NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Sea Grant Reports: Dolphins, Sea Turtles and the Impacts from Deepwater Horizon

photo of a bottlenose dolphin calf. Image credit: NOAA.

A bottlenose dolphin calf in the Gulf of Mexico. Image credit: NOAA

Two popular marine animals—dolphins and sea turtles—are the focus of new publications from the Sea Grant Oil Spill Science Outreach Team. In the aftermath of the largest oil spill in history, many expressed concern about its impact on these long-lived, slow-to-mature creatures. Now, almost seven years after the spill, scientists have a better understanding of how they fared. The team examined this research, synthesizing peer-reviewed findings into two easy-to-understand outreach bulletins.

Starting in 2010 a month before the Macondo blowout, scientists documented more than 1,000 stranded dolphins and whales along the northern Gulf of Mexico. From 2010 until 2014, they examined the health and stranding patterns of dolphins along the coasts of Louisiana, Mississippi, Alabama, and Florida, discovering that oiled areas had more sick and dead dolphins.

Scientists also found many sick and stranded pre-term and newborn dolphins. Overall, young dolphins in the study area were eight times more likely to have pneumonia or inflamed lungs and 18 times more likely to show signs of fetal distress than those from areas outside the Gulf. The Deepwater Horizon’s impact on bottlenose dolphins report examines all of the factors, including oil that scientists think contributed to dolphin populations’ drop in numbers during this time.

The Sea turtles and the Deepwater Horizon oil spill report details the impacts on threatened or endangered sea turtles species in the Gulf. In total, scientists estimate that the oil spill and related response activities killed between 95,000 and 200,000 sea turtles. Lasting impacts of these losses may take time to become clear. For example, scientists do not fully understand how oil exposure affects sea turtles’ ongoing reproductive abilities. They continue to monitor sea turtle populations by counting numbers of nests, hatchlings, and adult females on beaches.

Sea turtle in water. Image credit: Texas Sea Grant/Pam Plotkin

A healthy green sea turtle swims in the Gulf of Mexico. Image credit: Texas Sea Grant/Pam Plotkin

More articles about the impacts of Deepwater Horizon on marine mammals:

 

Tara Skelton is the Oil Spill Science Outreach Team Communicator for the Mississippi-Alabama Sea Grant Consortium. The Sea Grant Oil Spill Science Outreach Program is a joint project of the four Gulf of Mexico Sea Grant College Programs, with funding from partner Gulf of Mexico Research Initiative. The team’s mission is to collect and translate the latest peer-reviewed research for those who rely on a healthy Gulf for work or recreation. To learn more about the team’s products and presentations, visit gulfseagrant.org/oilspillscience.


Leave a comment

How to Test for Toxicity

Oil washes onto a beach.

Oil washes onto the beach on the day of the spill at Refugio State Beach, May 19, 2015. Image credit: NOAA

What is toxicity? Most definitions would explain it as the degree to which a substance is poisonous.

Knowing a substance’s toxic levels is particularly important to federal agencies that use the information to test potential risks posed to people’s health and to the environment.

So how do scientists know how toxic something is and whether or not that substance—be it oil, chemical treating agents or toxic metals—will be toxic when introduced into marine or coastal waters?

The basic tool for determining toxicity of substances to marine and aquatic organisms is the toxicity test.

In its simplest form, toxicity testing is taking healthy organisms from a container of clean water and placing into one containing the same water with a known concentration of a pollutant. The observer then watches to see if, and when, it appears to become lethargic, sick or dies, and comparing those results to the organisms left in the clean water.

Complexities of toxicity testing

The testing process for determining toxicity in marine environments is detailed, rigorous, and time consuming.

There must be containers of both the uncontaminated (clean) water (called a control) and the pollutant-treated water; a bare minimum is five containers of each. The reason for the replications is the concept of variability. Given five test organisms, such as a fish species, there will be a range of sensitivity among them.

Having multiple testing samples allows scientists to determine the level toxic to the average organism and the level toxic to the most sensitive organism. Having more than one of the same organism in each test container is required; ten is standard.

It’s easy to see how a toxicity test grows in complexity: 50 specimens for the controls (10 in each of five replicate containers) and 50 more in the five treated containers (10 in each of five replicate treatment containers). That’s 100 organisms.

But then, to find out what concentrations of the toxicant are safe and which are not, there needs to be at least five different treatment concentrations, each with five containers and each container with 10 test organisms. Now we’re dealing with 600 test organisms and 60 test containers.

Observations over time

The next step in a toxicity test is recording the changes in the organisms over time. A standard observation period is daily, every 24 hours for at least 4 days (96 hours). For each interval of time, observations must be recorded for:

  • Each of the treatment and control containers
  • The numbers of organisms that are alive and normal
  • The number not doing well
  • The number dead

Then apply a statistical procedure to estimate the median concentration of the toxin that maimed or killed half the organisms and write up the results. The key is to write it up with enough information so that someone else can exactly duplicate the test.

Quality control against bias

Added to all this, the design of a toxicity test must include a number of features to insure there is no bias in the results.

  • The containers must be lined up randomly and given codes so that the researcher doesn’t know until the experiment is over which containers had which concentrations.
  • Water quality must be monitored to ensure that temperatures and oxygen remain the same in all containers.
  • Once the data is collected, the researcher must calculate the median lethal concentration, meaning the concentration of toxin that would kill half the test population.
  • Further, it is important not to rely only on one experiment. The whole thing should be repeated once or twice more to be convinced that the first effort was not a fluke.

Finally, the researcher must write a report that not only describes the experiment and results, but also puts them in context with similar data from other studies reported in the scientific literature.

Using toxicity data

These are the steps scientists go through to determine if a substance is toxic and at what concentration levels.

In reality, today, toxicity testing is even more complicated and detailed. There are now many measures of toxicity other than death or sickness: for example, many tests done today look at “endpoints” such as effects on enzyme systems, or changes in animal behavior or decreases in egg production.

The final use of toxicity data is comparison with concentrations measured or expected in the field. If the concentrations of a pollutant in the field are below any of the concentrations deemed “toxic” in the laboratory, it may well be that the pollutant is not a problem. If concentrations in the field are higher, then there is cause for concern.

 

By Alan Mearns, Ph.D. Mearns is an ecologist and senior staff scientist with the Emergency Response Division.


Leave a comment

From Toxic Dump to Wetland in Florida

Wetland bordered with plants.

Restored Raleigh Street Dump site. Image credit: NOAA

How do you return a  dumpsite to a natural area with productive wetlands? With the hard work of scientists, and federal and state officials.

The Raleigh Street Dump Site is located in an industrial area of Tampa, east of McKay Bay. The low-lying land was once pocked with sinkholes and littered with battery casings, furnace slag, trash, and construction debris dumped at the site from 1977 to 1991.

By 2009, the level of pollution was dire enough to land it on the U.S. Environmental Protection Agency’s National Priorities List, slating it for cleanup under the Superfund law. Years of illegal dumping had left the area filled with contaminated soil, sediment, and groundwater.

EPA investigations at the site found a number of chemical contaminants posing an unacceptable risk to human health and the environment, including oil-related compounds and heavy metals such as antimony, arsenic, and lead.

Cleanup and restoration activities at the Raleigh Street Dump Site were comprehensive and involved replacing contaminated soils with clean soils, removing contaminated sediments, planting grass, restoring wetland areas, and reducing the concentration of contaminants in the groundwater.

NOAA has worked closely with EPA over the years to ensure the cleanup at Raleigh Street Dump Site was protective of the environment. By the end, restoration actually resulted in an increase of wetland area at the site, more than doubling it to 2.6 acres.

The restoration work done at the Raleigh Street site is part of a larger overall conservation effort in a region that for decades had been experiencing environmental decline.

In April 2017, the U.S. Environmental Protection Agency Region 4 presented the Excellence in Site Re-Use Award. The ceremony included recognition of NOAA’s scientific work over the years on the cleanup and restoration.


Leave a comment

Meet the New CAMEO Chemicals Mobile App

Man in rpotective mask with fire in background.

Used by firefighters and other emergency responders, our hazardous chemicals database, CAMEO Chemicals, is now available as a mobile app. Image credit: U.S. Air Force

The joint NOAA-Environmental Protection Agency hazardous chemicals database is now available as a mobile app.

Named CAMEO Chemicals, the database has information on thousands of chemicals and hazardous substances, including response recommendations and predictions about explosions, toxic fumes, and other hazards. Firefighters and emergency planners around the world use CAMEO Chemicals to help them prepare for and respond to emergencies.

CAMEO Chemicals was already available as a desktop program, website, and mobile-friendly website. You can download the new app to view key chemical and response information on smartphones and tablets. Once downloaded, you can look up chemicals and predict reactivity without an internet connection—making it a valuable tool for emergency responders on the go. With an internet connection, you can access even more resources, like the National Institute for Occupational Safety and Health Pocket Guide to Chemical Hazards and International Chemical Safety Cards.

Image of smartphones and tablets.

Our hazardous chemicals database, CAMEO Chemicals, is now available as a mobile app. Image credit: NOAA

The app is packed with features, including:

  • Search by name, Chemical Abstracts Service number, or United Nations/North American number to find chemicals of interest in the database of thousands of hazardous substances.
  • Find physical properties, health hazards, air and water hazards, recommendations for firefighting, first aid, and spill response, and regulatory information.
  • Predict potential hazards that could arise if chemicals were to mix.
  • Quickly access additional resources like the U.S. Coast Guard Chemical Hazards Response Information System manual, the National Institute for Occupational Safety and Health Pocket Guide, and International Chemical Safety Cards.
  • Find response information from the Emergency Response Guidebook  and shipping information from the Hazardous Materials Table. Emergency Response Guidebook PDFs are available in English, Spanish, and French.
  • Save and share information with colleagues.

The mobile app is part of the CAMEO® software suite, a set of programs offered at no cost by NOAA’s Office of Response and Restoration and EPA’s Office of Emergency Management. This suite of programs was designed to assist emergency planners and responders to anticipate and respond to chemical spills.

You can download the new CAMEO Chemicals app in the Apple App store or Google Play Store.

 

Kristen Faiferlick of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Closing Down Damage Assessment After Deepwater Horizon

Shelves filled with jars.

The plankton archive contains over 130,000 samples from 19 different surveys conducted as part of the natural resources damage assessment. Plankton archive located at the Stennis Space Center in Mississippi. Image credit: NOAA

The environmental toll from the 2010 Deepwater Horizon oil spill disaster was enormous, demanding a massive deployment of people and materials to measure the adverse effects.

Federal and state agencies worked quickly to scale up the emergency response, clean up the spill, mount a large-scale effort to assess the injuries to wildlife and other natural resources, and record how these lost resources adversely affected the public.

When the cleanup was finished, and the injuries were determined, another challenge came: NOAA and other agencies had to close down the largest damage assessment field operation in the nation’s history.

During five years of field studies assessing the injuries to natural resources, more than one hundred thousand samples were collected.

Instead of discarding the samples once the assessment was over, and the BP settlement was completed, it made more sense to find other uses for the samples, and the valuable laboratory, field, and office equipment attained during the assessment work. In many cases, the cost of finding new homes for samples and equipment was cheaper than disposal.

Repurposing samples and equipment: the work goes on

Shutting down the assessment operations involved clearing out laboratories and warehouses filled with samples, field equipment, and supplies.

In most instances, only a portion of each sample was needed for analysis and by the end of 2015, NOAA had an extensive trove of environmental samples.

Recognizing that many research scientists might put these samples to good use, NOAA made the materials available by publishing announcements in professional society newsletters. After receiving about one hundred inquiries, staff and contractors began distributing more than 5,000 samples.

Additionally, some sample collections were archived in publicly available repositories, with other historical and scientifically valuable collections. Thousands of samples of plankton, fish, and other organisms collected during post-spill trawls in Gulf waters went to a NOAA archive in Stennis, Mississippi.

The Smithsonian Institution in Washington, D.C. received rare deep-sea corals. Later this year the National Marine Mammal Tissue Bank will host thousands of samples from species of dolphins and other marine mammals found dead after the oil spill.

Universities across the United States received samples for research. Sediment samples sent to Florida State University in Tallahassee are supporting studies on the long-term fate of Deepwater Horizon oil deposited on Gulf beaches and in nearshore environments.

Researchers at Jacksonville University in Florida are using samples to compare the weathering of tar balls found submerged to tar balls those stranded on land. Additionally, researchers at Texas A&M University obtained samples of the spilled oil for studies of bacteria that biodegrade oil.

Graphic with gloved hands pouring liquid from sample jar into beaker and numbers of samples, results, and studies resulting from NOAA efforts.

Finding new homes for scientific instruments and other equipment

Field samples were not the only items distributed to advance oil spill science. NOAA shipped hundreds of large and small pieces of equipment to universities and other research partners to aid ongoing investigations about the effects of oil spills on the environment, and the ongoing monitoring of the Gulf environment.

Repurposed supplies and equipment found a second life at many institutions including the:

  • University of Miami
  • NOVA Southeastern University
  • Dauphin Island Sea Lab
  • University of Southern Mississippi
  • University of South Florida
  • Louisiana State University
  • Texas A & M
  • Smithsonian Institution

In addition to laboratory equipment, some university researchers received practical items such as anchors, battery packs, buoys, forceps, freezer packs, glassware, preservatives such as alcohol and formalin, and thermometers.

NOAA coordinated with BP to recover and repurpose thousands of items BP purchased for the assessment. While clearing out office buildings and trailers, NOAA staff identified and requested valuable pieces of laboratory and field equipment, and other supplies. Some of these items, such as microscopes, initially cost tens of thousands of dollars.

First responders from NOAA and the U.S. Coast Guard also received field safety equipment including:

  • Personal floatation devices
  • Safety goggles
  • Pallets of nitrile gloves
  • Lightning detectors
  • Sorbent boom

All of which support preparedness for future incidents.

Countless NOAA staff rose to the enormous challenges of responding to, assessing impacts from, and restoring the natural resources injured by the Deepwater Horizon incident. This work continues, assisted by the creative reuse and repurposing of materials across the country to support ongoing efforts to advance oil spill science and improve preparedness for future spills.

Read more about and the work of NOAA’s Office of Response and Restoration and partners in responding to the spill, documenting the environmental damage, and holding BP accountable for restoring injured resources:

 

Greg Baker, Rob Ricker, and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Assessing the Impacts from Deepwater Horizon

Beach with grass.

Beach habitat was part of the Deepwater Horizon oil spill settlement. Image Credit: NOAA

The 2010 Deepwater Horizon disaster spread spilled oil deep into the ocean’s depths and along the shores of the Gulf of Mexico, compromising the complex ecosystem and local economies. The response and the natural resources damage assessment were the largest in the nation’s history.

Ecosystems are comprised of biological, physical, and chemical components, interconnected to form a community. What happens in one location has serious, cascading effects on organisms in other parts of the ecosystem. The Gulf’s coastal wetlands and estuaries support the entire Gulf ecosystem, providing food, shelter, and nursery grounds for a variety of animals. The open waters of the Gulf also provides habitat for fish, shrimp, shellfish, sea turtles, birds, and mammals.

Evaluating impacts from the spill

Considering these interdependencies during the assessment process was important. At the same time, it was impossible to test or examine every injured bird, every sickened dolphin, or every area contaminated with oil. That was cost prohibitive and scientifically impossible.

Instead, NOAA scientists evaluated representative samples of natural resources, habitats, ecological communities, ecosystem processes and linkages.

To do that, scientists made 20,000 trips to the field, to obtain 100,000 environmental samples that yielded 15 million records. This data collection and subsequent series of scientific studies formed the basis for the natural resources damage assessment that led to the largest civil settlement in federal history.

A short summary of the natural resource injuries:

Marshes injured

  • Plant cover and vegetation mass reduced along 350 to 720 miles of shoreline
  • Amphipods, periwinkles, shrimp, forage fish, red drum, fiddler crabs, insects killed

Harvestable oysters lost

  • 4 – 8.3 billion harvestable oysters lost

Birds, fish, shellfish, sea turtles, and dolphins killed

  • Between 51,000 to 84,000 birds killed
  • Between 56,000 to 166,000 small juvenile sea turtles killed
  • Up to 51% decrease in Barataria Bay dolphin population
  • An estimated 2 – 5 trillion newly hatched fish were killed

Rare corals and red crabs impacted

  • Throughout an area about 400 to 700 square miles around the wellhead

Recreational opportunities lost

  • About $527 – $859 million in lost recreation such as boating, fishing, and beach going
Top fish shows no oil bottom fish shows oil.

The top picture is a red drum control fish that was not exposed to oil, while the bottom red drum fish was exposed to Deepwater Horizon oil for 36 hours. The bottom fish developed excess fluid around the heart and other developmental deformities. This is an example of the many scientific studies conducted for the natural resources damage assessment. Image Credit: NOAA/Abt

What we shared

Those studies not only documented the injuries, but also helped the entire scientific community understand the effects of oil spills on nature and our communities. All of the scientific studies, including over 70 peer-reviewed journal articles, as well as all the data collected for the studies, are available to the public and the scientific community. Additionally, our environmental response management software allows anyone to download the data from a scientific study, and then see that data on a map.

We will be publishing new guidance documents regarding sea turtles and marine mammals by the end of 2017. These guides compile best practices and lessons learned and will expedite natural resources damage assessment procedures in the future.

Read more about Deepwater Horizon and the work of NOAA’s Office of Response and Restoration and partners in responding to the spill, documenting the environmental damage, and holding BP accountable for restoring injured resources:

 

Tom Brosnan, Lisa DiPinto, and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.


Leave a comment

Deepwater Horizon: Response in the Midst of an Historic Crisis

Tractor with trailers on beach.

Cleanup crews in Pensacola Beach, Florida, try to remove oil from the sand in November 2010. The Deepwater Horizon oil spill that severely injured the environment also directly affected the seafood trade and tourism economies of five Gulf states. Image Credit: NOAA

The Deepwater Horizon oil spill began on April 20, 2010, with a blowout of BP’s Macondo drilling platform in the Gulf of Mexico. In addition to the death of 11 men, the spill resulted in the largest mobilization of resources addressing an environmental emergency in the history of the United States.

The size of the spill required the Emergency Response Division to refine tracking subsurface oil, flowrate calculations, and long-term oil transport modeling. Data and information management became a paramount issue. NOAA’s web-based environmental management mapping tool proved invaluable in tracking and sharing data across the many teams and command posts.

With only 12 full time responders and about 120 NOAA staff nationally, the size and complexity of the incident taxed the spill team’s capacity to respond. NOAA recruited retired staff and contractors to provide additional emergency support, along with scientists from across the nation and internationally.

Other NOAA programs provided critical services in the field, on ships, aircraft, and in regional laboratories, weather forecast offices, and regional command posts. As the response grew, staffing the various missions required extraordinary interagency coordination.

Overall, several thousand NOAA staff worked on spill response and damage assessment activities. Seven NOAA ships—39 percent of the NOAA fleet—conducted cruises with missions as diverse as seafood safety monitoring, wellhead monitoring, and detecting subsurface oil. Five NOAA aircraft flew over 773 flight hours to track the oil spill and to measure air quality impacts.

Challenges faced with Deepwater Horizon

Forecasting the oil’s movement: How would the Loop Current effect the oil’s potential to spread to the Florida Keys and beyond? To answer that staff worked 24-7 modeling where the oil might spread in an effort to help defuse the public’s concern that oil would rapidly travel around Florida and oil shorelines along the Atlantic seaboard. After more than a month of daily mapping, overflights, and satellite analyses, our data showed no recoverable oil in the area, and the threat of oil spreading by the Loop Current diminished.

Calculating how much oil spilled and where it went:

Estimating the size of an oil spill is difficult, and determining the volume spilled from this leaking wellhead over a mile deep was even more challenging. Federal scientists and engineers worked with experts from universities on interagency teams to calculate the flow rate and total volume of oil spilled.

Another interagency team, led by the U. S. Geological Survey, NOAA, and the National Institute of Standards and Technology developed a tool called the Oil Budget Calculator to determine what happened to the oil. Working with these experts and agencies, NOAA was able to estimate the amount spilled, and how much oil was chemically dispersed, burned, and recovered by skimmers.

NOAA scientists also studied how much oil naturally evaporated and dispersed, sank to the sea floor, or trapped in shoreline sediments. Other studies determined how long it took the oil to degrade in those different environments.

While dispersant use reduced the amount of surface and shoreline oiling, and reduced marsh impacts, dispersants likely did increase impacts to some species during sensitive life stages that live in the water column and the deep ocean. The use of dispersants is under review.

Infographic about Deepwater Horizon.

Statistical information about Deepwater Horizon. Image Credit: NOAA

Quickly communicating the science of the situation including:

The public demanded answers fast, and social media rapidly took over as a primary tool to voice their concerns. We responded with continual updates through social media and on our website and blog. Still, keeping ahead of misconceptions and misinformation about the spill proved challenging. The lesson learned is that we can’t underestimate social media interest.

In addition to responding to the public’s need for accurate information, NOAA had to coordinate with universities and other academics to and quickly leverage existing research on an active oil spill. The size and multi-month aspect of the spill generated huge academic interest, but also meant that scientists were mobilizing and conducting field activities in the middle of an active response.

Lessons Learned

The list of lessons learned during the response continues to grow and those lessons are not limited to science. Organizational, administrative, policy, and outreach challenges were also significant considering the size, scope, and complexity of the response.

After nearly 30 years, the Exxon Valdez spill studies continue in an effort to understand the impacts and recovery in Prince William Sound. Given that timeline as a guide, NOAA expects Deepwater Horizon studies to continue for decades.

It will take that research and the perspective of time to understand the overall effects of the spill and response actions on the Gulf ecosystem and the communities that depend on a healthy coast.

 

Read more about Deepwater Horizon and the work of NOAA’s Office of Response and Restoration and partners in responding to the spill, documenting the environmental damage, and holding BP accountable for restoring injured resources:

Doug Helton and Kathleen Goggin of NOAA’s Office of Response and Restoration contributed to this article.