand to Gain (and Lose) from Our Coasts

This week, NOAA’s Office of Response and Restoration is looking at the range of values and benefits that coastal areas offer people—including what we stand to lose when oil spills and chemical pollution harm nature and how we work to restore our lost uses of nature afterward. Read all the stories.

This is a guest post by Stefanie Simpson of Restore America’s Estuaries.

People sitting in canoes and standing on a shoreline.

When coastal habitats are damaged or destroyed, we lose all of the benefits they provide, such as carbon storage and places to canoe. (NOAA)

Estuaries, bays, inlets, sounds—these unique places where rivers meet the sea can go by many different names depending on which region of the United States you’re in. Whether you’re kayaking through marsh in the Carolinas, hiking through mangrove forest in the Everglades, or fishing in San Francisco Bay, you are experiencing the bounty estuaries provide.

Natural habitats like estuaries offer people an incredible array of benefits, which we value in assorted ways—ecologically, economically, culturally, recreationally, and aesthetically.

Estuaries, where saltwater and freshwater merge, are some of the most productive habitats in the world. Their benefits, also called “ecosystem services,” can be measured in a variety of ways, such as by counting the number of birding or boating trips made there or by measuring the amount of fish or seafood produced.

If you eat seafood, chances are before ending on up your plate, that fish spent at least some of its life in an estuary. Estuaries provide critical habitat for over 75% of our commercial fish catch and 80% of our recreational fish catch. Coastal waters support more than 69 million jobs and generate half the nation’s Gross Domestic Product (GDP) [PDF]. Estuaries also improve water quality by filtering excess nutrients and pollutants and protect the coast from storms and flooding.

Another, perhaps less obvious, benefit of estuaries is that they are also excellent at removing carbon dioxide from the atmosphere and storing it in the ground long-term. In fact, estuary habitats like mangroves, salt marshes, and seagrasses store so much carbon, scientists gave it its own name: blue carbon.

How do we know how much carbon is in an estuary? Scientists can collect soil cores from habitats such as a salt marsh and analyze them in the lab to determine how much carbon is in the soil and how long it’s been there.

But you can also see the difference. Carbon-rich soils are made up of years of accumulated sediment and dead and decaying plant and animal material. These soils are dark, thick, and mucky—much different from the sandy, mineral soils you might find along a beach.

Science continues to improve our understanding of ecosystem services, such as blue carbon, and their value to people. For example, in 2014 a study was conducted in the Snohomish Estuary in Washington’s Puget Sound to find out just how much carbon could be stored by restoring estuaries. The study estimated that full restoration of the Snohomish Estuary (over 9,884 acres) would remove 8.9 million tons of carbon dioxide from the atmosphere—that’s roughly equal to taking 1,760,000 cars off the road for an entire year.

Estuary restoration would not only help to mitigate the effects of climate change but would have a positive cascading effect on other ecosystem services as well, including providing habitat for fish, improving water quality, and preventing erosion.

Healthy estuaries provide us with so many important benefits, yet these habitats are some of the most threatened in the world and are disappearing at alarming rates. In less than 100 years, most of these habitats may be lost, due to human development and the effects of climate change, such as sea-level rise.

When we lose estuaries and other coastal habitats, we lose all of the ecosystem services they provide, including carbon storage. When coastal habitat is drained or destroyed, the carbon stored in the ground is released back into the atmosphere and our coast becomes more vulnerable to storms and flooding. It is estimated that half a billion tons of carbon dioxide are released every year due to coastal and estuary habitat loss.

These benefits can also be compromised when coastal habitats are harmed by oil spills and chemical pollution. People also feel these impacts to nature, whether because an oil spill has closed their favorite beach or chemical dumping has made the fish a tribe relies on unsafe to eat.

Scientists and economists continue to increase our understanding of the many benefits provided by our coastal habitats, and land managers use this information to protect and restore habitats and their numerous services. Stay tuned for more this week as NOAA’s Office of Response and Restoration and Restore America’s Estuaries explore how our use of nature suffers from pollution and why habitat restoration is so important.

Stefanie Simpson.Stefanie Simpson is the Blue Carbon Program Coordinator for Restore America’s Estuaries where she works to promote blue carbon as a tool for coastal restoration and conservation and coordinates the Blue Carbon National Network. Ms. Simpson is also a Returned Peace Corps Volunteer (Philippines 2010-12) and has her Master of Science in Environmental Studies.

The views expressed here reflect those of the author and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


1 Comment

10 Photos That Tell the Story of the Exxon Valdez Oil Spill and its Impacts

Exxon Valdez ship with response vessels in Prince William Sound.

The single-hull tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, March 24, 1989, spilling 11 million gallons of crude oil. (U.S. Coast Guard)

While oil spills happen almost every day, we are fortunate that relatively few make such large or lasting impressions as the Deepwater Horizon or Exxon Valdez spills. Before 2010, when the United States was fixated on a gushing oil well at the bottom of the Gulf of Mexico, most Americans could probably only name one spill: when the tanker Exxon Valdez released 11 million gallons of crude oil into Alaska’s Prince William Sound on March 24, 1989.

Here we’ve gathered 10 photos that help tell the story of the Exxon Valdez oil spill and its impacts, not only on the environment but also on science, policy, spill response, school kids, and even board games. It has become a touchstone event in many ways, one to be learned from even decades after the fact.

1. Time for safety

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the tanker Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

Long before the Exxon Valdez tanker ran aground on Bligh Reef in Prince William Sound, a series of events were building that would enable this catastrophic marine accident to unfold as it did. These actions varied from the opening of the Trans-Alaska Pipeline in the 1970s to the decision by the corporation running that pipeline to disband its oil spill response team and Exxon’s efforts to hold up both the tanker Exxon Valdez and its captain, Joseph Hazelwood, as exemplars of safety.

Captain Hazelwood received two Exxon Fleet safety awards for 1987 and 1988, the years leading up to March 1989, which was coincidentally the month the Exxon Valdez was featured on an Exxon Shipping Company calendar bearing the warning to “take time to be careful – now.”

Read more about the timeline of events leading up to the Exxon Valdez oil spill.

2. A law for the birds

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Photos of oil-soaked birds and other wildlife in Prince William Sound reinforced just how inadequate the patchwork of existing federal, state, and local laws were at preventing or addressing the Exxon Valdez oil spill.

While lawmakers took nearly a year and a half—and a few more oil spills—to pass the Oil Pollution Act of 1990, this landmark legislation was without a doubt inspired by that major oil spill. (After all, the law specifically “bars from Prince William Sound any tank vessels that have spilled over 1,000,000 gallons of oil into the marine environment after March 22, 1989.” In other words, the Exxon Valdez.) In the years since it passed, this law has made huge strides in improving oil spill prevention, cleanup, liability, and restoration.

3.  The end of single-hull tankers

People observe a large tanker with a huge gash in its hull in dry dock.

Evidence of the success of double-hull tankers: The Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico in 2009 and despite this damage, did not spill any oil. (Texas General Land Office)

This image of a damaged ship is not showing the T/V Exxon Valdez, and that is precisely the point. The Exxon Valdez was an oil tanker with a single hull, which meant that when it hit ground, there was only one layer of metal for the rocks to tear through and release its tanks of oil.

But this 2009 photo shows the Norwegian tanker SKS Satilla after it sustained a major gash in its double-sided hull — and didn’t spill a drop of oil. Thanks to the Oil Pollution Act of 1990, all new tankers and tank-barges were required to be built with double hulls to reduce the chance of another Exxon Valdez situation. January 1, 2015 was the final deadline for phasing out single-hull tankers in U.S. waters.

 4. Oiled otters and angry kids

Policymakers weren’t the only ones to take note and take action in the wake of the Exxon Valdez oil spill. Second grader Kelli Middlestead of the Franklin School in Burlingame, California, was quite upset that the oil spill was having such devastating effects on one of her favorite animals: sea otters. So, on April 13, 1989, she wrote and illustrated a letter to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service, to let him know she felt that the oil spill was “killing nature.”

Indeed, sea otters in Prince William Sound weren’t declared recovered from the Exxon Valdez oil spill until 2013. Other species still haven’t recovered and in some sheltered beaches below the surface, you can still find pockets of oil.

5. Oil and killer whales do mix (unfortunately)

Killer whales swimming alongside boats skimming oil from the Exxon Valdez oil spill.

Killer whales swimming in Prince William Sound alongside boats skimming oil from the Exxon Valdez oil spill (State of Alaska, Dan Lawn).

One of the species that has yet to recover after the Exxon Valdez oil spill is the killer whale, or orca. Before this oil spill, scientists and oil spill experts thought that these marine mammals were able to detect and avoid oil spills. That is, until two killer whale pods were spotted swimming near or through oil from this spill. One of them, a group nicknamed the “AT1 Transients” which feed primarily on marine mammals, suffered an abrupt 40% drop in population during the 18 months following the oil spill.

The second group of affected killer whales, the fish-eating “AB Pod Residents,” lost 33% of their population, and while they have started to rebound, the transients are listed as a “depleted stock” under the Marine Mammal Protection Act and may have as few as seven individuals remaining, down from a stable population of at least 22 in the 1980s.

Building on the lessons of the Exxon Valdez and Deepwater Horizon oil spills, NOAA has developed an emergency plan for keeping the endangered Southern Resident killer whale populations of Washington and British Columbia away from potential oil spills.

6. Tuna troubles

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva (top), and a larva exposed to Deepwater Horizon crude oil during development (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

How does crude oil affect fish populations? In the decades since the Exxon Valdez spill, teams of scientists have been studying the long-term effects of oil on fish such as herring, pink salmon, and tuna. In the first couple years after this spill, they found that oil was in fact toxic to developing fish, curving their spines, reducing the size of their eyes and jaws, and building up fluid around their hearts.

As part of this rich research tradition begun after the Exxon Valdez spill, NOAA scientists helped uncover the precise mechanisms for how this happens after the Deepwater Horizon oil spill in 2010. The photo here shows both a normal yellowfin tuna larva not long after hatching (top) and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom).

The oil-exposed larva exhibits a suite of abnormalities, showing how toxic chemicals in oil such as polycyclic aromatic hydrocarbons (PAHs) can affect the embryonic heart. By altering the embryonic heartbeat, exposure to oil can transform the shape of the heart, with implications for how well the fish can swim and survive as an adult.

7. Caught between a rock and a hard place

Mearns Rock boulder in 2003.

The boulder nicknamed “Mearns Rock,” located in the southwest corner of Prince William Sound, Alaska, was coated in oil which was not cleaned off after the 1989 Exxon Valdez oil spill. This image was taken in 2003. (NOAA)

Not all impacts from an oil spill are as easy to see as deformed fish hearts. As NOAA scientists Alan Mearns and Gary Shigenaka have learned since 1989, picking out those impacts from the noisy background levels of variability in the natural environment become even harder when the global climate and ocean are undergoing unprecedented change as well.

Mearns, for example, has been monitoring the boom and bust cycles of marine life on a large boulder—nicknamed “Mearns Rock”—that was oiled but not cleaned after the Exxon Valdez oil spill. What he and Shigenaka have observed on that rock and elsewhere in Prince William Sound has revealed large natural swings in the numbers of mussels, seaweeds, and barnacles, changes which are unrelated to the oil spill as they were occurring even in areas untouched by the spill.

Read more about how these scientists are exploring these challenges and a report on NOAA’s involvement in the wake of this spill.

8. A game culture

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

Just as the Exxon Valdez oil spill touched approximately 200 miles of remote and rugged Alaskan shoreline, this spill also touched the hearts and minds of people far from the spill. References to it permeated mainstream American culture in surprising ways, inspiring a cookbook, a movie, a play, music, books, poetry, and even a board game.

That’s right, a bartender from Valdez, Alaska, produced the board game “On the Rocks: The Great Alaska Oil Spill” as a result of his experience employed in spill cleanup. Players vied to be the first to wash all 200 miles of oiled shoreline without running out of time or money.

9. Carrying a piece of the ship

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with "On the rocks," is also metal from the ship but was purchased on eBay.

The rusted and nondescript piece of steel on the left was a piece of the tanker Exxon Valdez, recovered by the salvage crew in 1989 and given to NOAA marine biologist Gary Shigenaka. It was the beginning of his collection of Exxon Valdez artifacts and remains the item with the biggest personal value to him. The piece of metal on the right, inscribed with “On the rocks,” is also metal from the ship but was purchased on eBay. (NOAA)

One NOAA scientist in particular, Gary Shigenaka, who kicked off his career working on the Exxon Valdez oil spill, was personally touched by this spill as well. After receiving a small chunk of metal from the ship’s salvage, Shigenaka began amassing a collection of Exxon Valdez–related memorabilia, ranging from a highball glass commemorating the ship’s launch in 1986 (ironic considering the questions surrounding its captain being intoxicated the night of the accident) to the front page of the local paper the day of the spill.

See more photos of his collection.

10. The infamous ship’s fate

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled on the beach of Alang, India, 2012.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

After causing the largest-to-date oil spill in U.S. waters, what ever happened to the ill-fated Exxon Valdez ship? It limped back for repairs to San Diego Bay where it was built, but by the time it was sea-ready again, the ship had been banned from Prince William Sound by the Oil Pollution Act and would instead be reassigned to the Mediterranean and Middle East and renamed accordingly, the Exxon Mediterranean.

But a series of new names and bad luck continued to follow this ship, until it was finally sold for scrap in 2011. Under its final name, Oriental Nicety, it was intentionally grounded at the infamous shipbreaking beaches of Alang, Gujarat, India, in 2012 and dismantled in its final resting place 23 years after the Exxon Valdez ran aground half a world away.


Leave a comment

Supporting the Response to a Platform Fire and Oil Spill in Bayou Sorrel, Louisiana

Fire burns in one of several oil tanks on a platform in a bayou.

The Coast Guard, with state and local partners, is responding to an oil production platform fire in Bayou Sorrel, Louisiana, March 15, 2016. One of the tanks reportedly collapsed, releasing an unknown amount of crude oil into a canal. (U.S. Coast Guard)

On the morning of March 15, 2016, the U.S. Coast Guard requested assistance from NOAA‘s Office of Response and Restoration for an oil production platform fire near Berry Lake in Bayou Sorrel, Louisiana.

While crews were working to dismantle the platform, one of the oil storage tanks caught fire. No injuries have been reported. The U.S. Coast Guard is leading the response with state and local agencies.

The platform and one of its storage tanks burned throughout the day on March 15 before the tank partially collapsed, releasing crude oil into a canal. Most of the oil released from the tank continued to burn on the water surface and was consumed.

Responders contained the remaining oil and burn residue in the canal with boom.

Fire-fighting vessel sprays water on an oil tank on a platform in a bayou.

Response crews extinguished the fire on the oil production platform and will continue to monitor the scene in Bayou Sorrel, Louisiana. (U.S. Coast Guard)

A second tank on the platform subsequently caught fire but has been extinguished. The two storage tanks had a maximum capacity of more than 33,000 gallons of crude oil.

We are assisting the Coast Guard’s response by coordinating local weather forecast support, modeling the potential trajectory of spills of oil or burn residue, and outlining the wildlife and habitats that could be at risk in the area. A NOAA Scientific Support Coordinator has reported to the response to provide further help and assess potential impacts of the oil spill.

Bayou Sorrel is predominantly composed of seasonally flooded, forested wetlands with some patches of freshwater marshes and open canals. While oil is unlikely to penetrate flooded or water-saturated soils, it will readily coat and become mixed with floating debris such as branches and leaves.

A variety of birds, particularly diving and wading birds and waterfowl, may be present in the area and might be at risk of coming into contact with oil, which can coat their feathers, be ingested, or inhaled. In addition, fish and invertebrates such as crawfish may be present or spawning in the marshy habitats surrounding the oil platform, and alligators and small-to-medium-sized mammals including mink and river otters may be nearby.

In 2013, NOAA provided on-site technical support for an oil spill from a pipeline in Bayou Sorrel and helped coordinate a controlled burn of the spilled oil in the area’s flooded, wooded swamps. Additionally, we assisted with other oil spills in this area in 2015, 2007, and 1988.

Look for more information about the current oil spill and fire here and at the U.S. Coast Guard’s media site.


Leave a comment

During the Chaos of Oil Spills, Seeking a System to Test Potential Solutions

This is a post by Ed Levine of NOAA’s Office of Response and Restoration.

Response workers load oil containment boom onto a supply ship in Louisiana.

NOAA helped develop a systematic approach to vetting new and non-traditional spill response products and techniques during the fast-paced atmosphere of an oil spill. We helped implement this system during the 2010 Deepwater Horizon oil spill to evaluate the tens of thousands of ideas proposed during the spill. (U.S. Coast Guard)

In the pre-dawn hours of January 7, 1994, the tank barge Morris J Berman ran aground near San Juan, Puerto Rico, damaging coral and spilling more than 800,000 gallons of a thick, black fuel oil. Strong winds and waves battered the barge as it continued to leak and created dangerous conditions for spill responders.

During the hectic but organized spill response that followed [PDF] the barge’s grounding, a number of vendors appeared at the command post with spill cleanup products which they assured responders would fix everything. This scenario had played out at many earlier oil spills, and nearly every time, these peddled products were treated differently, at various times sidelined, ignored, tested, or put to use.

It’s not unexpected for the initial situation at any emergency response—be it medical, natural disaster, fire, or oil spill—to be chaotic. Responders are dealing with limited resources, expertise, and information at the very beginning.

As the situation progresses, additional help, information, and experts typically arrive to make things more manageable. Usually, in the middle of all this, people are trying to be helpful, or make a buck, and sometimes both.

At the spill response in Puerto Rico, the responders formed an official ad hoc group charged with cataloging and evaluating each new suggested cleanup product or technology. The group involved local government agencies, NOAA, and the U.S. Coast Guard. It began to develop a systematic approach to what had typically been a widely varying process at previous oil spills.

The methodology the group developed for this case was rough and quickly implemented for the situation at hand. Over the course of the several months required to deal with the damaged barge and oil spill, the ad hoc group tested several, though not all, of the potential cleanup products.

Approaching Order

A few years later, another group took this process a step further through the Regional Response Team III, a state-federal entity for response policy, planning, and coordination for West Virginia, Maryland, Delaware, Pennsylvania, Virginia, and the District of Columbia.

This working group set out to develop a more organized and systematic way to deal with alternative oil spill response techniques and technologies, those which aren’t typically used during oil spill responses. After many months of working collaboratively, this multi-agency working group, which included me and other colleagues in NOAA’s Office of Response and Restoration, produced the approach known as the Alternative Response Tools Evaluation System (ARTES).

This system allows a special response team to rapidly evaluate a proposed response tool and provide feedback in the form of a recommendation to the on-scene coordinator, who directs spill responses for a specified area. This coordinator then can make an informed decision on the use of the proposed tool.

artes-process-flow-chart_noaa_720

The Alternative Response Tools Evaluation System (ARTES) process is designed for use both before and after a spill. “OSC” stands for on-scene coordinator, the person who directs a spill response, and “RRT” stands for Regional Response Team, the multi-agency group charged with spill response policy, planning, and coordination for different regions of the United States.

The ARTES process is designed for two uses. First, it can be used to assess a product’s appropriateness for use during a specific incident, under specific circumstances, such as a diesel spill resulting from a damaged tug boat on the Mississippi River. Second, the process can serve as a pre-evaluation tool during pre-spill planning to identify conditions when a proposed product would be most effective.

One advantage of the ARTES process is that it provides a management system for addressing the numerous proposals submitted by vendors and others during a spill. Subjecting all proposals to the same degree of evaluation also ensures that vendors are considered on a “level playing field.”

Although developed for one geographic region, the ARTES process quickly became adopted by others around the country and has been included in numerous local and regional response plans.

Once the ARTES process was codified, several products including an oil solidifier and a bioremediation agent underwent regional pre-spill evaluations. Personally, I was involved in several of those evaluations as well as one during an actual spill.

A Flood of Oil … and Ideas

A super tanker ship with a large slit in the bow anchored in the Gulf of Mexico.

The super tanker “A Whale” after testing during the Deepwater Horizon oil spill. The skimming slits on its bow are being sealed because it was not able to perform as designed. This vessel design was one of more than 80,000 proposals for surface oil spill response submitted during the spill. (NOAA)

Another defining moment for the ARTES process came in 2010 during the Deepwater Horizon oil spill. Within the first week of the spill, the unified command, the multi-agency organization which coordinates the response and includes those responsible for the spill, was inundated with suggestions to cap the leaking well and clean up the oil released into the Gulf of Mexico.

At one of the morning coordination meetings, the BP incident commander shared his frustration in keeping up with the deluge of offers. He asked if anyone had a suggestion for dealing with all of them. My hand shot up immediately.

After the meeting I spoke with leaders from both BP and the U.S. Coast Guard and described the ARTES process to them. They gave me the go-ahead to implement it. Boy, did I not know what we were in for!

As the days went by, the number of submissions kept growing, and growing, and growing. What started out as a one-person responsibility—recording submissions by phone and email—was soon taken over by a larger group staffed by the Coast Guard and California Office of Spill Prevention and Response and which eventually grew into a special unit of the response.

A dedicated website was created to receive product proposals and ideas, separate them into either a spill response or well capping method, track their progress through the evaluation system, and report the final decision to archive the idea, test it, or put it to use during the spill.

People who submitted ideas were able to track submissions and remain apprised of each one’s progress. Eventually, 123,000 individual ideas were submitted and tracked, 470 made the initial cut, 100 were formally evaluated, and about 30 were implemented during response field operations. Of the original 123,000 submissions, there were 80,000 subsurface and 43,000 surface oil spill response ideas.

One of the many proposals for cleaning up the oil took the form of the ship A Whale. It was a super tanker with a large slit in the bow at the waterline that was meant to serve as a huge skimmer, pulling oil off the ocean surface. Unfortunately, testing revealed that it didn’t work.

Some other examples of submissions included sand-cleaning machines and a barge designed to be an oil skimming and storage device (nicknamed the “Bubba Barge”) that actually did work. On the other hand, popular proposals such as human hair, feathers, and pool “noodles” didn’t perform very well.

Even under the weight of this incredible outpouring of proposals, the ARTES process held up, offering a great example of how far pre-planning can go.

Ed Levine.

Ed Levine is the Response Operations Supervisor – East for NOAA’s Office of Response and Restoration, managing Scientific Support Coordinators from Maine to Texas.

 


Leave a comment

Redrawing the Coast After Sandy: First Round of Updated Environmental Sensitivity Data Released for Atlantic States

Contsruction equipment moves sand to rebuild a New Jersey beach in front of houses damaged during Hurricane Sandy.

In Brick, New Jersey, construction crews rebuild the beaches in front of homes damaged by Hurricane Sandy. This huge storm actually changed the shape of shorelines up and down the East Coast. (Federal Emergency Management Agency/FEMA)

This is a post by the Office of Response and Restoration’s Jill Petersen.

In 2012 Hurricane Sandy brought devastating winds and flooding to the Atlantic coast. In some parts of New Jersey, flood waters reached nearly 9 feet. Up and down the East Coast, this massive storm actually reshaped the shoreline.

As a result, we’ve been working to update our Environmental Sensitivity Index (ESI) maps to reflect the new state of Atlantic shorelines. These maps and data give oil spill planners and responders a quick snapshot of a shoreline’s vulnerability to spilled oil.

This week, we released the digital data, for use within a Geographic Information System (GIS), for the first regions updated after Hurricane Sandy. Passed the January following Sandy, the Disaster Relief Appropriations Act of 2013 provided funds to update ESI maps for eleven Atlantic coast states, ranging from Maine to South Carolina. For this project, we grouped the states into seven regions.

The GIS data for the regions released this week cover South Carolina and portions of New York and New Jersey, including the Hudson River, south Long Island, and the New York–New Jersey metropolitan area. For these two regions, we mapped more than 300 oil-sensitive species and classified over 17,000 miles of shoreline according to their sensitivity to spilled oil.

Updated GIS data and PDF maps for the remaining regions affected by Sandy will be available in the coming months.

Time for a Change

The magnitude of the overall effort has been unprecedented, and provided us with the opportunity to revisit what was mapped and how, and to update the technology used, particularly as it relates to the map production.

Our first Environmental Sensitivity Index maps were produced in the early 1980s and, since that time, the entire U.S. coast has been mapped at least once. To be most useful, these data should be updated every 5–7 years to reflect changes in shoreline and species distributions that may occur due to a variety of things, including human intervention, climate change, or, as in this case, major coastal storms.

In addition to ranking the sensitivity of different shorelines (including wetlands and tidal flats), these data and maps also show the locations of oil-sensitive animals, plants, and habitats, along with various human features that could either be impacted by oil, such as a marina, or be useful in a spill response scenario, such as access points along a beach.

New Shores, New Features

A street sign is buried under huge piles of sand in front of a beach community.

In the wake of Sandy, we’ve been updating our Environmental Sensitivity Index maps and data and adding new features, such as storm surge inundation data. Hurricane Sandy’s flooding left significant impacts on coastal communities in eleven Atlantic states. (Federal Emergency Management Agency/FEMA)

To gather suggestions for improving our ESI maps and data, we sent out user surveys, conducted interviews, and pored over historical documentation. We evaluated all suggestions while keeping the primary users—spill planners and responders—at the forefront. In the end, several major changes were adopted, and these improvements will be included in all future ESI maps and data.

Extended coverage was one of the most requested enhancements. Previous data coverage was focused primarily on the shoreline and nearshore—perhaps 2–3 miles offshore and generally less than 1 mile inland. The post-Sandy maps and data extend 12 nautical miles offshore and 5 miles inland.

This extension enables us to include data such as deep water species and migratory routes, as well as species occurring in wetlands and human-focused features found further inland. With these extra features, we were able to incorporate additional hazards to the coastal environment. One example was the addition of storm surge inundation data, provided by NOAA’s National Hurricane Center, which provide flood levels for storms classified from Category 1 to Category 5.

We also added more jurisdictional boundaries, EPA Risk Management Facilities (the EPA-regulated facilities that pose the most significant risk to life or human health), repeated measurement sites (water quality, tide gauges, Mussel Watch sites, etc.), historic wrecks, and locations of coastal invasive species. These supplement the already comprehensive human-use features that were traditionally mapped, such as access points, fishing areas, historical sites, and managed areas.

The biological data in our maps continue to represent where species occur, along with supporting information such as concentration, seasonal variability, life stage and breeding information, and the data source. During an oil spill, knowing the data source (e.g., the U.S. Fish and Wildlife Service) is especially important so that responders can reach out for any new information that could impact their approach to the spill response.

A new feature added to the biological data tables alerts users as to why a particular species’ occurrence may warrant more attention than another, providing context such as whether the animals are roosting or migrating. As always, we make note of state and federal threatened, endangered, or listed species.

Next up

Stay tuned for the digital data and PDF maps for additional Sandy-affected regions. While the updated PDF maps will have a slightly different look and feel than prior ones, the symbology and map links will be very familiar to long-time users.

In the meantime, we had already been working on updating ESI maps for two regions outside those funded by the Disaster Relief Appropriations Act. These regions, the outer coast of Washington and Oregon and the state of Georgia, have benefited from the general improvements brought about by this process. As of this week, you can now access the latest GIS data for these regions as well.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.


Leave a comment

How Do We Use Satellite Data During Oil Spills?

This is a post by NOAA’s George Graettinger with Amy MacFadyen.

A view of the Deepwater Horizon oil spill from NASA's Terra Satellites.

A view of the Deepwater Horizon oil spill from NASA’s Terra Satellites on May 24, 2010. When oil slicks are visible in satellite images, it is because they have changed how the water reflects light, either by making the sun’s reflection brighter or by dampening the scattering of sunlight, which makes the oily area darker. (NASA)

Did you know satellites measure many properties of the Earth’s oceans from space? Remote sensing technology uses various types of sensors and cameras on satellites and aircraft to gather data about the natural world from a distance. These sensors provide information about winds, ocean currents and tides, sea surface height, and a lot more.

NOAA’s Office of Response and Restoration is taking advantage of all that data collection by collaborating with NOAA’s Satellite and Information Service to put this environmental intelligence to work during disasters such as oil spills and hurricanes. Remote sensing technology adds another tool to our toolbox as we assess and respond to the environmental impacts of these types of disasters.

In these cases, which tend to be larger or longer-term oil spills, NOAA Satellites analyzes earth and ocean data from a variety of sensors and provides us with data products such as images and maps. We’re then able to take that information from NOAA Satellites and apply it to purposes ranging from detecting oil slicks to determining how an oil spill might be impacting a species or shoreline.

Slick Technology

During an oil spill, observers trained to identify oil from the air go out in helicopters and planes to report an oil slick’s exact location, shape, size, color, and orientation at a given time. Analogous to this “remote sensing” done by the human eye, satellite sensors can help us define the extent of an oil slick on the ocean surface and create a target area where our aerial observers should start looking for oil.

In the case of a large oil spill over a sizable area such as the Gulf of Mexico, this is very important because we can’t afford the time to go out in helicopters and look everywhere or sometimes weather conditions may make it unsafe to do so.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA.

The three blue shapes represent the NOAA oil spill trajectory for May 17, 2010, showing potential levels of oiling during the Deepwater Horizon oil spill. The green outline represents the aerial footprint or oil extent for the same day, which comes from the NOAA satellite program. All of these shapes appear on a NASA MODIS Terra Satellite background image, as shown in our online response mapping program ERMA. (NOAA)

Satellite remote sensing typically provides the aerial footprint or outline of the surface oil (the surface oiling extent). However, oil slicks are patchy and vary in the thickness of the oil, which means having the outline of the slick is useful, but we still need our observers to give us more detailed information. That said, we’re starting to be able to use remote sensing to delineate not just the extent but also the thickest parts of the slicks.

Armed with information about where spilled oil may be thickest allows us to prioritize these areas for cleanup action. This “actionable oil” is in a condition that can be collected (via skimmers), dispersed, or burned as part of the cleanup process.

You can see how we mapped the surface oiling extent during the Deepwater Horizon spill based on data analyses from NOAA Satellites into our online response mapping program ERMA.

A Model for the Future

A common use of remotely sensed data in our work is with our oil spill models. Reports of a slick’s extent from both satellite sensors and aerial observers, who report additional information about constantly changing oil slicks, helps our oceanographers improve the forecasts of where the oil will be tomorrow.

Just as weather forecasters continually incorporate real-time observations into their models to improve accuracy, our oceanographers update oil spill trajectory models with the latest overflights and observations of the surface oiling extent (the area where oil is at a given moment). These forecasts offer critical information that the Coast Guard uses to prioritize spill response and cleanup activities.

A Sense of Impact

Oil at the water's surface in a boat wake.

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. One use was detecting the outline of oil slicks on the ocean surface. (NOAA)

Over the course of an oil spill, knowing the surface oiling extent and where that oil is going is important for identifying what natural resources are potentially in harm’s way and should be protected during the spill response.

In addition, the data analyses from remote sensing technology directly support our ability to determine how natural resources, whether salt marshes or dolphins, are exposed to spilled oil. Both where an oil slick is and how often it is there will affect the degree of potential harm suffered by sensitive species and habitats over time.

In recent years, we’ve been learning how to better use the remote sensing data collected by satellite and aircraft to look at how, where, and for how long coastal and marine life and habitats are impacted by oil spills and then relate this oil exposure to actual harm to these resources.

Large amounts of oil that stay in the same place for a long time have the potential to cause a lot more harm. For example, dolphins in a certain impacted area might breathe fumes from oil and ingest oil from food and water for weeks or months at a time. Without remotely sensed data, it would be nearly impossible to accomplish this task of tying the exact location and timing of oil exposure to environmental harm.

Remote Opportunities

The 2010 Deepwater Horizon oil spill provided us with a number of new opportunities to work with remotely sensed data. For example, we used this technology to examine the large scale features of the circulation patterns in the Gulf of Mexico, such as the fast-moving Loop Current and associated eddies. The Loop Current is a warm ocean current that flows northward between Cuba and Mexico’s Yucatán Peninsula, moves north into the Gulf of Mexico, then loops east and south before exiting through the Florida Straits and ultimately joining the Gulf Stream.

During this oil spill, there were concerns that if the oil slick entered the Loop Current, it could be transported far beyond the Gulf to the Caribbean or up the U.S. East Coast (it did not). NOAA used information from satellite data to monitory closely the position of the slick with respect to the Loop Current throughout the Deepwater Horizon oil spill.

Our partnership with NOAA’s Satellite and Information Service has been a fruitful one, which we expect to grow even more in the future as technology develops further. In January, NOAA Satellites launched the Jason-3 satellite, which will continue to collect critical sea surface height data, adding to a satellite data record going back to 1992. One way these data will be used is in helping track the development of hurricanes, which in turn can cause oil spills.

We hope ongoing collaboration across NOAA will further prepare us for the future and whatever it holds.


Leave a comment

What Are Our Options for Restoring Lands Around Washington’s Hanford Nuclear Reservation?

Shrub-covered plains next to the Columbia River and bluffs beyond.

The dry shrub-steppe habitat at Washington’s Hanford Nuclear Reservation is rare for the region because it is so extensive, intact, and relatively healthy. (Department of Energy)

Many people might be inclined to write off the wide, dry plains stretching around the Hanford Nuclear Reservation as lost lands. After all, this area in eastern Washington was central to the top-secret Manhattan Project, where plutonium was produced for nuclear bombs used against Japan near the end of World War II. In addition, nuclear production continued at Hanford throughout the Cold War, ending in 1987.

This history left an undeniable legacy of pollution, which is still being studied and addressed today.

Yet this land and the Columbia River that curves in and around it are far from being irredeemable. The Hanford site encompasses 586 square miles. Yes, some parts of Hanford have been degraded by development from its nine (now decommissioned) nuclear reactors and associated processing plants and from chemical and radionuclide contamination.

But the site also includes vast, continuous tracts of healthy arid lands that are rare in a modern reality where little of nature remains untouched by humans.

Where We Are and Where We’re Going

This potential is precisely what encourages Christina Galitsky, who recently joined NOAA’s Office of Response and Restoration to work on the Hanford case. Currently, she is leading a study at Hanford as part of a collaborative effort known as a Natural Resource Damage Assessment, a process which is seeking to assess and make up for the years of environmental impacts at the nuclear site.

“The purpose of our study is to begin to understand habitat restoration options for Hanford,” Galitsky explained. “We are starting with terrestrial habitats and will later move to the aquatic environment.”

A worker drains a pipe that contains liquid chromium next to a nuclear reactor.

From the 1940s to 1980s, the Hanford site was used to produce plutonium in nuclear weapons, and which today is home to the largest environmental cleanup in the United States. Here, a cleanup worker deals with chromium pollution near one of the decommissioned nuclear reactors. (Department of Energy)

NOAA is involved with eight other federal, state, and tribal organizations that make up the Hanford Natural Resource Trustee Council, which was chartered to address natural resources impacted by past and ongoing releases of hazardous substances on the Hanford Nuclear Reservation.

The study, begun in the summer of 2015, will be crucial for helping to inform not only restoration approaches but also the magnitude of the environmental injury assessment.

“We want to understand what habitat conditions we have at Hanford now,” Galitsky said, “what restoration has been done in similar dry-climate, shrub-steppe habitats elsewhere and at Hanford; what restoration techniques would be most successful and least costly over the long term; and how to best monitor and adapt our approaches over time to ensure maximum ecological benefit far into the future.”

The Hanford site is dominated by shrub-steppe habitat. Shrub-steppe is characterized by shrubs, such as big sagebrush, grasses, and other plants that manage to survive with extremely little rainfall. The larger Hanford site, comprised of the Hanford Reach National Monument and the central area where nuclear production occurred, contains the largest blocks of relatively intact shrub-steppe habitat that remain in the Columbia River Basin.

More Work Ahead

Roads and facilities of Hanford next to the Columbia River with bluffs and hills beyond.

The Hanford site, which the Columbia River passes through, encompasses 586 square miles of sweeping plains alongside an atomic legacy. (Department of Energy)

Galitsky’s team includes experts from NOAA, the Washington Department of Fish and Wildlife, and other trustees involved in the damage assessment. For this study, they are reviewing reports, visiting reference and restoration sites in the field, creating maps, and organizing the information into a database to access and analyze it more effectively.

They presented their preliminary results to the trustee council in November. So far, they are finding that limited restoration has been done at Hanford, and, as is fairly common, long-term data tracking the success of those efforts are even more limited. Over the next six months, they will expand their research to restoration of similar shrub-steppe habitats elsewhere in the Columbia Basin and beyond.

Thanks to additional funding that stretches into 2017, the team will begin a second phase of the study later this year. Plans for this phase include recommending restoration and long-term habitat management approaches for the trustee council’s restoration plan and examining the benefits and drawbacks of conducting shrub-steppe restoration both on and off the Hanford site.

Steppe up to the Challenge

Two American White Pelicans fly over the Columbia River and Hanford's shrubby grasslands.

A surprising diversity of plants and animals, such as these American White Pelicans, can be found in the lands and waters of Hanford. (NOAA)

The natural areas around Hanford show exceptional diversity in a relatively small area. More than 250 bird species, 700 plant species, 2,000 insect species, and myriad reptiles, amphibians, and mammals inhabit the site. In addition, its lands are or have been home to many rare, threatened, and sensitive plants, birds, reptiles, and mammals, such as the Pygmy rabbit

Furthermore, the shrub-steppe habitat at Hanford holds special significance because this habitat is so rare in the Columbia Basin. Elsewhere in the region, urban and agricultural development, invasive species, and altered fire regimes continue to threaten what remains of it. As Galitsky points out, “At Hanford there is an opportunity to restore areas of degraded shrub-steppe habitat and protect these unique resources for generations.”

Restoring habitats on or near the Hanford site may create benefits not only on a local level but also more broadly on a landscape scale. These efforts have the potential to increase the connectivity of the landscape, creating corridors for wildlife and plants across the larger Columbia River Basin. The team will be evaluating these potential landscape-scale effects in the second phase of this project. Stay tuned.

Follow

Get every new post delivered to your Inbox.

Join 685 other followers