NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

How Is an Oil Spill in a River Different Than One in the Ocean?

Boat with boom next to oil mixed with river bank vegetation.

The often complex, vegetated banks of rivers can complicate cleaning up oil spills. (NOAA)

Liquid asphalt in the Ohio River. Slurry oil in the Gulf of Mexico. Diesel in an Alaskan stream. Each of these oil spills was very different from each other, partly because they involved very different types of oils.

But even if the same type of oil were spilled in each case, the results would be just as distinct because of where they occurred—one in a large inland river, one in the open ocean, and one in a small coastal creek.

In many cases, oil tends to float. But just because an oil floats in the saltwater of the Atlantic Ocean doesn’t mean it will float in the constantly moving freshwater of the Mississippi River.

But why does that happen? And what else can we expect to be different when oil spills into a river and not the ocean?

Don’t Be Dense … Blame Density

To answer the first question: When oil floats, it is generally because the oil is less dense than the water it was spilled into. The more salt is dissolved in water, the greater the water’s density. This means that saltwater is denser than freshwater. Very light oils, such as diesel, have low densities and would float in both the salty ocean and freshwater rivers.

However, very heavy oils may sink in a river (but perhaps not on the ocean), which is what happened when an Enbridge pipeline carrying a diluted form of oil from oil sands (tar sands) leaked into Michigan’s flooded Kalamazoo River in 2010. The lighter components of the oil quickly evaporated into the air, leaving the heavier components to drift in the water column and sink to the river bottom. That created a whole slew of new challenges as responders tried new methods of first finding and then cleaning up the difficult-to-access oil.

Going with the Flow

In rivers, going with the flow usually means going downstream. Except when it doesn’t. When might a river’s currents carry spilled oil upstream?

At the mouth of a river, where it meets the ocean, a large incoming tide can enter the river and overwhelm the normal downstream currents. That could potentially carry oil floating on the surface back upstream.

In open areas, such as on the ocean surface, both winds and currents have the potential to direct where spilled oil goes. And along most coasts, wind is what brings spilled oil onto shore.

In rivers, however, the downstream currents usually dominate the overall movement of oil while wind direction often determines which side of the river oil ends up on.

Locks and Other Blocks

Unlike the ocean, rivers sometimes feature structures such as dams, locks, and other barriers that block or slow down the free flow of water. During an oil spill on a river, these structures can also slow down the movement of oil.

That’s a helpful feature for responders who are trying to catch up to and clean up that oil. Frequently, dams and locks cause oil to pool up on the surface next to them. Some of the tools responders use to collect oil from these areas include skimmers, which are devices that remove thin layers of oil from the surface, and sorbent pads and booms, which are large squares and long tubes of special material that absorb oil but not water.

In fact, the banks of the river can constrain spilled oil as well. Because the oil can’t spread as far or thin as in open water, oil slicks can be thicker on rivers, and recovery efforts can be more effective.

One exception is the case of flow-over dams, known as weirs. The water passing over weirs can be very turbulent, causing oil to disperse into the water column. If it is very light oil and there’s not very much, that oil tends not to resurface and form another slick. But sheens may resurface with heavier oils that might be broken up going over a weir but later resurface as the water it is traveling in becomes calmer downstream.

Vegging Out

Oil rings on trees next to a river with boom.

Flooding on the Kalamazoo River in Michigan during the Enbridge pipeline oil spill left a ring of oil around trees and other vegetation after the river returned to its normal level. (NOAA)

Often, plants grow in rivers and line their banks, whereas many parts of the coast are open sandy or rocky beaches, which tend to be easier to clean oil off of than vegetation. (Salt marshes and mangroves being notable oceanic exceptions.) If oil gets past booms, the long floating barriers responders use to prevent the spread of oil, and leaves a coating on plants, then plant cleanup options generally include cutting, burning, treating with chemical shoreline cleaners, or flushing vegetation with low-pressure water.

Plant life actually became an issue during the oil sands spill in Michigan’s Kalamazoo River. Because this river was flooded at the time of the spill and later returned to its normal level, oil on the river surface actually became stranded in tree branches along the riverbanks.

Muddying the Waters

Another issue for oil spills in rivers is sediment. Rivers often carry a lot of sediment in their currents. (How do you think the Mississippi got its nickname “Big Muddy”?) That means when oil droplets drift into the water column of a river, the sediment has the potential to stick to the oil droplets. Eventually (depending on how strong-flowing and full of sediment a river is) some of the oil-sediment combination may settle out to the bottom of the river, usually near the river mouth as the water slows down and reaches the ocean.

One notable example is related to an oil spill that happened on the Mississippi River in New Orleans in 2008. The tanker Tintomara collided with Barge DM932, ripping it in half and releasing all of the heavy fuel oil it was carrying. Downstream of where the responders were cleaning up oil, the Army Corps of Engineers was dredging the sediments that build up at the mouth of the Mississippi and an oily sheen appeared in the collected sediment.

Responders suspected the oil from Barge DM932 had mixed with the river sediment and fell to the bottom further downstream as the river neared the Gulf of Mexico.

Learn more about oil spills in rivers at http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/oil-spills-rivers.html.


Leave a comment

Resilience Starts with Being Ready: Better Preparing Our Coasts to Cope with Environmental Disasters

This is a post by Kate Clark, Acting Chief of Staff with NOAA’s Office of Response and Restoration.

If your house were burning down, who would you want to respond? The local firefighters, armed with hoses and broad training in first aid, firefighting, and crowd management? Or would your panicked neighbors running back and forth with five-gallon buckets of water suffice?

Presumably, everyone would choose the trained firefighters. Why?

Well, because they know what they are doing! People who know what they are doing instill confidence and reduce panic—even in the worst situations. By being prepared for an emergency, firefighters and other responders can act quickly and efficiently, reducing injuries to people and damage to property.

People who have considered the range of risks for any given emergency—from a house fire to a hurricane—and have formed plans to deal with those risks are more likely to have access to the right equipment, tools, and information. When disaster strikes, they are ready and able to respond immediately, moving more quickly from response to recovery, each crucial parts of the resilience continuum. If they prepared well, then the impacts to the community may not be as severe, creating an opportunity to bounce back even faster.

Having the right training and plans for dealing with disasters helps individuals, communities, economies, and natural resources better absorb the shock of an emergency. That translates to shorter recovery times and increased resilience.

This shock absorption concept applies to everything from human health to international emergency response to coastal disasters.

For example, the Department of Defense recognizes that building a culture of resilience for soldiers depends on early intervention. For them, that means using early education and training [PDF] to ensure that troops are “mission ready.” Presumably, the more “mission ready” a soldier is before going off to war, the less recovery will be needed, or the smoother that process will be, when a soldier returns from combat.

Similarly, the international humanitarian response community has noted that “resilience itself is not achievable without the capacity to absorb shocks, and it is this capacity that emergency preparedness helps to provide” (Harris, 2013 [PDF]).

NOAA’s Office of Response and Restoration recognizes the importance of training and education for preparing local responders to respond effectively to coastal disasters, from oil spills caused by hurricanes to severe influxes of marine debris due to flooding.

Coastline of Tijuana River National Estuarine Research Reserve in southern California.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources, helping coasts bounce back to health even more quickly. (NOAA)

In fiscal year 2014 alone, we trained 2,388 emergency responders in oil spill response and planning. With more coastal responders becoming more knowledgeable in how oil and chemicals behave in the environment, more parts of the coast will become better protected against a disaster’s worst effects. In addition to trainings, we are involved in designing and carrying out exercises that simulate an emergency response to a coastal disaster, such as an oil spill, hurricane, or tsunami.

Furthermore, we are always working to collect environmental data in our online environmental response mapping tool, ERMA, and identify sensitive shorelines, habitats, and species before any disaster hits. This doesn’t just help create advance plans for how to respond—including guidance on which areas should receive priority for protection or response—but also helps quickly generate a common picture of the situation and response in the early stages of an environmental disaster response.

After the initial response, NOAA’s Office of Response and Restoration is well-positioned to conduct rapid assessments of impacts to natural resources. These assessments can direct efforts to clean up and restore, for example, an oiled wetland, reducing the long-term impact and expediting recovery for the plants and animals that live there.

Within NOAA, our office is uniquely qualified to provide critical science coordination and advice to the U.S. Coast Guard, FEMA, and other response agencies focused on coastal disaster operations. Our years of experience and scientific expertise enable us to complement their trainings on emergency response operations with time-critical environmental science considerations. The result helps optimize the effectiveness of a response and cushion the blow to an affected community, its economy, and its natural resources. Our popular Science of Oil Spills class, held several times a year around the nation, is just one such example.

Additionally, we are working with coastal states to develop response plans for marine debris following disasters, to educate the public on how we evaluate the environmental impacts of and determine restoration needs after oil and chemical spills, and to develop publicly available tools that aggregate and display essential information needed to make critical response decisions during environmental disasters.

You can learn more about our efforts to improve resilience through readiness at response.restoration.noaa.gov.

Kate Clark.Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for December 2015

Several response personnel at the harbor's edge.

NOAA spill specialists were among those responding when 233,000 gallons (1,400 tons) of molasses were spilled into Hawaii’s Honolulu Harbor in 2013. (U.S. Coast Guard)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of December 7, 2015 in Honolulu, Hawaii.

We will accept applications for this class until Friday, October 16, and we will notify applicants regarding their participation status by Friday, October 30, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

For Oil and Chemical Spills, a New NOAA Tool to Help Predict Pollution’s Fate and Effects

Dead crab on a beach with oily water and debris.

NOAA has released the software program CAFE to help responders dealing with pollution answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it? (Beckye Stanton, California Department of Fish and Wildlife)

Accidents happen. Sometimes, they happen at places with big consequences, such as at a fertilizer factory that uses the chemical ammonia as an active ingredient.

An accident in a place like that can lead to situations in which thousands of gallons of this chemical could, for example, be released into a drainage ditch leading to a nearby salt marsh.

When oil or chemicals are released into the environment like this, responders dealing with the pollution are often trying to answer two important questions: What’s going to happen to the contaminant released and what, if any, species will be harmed by it?

To help responders answer these questions, NOAA has just released to the public a new software program known as CAFE.

The Chemical Aquatic Fate and Effects Database

NOAA’s Chemical Aquatic Fate and Effects (CAFE) database allows anyone to determine the fate and toxicological effects of thousands of chemicals, oils, and dispersants when released into fresh or saltwater environments. CAFE has two major components: the Fate module, which predicts how a contaminant will behave in the environment, and the Effects module, which determines the chemical’s potential toxicity to different species.

In the Fate module, CAFE contains data, such as chemical properties, useful in understanding and predicting chemical behavior in aquatic environments.

For example, in our ammonia-in-water scenario, CAFE’s chemical property data would tell us that ammonia has a low volatilization rate (it doesn’t readily change in form from liquid or solid to gas) and is very soluble in water. That means if spilled into a body of water, ammonia would dissolve in the water and stay there.

In the Effects module, CAFE contains data about the acute toxicity—negative, short-term impacts from short-term exposure—of different chemicals. This module plots that data on graphs known as “Species Sensitivity Distributions.” These graphs show a curved line ranking the relative sensitivity of individual species of concern, from the most sensitive to the least sensitive, to a particular chemical over a given period of exposure (ranging from 24 to 96 hours).

Graph showing the range in sensitivity of aquatic species to 48 hour exposure to ammonia.

The reactions of different species to chemicals can vary widely. The CAFE database produces these species sensitivity graphs showing the range in sensitivity of select aquatic species to certain chemicals after a given length of exposure. (NOAA)

Again turning to our scenario of an ammonia spill in a salt marsh, the graph here shows how a range of aquatic species, which the user selects from the program, would be affected by a 48 hour exposure to ammonia. The Taiwan abalone (a type of aquatic snail) is the most sensitive species because many of these snails would be affected at lower concentrations of ammonia, falling into the orange, highly toxic zone.

On the other hand, the brine shrimp is the least sensitive of this group because these shrimp would have to be exposed to much higher concentrations of ammonia to be affected. Thus the brine shrimp falls into the green, practically nontoxic zone. However, most of the data in this graph seem to fall into the moderately or slightly toxic zones, meaning that ammonia is a toxic chemical of concern.

Using these data from CAFE, you then assess the potential impact of the ammonia spill to the aquatic environment.

Download the Software

You can download version 1.1 of the Chemical Aquatic Fate and Effects (CAFE) database from NOAA’s Office of Response and Restoration website at http://response.restoration.noaa.gov/cafe.

Adding to our collection of spill response resources, CAFE will serve as a one-stop, rapid response tool to aid spill responders in their assessment of environmental impacts from chemical and oil spills.


Leave a comment

To Bring Back Healthy California Ocean Ecosystems, NOAA and Partners Are “Planting” Long-Lost Abalone in the Sea

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

Diver placing PVC tube with small sea snails on the rocky seafloor.

A diver places a PVC tube filled with young green abalone — sea snails raised in a lab — on the seafloor off the southern California coast. (NOAA)

They weren’t vegetables but an excited group of scuba divers was carefully “planting” green abalone in an undersea garden off the southern California coast all the same. Green abalone are a single-shelled species of sea snail whose population has dropped dramatically in recent decades.

On a Wednesday in mid-June, these oceanic “gardeners”—NOAA biologists along with key partners including The Nature Conservancy, The Bay Foundation, and The SEA Lab—released over 700 young green abalone into newly restored kelp forest areas near Palos Verdes, California. This was the first time in over a decade that juvenile abalone have been “outplanted,” or transplanted from nursery facilities, to the wild in southern California.

Spawned and reared at The SEA Lab in Redondo Beach, California, all of the juvenile abalone were between two and four years old and were between a quarter inch and 3 inches in size. Biologists painstakingly tagged each abalone with tiny identifying tags several weeks prior to their release into the wild.

Leading up to outplanting day, microbiologists from the California Department of Fish and Wildlife had to run rigorous tests on a sample of the juvenile abalone to certify them as disease-free before they were placed into the ocean. Several days before transferring them, biologists placed the abalone in PVC tubes with netting on either end for easy transport.

“This was just a pilot outplanting with many more larger-scale efforts to come in the near future,” stated David Witting from NOAA’s Restoration Center. “We wanted to go through all of the steps necessary to successfully outplant abalone so that it would be second nature next time.”

Witting and a team of divers will be going out over the next six to twelve months to monitor the abalone—checking for survival rates and movement of the abalone. “We expect to find some abalone that didn’t survive the transfer to the wild but probably a good number of them will move into the cracks and crevices of rocky reef outcroppings immediately.”

Why Abalone?

PVC tube filled with green abalone lodged into the rocky seafloor.

After testing and refining the techniques to boost the population of green abalone in the wild, scientists then will apply them to help endangered white and black abalone species recover. (NOAA)

All seven abalone species found along the U.S. West Coast have declined and some have all but disappeared. White and black abalone, in particular, are listed as endangered through the Endangered Species Act (ESA). Three abalone species (green, pinto, and pink) are listed as Species of Concern by NOAA Fisheries, a designation meant to protect the populations from declining further and which could result in an ESA listing. The two remaining abalone species, reds and flats, are protected and managed by states along the U.S. West Coast.

Historically, the main cause of abalone’s demise was a combination of overfishing and disease. Today, many other threats, such as poaching, climate change, oil spills, and habitat degradation, contribute to the decline of abalone and could impact the health of future populations.

The recent green abalone outplanting was one of the many steps needed to advance the recovery of all abalone species. Methods for rearing and outplanting are first being tested using green abalone because this species is more abundant in the wild. Once the methods are refined, they then will be employed to recover endangered white and black abalone—both species which are currently living on the brink of extinction.

What the Future Holds

A small green abalone eats red algae stuck to a plastic rack.

A young green abalone, reared in a lab in southern California, grazes on red algae. Raising these sea snails in a lab requires a lot of resources, prompting scientists to explore other approaches for boosting wild abalone populations. (Credit: Brenda Rees, with permission)

In particular, biologists are hoping to refine a technique they are coining “deck-spawning” as a way to outplant abalone in the future. Maintaining abalone broodstock and rearing them in a lab requires a lot of resources, funding, and time. This monumental effort has spurred biologists to develop an initially successful, alternate approach, which involves inducing mature, wild abalone to spawn on the deck of a boat.

The scientists then take the viable abalone larvae that develop and release them in a habitat where the young abalone are likely to settle and thrive. Immediately after spawning, the parent abalone can then be returned to the wild where they can continue to be a component of the functioning ocean ecosystem.

The green abalone outplanting project is part of a broader effort to restore abalone but is also playing an important role in work being done by NOAA’s Montrose Settlements Restoration Program to restore southern California’s kelp forests. In southern California, fish habitat has been harmed by decades of toxic pollution dumped into the marine environment. After clearing areas that would be prime kelp habitat if not for the unnaturally high densities of sick and stressed sea urchins, NOAA and our partners have seen kelp bounce back once given relief from those overly hungry urchins.

While abalone also eat seaweed, including kelp, they are a natural competitor of urchins in this environment and will help keep urchin populations in check, ultimately allowing a healthy kelp forest community to return.

Watch as divers transport the young abalone using PVC tubes and release them on the rocky seafloor off California’s coast:

Gabrielle Dorr

Gabrielle Dorr.

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California, where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.


Leave a comment

From Building B-17 Bombers to Building Habitat for Fish: The Reshaping of an Industrial Seattle River

Imagine living in as little as two percent of your home and trying to live a normal life. That might leave you with something the size of a half bathroom.

Now imagine it’s a dirty half bathroom that hasn’t been cleaned in years.

Gross, right? As Muckleshoot tribal member Louie Ungaro recently pointed out, that has been roughly the situation for young Chinook salmon and Steelhead trout for several decades as they pass through the Lower Duwamish River in south Seattle, Washington.

Salmon and Steelhead trout, born in freshwater streams and creeks in Washington forests, have to make their way to the Puget Sound and then the ocean through the Duwamish River. However, this section of river has been heavily industrialized and lacks the clean waters, fallen trees, huge boulders, and meandering side channels that would represent a spacious, healthy home for young fish.

Chair of his tribe’s fish commission, Ungaro sent a reminder that the health of this river and his tribe, which has a long history of fishing on the Duwamish and nearby rivers, are closely tied. “We’re no different than this river,” he implored. Yet he was encouraged by the Boeing Company’s recent cleanup and restoration of fish habitat along this Superfund site, a move that he hopes is “just a start.”

The Pace—and Price—of Industry

Starting as far back as the 1870s and stretching well into the twentieth century, the Lower Duwamish River was transformed by people as the burgeoning city of Seattle grew. The river was straightened and dredged, its banks cleared and hardened. Factories and other development lined its banks, while industrial pollution—particularly PCBs—poured into its waters.

More than 40 organizations are potentially responsible for this long-ago pollution that still haunts the river and the fish, birds, and wildlife that call it home. Yet most of those organizations have dragged their feet in cleaning it up and restoring the impacted lands and waters. However, the Boeing Company, a longtime resident of the Lower Duwamish River, has stepped up to collaborate in remaking the river.

Newly restored marsh and riverbank vegetation with protective ropes and fencing on the Duwamish River.

The former site of Boeing’s Plant 2 is now home to five acres of marsh and riverbank habitat, creating a much friendlier shoreline for fish and other wildlife. Protective fencing and ropes attempt to exclude geese from eating the young plants. (NOAA)

Boeing’s history there began in 1936 when it set up shop along 28 acres of the Duwamish. Here, the airplane manufacturer constructed a sprawling building known as Plant 2 where it—with the help of the women nicknamed “Rosie the Riveters”—would eventually assemble 7,000 B-17 bombers for the U.S. government during World War II. The Army Corps of Engineers even took pains to hide this factory from foreign spies by camouflaging its roof “to resemble a hillside neighborhood dotted with homes and trees,” according to Boeing.

But like many of its neighbors along the Duwamish, Boeing’s history left a mark on the river. At the end of 2011, Boeing tore down the aging Plant 2 to prepare for cleanup and restoration along the Duwamish. Working with the City of Seattle, Port of Seattle, and King County, Boeing has already removed the equivalent of thousands of railcars of contaminated sediment from the river bottom and is replacing it with clean sand.

From Rosie the Riveter to Rosie the Restorer

By 2013, a hundred years after the Army Corps of Engineers reshaped this section of the Duwamish from a nine mile estuary into a five mile industrial channel, Boeing had finished its latest transformation of the shoreline. It planted more than 170,000 native wetland plants and grasses here, which are interspersed with large piles of wood anchored to the shore.

Five acres of marsh and riverbank vegetation now line its shores, providing food, shelter, and calmer side channels for young fish to rest and grow as they transition from freshwater to the salty ocean.

Canada geese on an unrestored portion of the Duwamish River shoreline.

Protecting the newly restored shoreline, out of sight to the left, from Canada geese is a challenge to getting the young wetland plants established. Behind the geese, the artificial, rocky shoreline is a stark difference from the adjacent restored portion. (NOAA)

Now the challenge is to keep the Canada geese from eating all of the tender young plants before they have the chance to establish themselves. That is why protective ropes and fencing surround the restoration sites.

Already, biologists are beginning to see a change in the composition of the birds frequenting this portion of the river. Rather than the crows, starlings, and gulls typically associated with areas colonized by humans, birds such as herons and mergansers, a fish-eating duck, are showing up at the restoration sites. Those birds like to eat fish, which offers hope that fish such as salmon and trout are starting to make a comeback as well.

Of course, these efforts are only the beginning. Through the Natural Resource Damage Assessment process, NOAA looks forward to working with other responsible organizations along the Duwamish River to continue restoring its health, both for people and nature now and in the future.


Leave a comment

How to Keep Your Belongings From Becoming Trashed by Hurricanes

Destroyed dock and debris along a populated canal in Louisiana.

No matter the size of the storm, you and your family can take steps to reduce the likelihood of your stuff becoming storm debris. (U.S. Coast Guard)

Winds, heavy rains, flooding, storm surge. Hurricanes and other powerful storms can cause a lot of damage, both to people’s lives, of course, but also to the surrounding land and waters.

Docks, storage tanks, and buildings can be ripped off their foundations. Oil drums, shipping containers, and lumber can get swept away in floodwaters. A boat could end up in someone’s living room.

Much of this destruction introduces debris into coastal waterways and wetlands. This is one of several ways NOAA’s Office of Response and Restoration, through the NOAA Marine Debris Program, becomes involved after hurricanes.

While we can’t prevent hurricanes, we can prepare for them. That means doing everything you can to keep you, your family, and your belongings safe, far ahead of any natural disaster.

No matter the size of the storm, you and your family can take steps to reduce the likelihood of your stuff becoming storm debris. It is difficult to prevent buildings or large boats from becoming debris, especially during a large storm, but smaller items be safely stored or secured. After all, no one wants their patio umbrella to knock out a neighbor’s window before it ends up swimming with the fishes.

Here are a few ways to help protect yourself and your belongings in case of a hurricane:

  • Create a plan for your family and home [PDF], practice your evacuation route, and stock an emergency supply kit.
  • Secure yard items before a storm. Make a list of items to bring inside in case of hurricane-force winds or flooding. This could be patio furniture, lawn decorations, tools, trash cans, planters, etc.
  • Invest in storm-resilient building designs, which might include raising the level of your house for areas at high risk of flooding or installing a roof that can withstand high winds.
  • Boaters and fishers: Pull vessels and fishing gear out of the water before a storm. If you’re unable to remove the boat from the water, properly secure it [PDF].

A Boat out of Water

Boat half-sunk in Vermilion Bay, Lousiana.

Finding a safe and secure location for boats during a storm proves to be a huge challenge for many along the coasts, which is how a great deal of boats end up like this one after Hurricanes Katrina and Rita. (U.S. Coast. Guard)

Dealing with the large number of abandoned and derelict vessels after a storm is often a complicated and expensive ordeal. As a result, we should try to keep boats from ending up in this sorry state in the first place. Unfortunately, finding a safe and secure location for boats during a storm proves to be a huge challenge for many along the coasts.

A few areas do show promise in creating safe spaces for vessels during storms. One example is the Clean and Resilient Marina Initiative from the Gulf of Mexico Alliance, a regional partnership made up of the Gulf states. According to the alliance, “This improved program…provides additional recommendations to strengthen local marinas’ ability to withstand natural and man-made disasters.”

The initiative offers best management practices [PDF] for incorporating resilience and environmental responsibility into everything from the design and siting of marinas to strategies for evacuating them during a disaster.

Another example is the concept of “harbors of refuge,” which several organizations in Louisiana are looking to implement on public lands along the coast. A harbor of safe refuge is “a port, inlet, or other body of water normally sheltered from heavy seas by land and in which a vessel can navigate and safely moor.”

Providing resilient infrastructure able to withstand high winds and waters helps better protect boats, and offering these facilities on public lands creates opportunities for public funding to help pay for the upgrades or for salvage after a storm.

Taking on Disasters

The NOAA Marine Debris Program (MDP) is also taking a proactive approach to planning for disasters.

Cover of Alabama Incident Waterway Debris Response Plan, with damaged boats.

The NOAA Marine Debris Program worked with the State of Alabama to release the first in a series of comprehensive plans to help coastal states better prepare for an acute waterway debris release, such as in a hurricane. (NOAA)

In 2012, Congress expanded the program’s responsibilities to include “severe marine debris events,” which formalized their role in preparing for and responding to disaster debris.

This was in the wake of the 2011 Japan earthquake and tsunami, and states were struggling to deal with the tsunami debris—from small boats to massive docks—washing up on U.S. shores. Furthermore, the massive storm known as Sandy had recently hit the East Coast, leaving its own path of destruction along coastal waterways.

As a result, the NOAA MDP has started a proactive planning program for dealing with these types of large, disaster-related debris events. They began by working with the State of Alabama to develop a waterway debris emergency response plan and will now move on to work with other coastal states.

This effort includes both a comprehensive plan and field action guide which spells out information such as which agencies have authorities to remove disaster-related debris if it lands in a given waterway, as well as points of contact at those agencies. The plan is meant to be a broad, useful tool both for the NOAA MDP and the state in case of a natural disaster producing large amounts of debris.

To learn more about how you can prepare for hurricanes, visit NOAA’s National Hurricane Center at www.nhc.noaa.gov/prepare/, and read more about the NOAA Marine Debris Program’s efforts at marinedebris.noaa.gov/current-efforts/emergency-response.

Follow

Get every new post delivered to your Inbox.

Join 596 other followers