NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

How Do Oil Spills Get Cleaned up on Shore?

Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag on a beach.

Cleaning up oil from shorelines is a messy job. Beach cleanup crew members use a shovel to place gathered oil and affected sand into a bag as they clean up along a beach near Refugio State Beach, California, May 21, 2015. Cleanup teams used shovels and their hands to gather affected soil and ocean debris along oil impacted beaches north of Santa Barbara. (U.S. Coast Guard)

We often say that no two oil spills are alike, but one thing spills have in common is that cleaning oil off of shorelines is a messy business.

If a ship sinks or an oil pipeline ruptures, the primary goals of spill responders are to contain the oil source to stop any (more) oil from leaking and to prevent already spilled oil from spreading. However, weather conditions and ocean currents may overwhelm containment booms and other offshore oil spill response strategies. That means escaping oil may reach shorelines both near to and far from the initial oil spill location.

But when oil stains shorelines, what methods and equipment do responders use to remove it? And how is that different from cleaning up oil out at sea?

Here at NOAA, we have a library full of spill response manuals, technical reports, scientific journal articles, job aids, case histories, and guidance documents describing the methods used to clean up shorelines. And after every major oil spill there are advances in shoreline cleanup methods and equipment.

Here we present some commonly used shoreline cleanup options. Keep in mind that all response options, including what responders call “natural recovery” (letting oil break down naturally in the environment), have potential trade-offs. This means we have to take into consideration the impact of the cleanup methods themselves as we assess the overall environmental impacts of any action.

There are, of course, nuances in cleanup strategies at every oil spill that reflect the specific oil type, local environmental conditions, shoreline habitats, shore access, and a host of safety and logistical considerations. These variables will influence the particular cleanup strategy responders use at any one spill.

And at most oil spills, a combination of cleanup methods will be used (but not necessarily in the order shown here). Let’s take a look at each of these methods.

Responding to oil spills on shore: This graphic shows an overview of people using eight methods for cleaning up oil from shorelines. 1. Shoreling flushing/washing: Water hoses can rinse oil from the shoreline into water, where it can be more easily collected. 2. Booms: Long, floating, interconnected barriers are used to minimize the spread of spilled oil. 3. Vacuums: Industrial-sized vacuum trucks can suction oil from the shoreline or on the water surface. 4. Sorbents: Specialized absorbent materials act like a sponge to pick up oil but not water. 5. Shoreline cleaners and biodegradation agents: Chemical cleaners that act like saops may be used to remove oil, but require special permission. Nutrients may be added to help microbes break down oil. 6. Burning. Also referred to as

Responding to oil spills on shore: This is an overview of the various methods for cleaning up oil from shorelines, from flushing and vacuums to sorbents and heavy machinery. (NOAA)

1) Shoreline Flushing: This method uses water to remove or refloat stranded oil, which allows it to be more easily recovered as a slick on the water. One of the lessons learned from the 1989 Exxon Valdez oil spill was to be very careful about water pressure and temperature to avoid causing more harm to the shoreline.

2) Booms: These long, floating barriers are used to keep spilled oil off the beach, or to collect it after being flushed from the beach into the immediate waters.

3) Vacuums: Large industrial vacuums can suction oil off the beach or shoreline vegetation.

4) Sorbents: These specialized materials, which can take forms such as square pads or long booms, are engineered to absorb oil but not water.

5) Shoreline cleaners and bioremediation agents: There are a variety of chemical cleaners for oiled shorelines that usually require special approval for their use. Surface washing agents [PDF] are used to soften and lift oil off of surfaces or structures that have been oiled, such as beach rocks, docks, and riprap. Bioremediation agents, on the other hand, often take the form of fertilizers that help speed up natural microbial degradation processes. However, conventional cleanup methods (e.g., booms and sorbents) typically are used first to their fullest extent to remove the worst oiling, while these alternative measures usually play a secondary role (if any).

6) Burning: Responders sometimes will perform controlled burns, also referred to as “in situ burning,” of freshly spilled oil floating on the water’s surface or on marsh vegetation.

7) Manual recovery: This method involves using good old buckets, shovels, rakes, and other hand tools to remove oil from shorelines. It is very labor-intensive but is often a primary tool for a response when access for larger equipment is impractical, such as on remote beaches or those without road access.

8) Mechanical removal: When access is possible and won’t cause too much damage to the shoreline, responders may bring in heavy machinery, such as back hoes or front-end loaders, to scoop up and haul away oiled materials in bulk.

Two bobcat digging machines scoop oil from a beach.

Heavy machinery was brought in to remove oil from a beach in Puerto Rico in 2007. (NOAA)

Leave a comment

Orange Oil Is the New Black

Sorbent pads soaking up orange oil on the surface of a creek.

Even something as pleasant-smelling as orange peel oil can have potentially harmful effects on aquatic life. A view of the spill with some absorbent cleanup materials not far from Orange, New Jersey. (U.S. Coast Guard)

Orange is a common color in oil spill response.

Life jackets, rain gear, and the work vests worn by responders are often orange to make them easier to see. And don’t forget the bright orange U.S. Coast Guard helicopters that may be on scene. Floating booms are often orange for the same reason.

But generally the oil they are responding to is black or another dark color. But recently we had an orange oil spill.

No, the oil wasn’t orange colored; it was actually the oil extracted from orange peels. It is a byproduct of orange juice manufacturing and used as a flavoring and in a variety of fragrances and household cleaners.

On June 15, 2015, about 700 gallons of orange peel oil was spilled into a creek near the Passaic River, which flows into New York harbor. A large rain storm caused a wastewater pump to fail and water backed up into the facility producing the orange oil. The orange oil then was inadvertently pumped out of the facility into the creek.

Crews managed to temporarily dam the creek using sheets of plywood, keeping most of the oil from reaching the river. The spill happened in East Hanover, New Jersey, oddly not far from the city of Orange, New Jersey, (named for King William III of England, also known as William of Orange).

So why do we care about a seemingly harmless (and nice-smelling) product such as orange oil? Edible oils may be less toxic than crude oils, but spills of animal fats and vegetable oils can kill or injure wildlife. They also can end up suffocating aquatic life because microbes in the water take advantage of the temporary feast but in the process use up large amounts of the oxygen dissolved in water, leaving little oxygen for other aquatic creatures to use. This was the case when 1,400 tons of molasses were accidentally released into Honolulu Harbor in 2013, killing a number of fish.

Back to the scenario near Orange, New Jersey: a major compound in orange oil is limonene, which in very high concentrations can be toxic to fish and freshwater plankton. Fortunately, U.S. Coast Guard personnel overseeing the response reported that the responders were able to use absorbent pads to quickly sop up the released oil, which remained far below toxic levels.

Furthermore, any remaining orange oil would likely evaporate or disperse in the water over the course of several days to a couple weeks, leaving behind a sweet-smelling cleanup scene.

1 Comment

Like a Summer Blockbuster, Oil Spills and Hurricanes Can Take the Nation by Storm

Wrecked sailboats and debris along a dock after a hurricane.

The powerful wind and waves of a hurricane can damage vessels, releasing their fuel into coastal waterways. (NOAA)

From Twister and The Perfect Storm to The Day After Tomorrow, storms and other severe weather often serve as the dramatic backdrop for popular movies. Some recent movies, such as the Sharknado series, even combine multiple fearsome events—along with a high degree of improbability—when they portray, for example, a hurricane sweeping up huge numbers of sharks into twisters descending on a major West Coast city.

But back in the world of reality, what could be worse than a hurricane?

How about a hurricane combined with a massive oil spill? It’s not just a pitch for a new movie. Oil spills actually are a pretty common outcome of powerful storms like hurricanes.

There are a couple primary scenarios involving oil spills and hurricanes. The first is a hurricane causing one or more oil spills, which is what happened during Hurricane Katrina in 2005 and after Hurricane Sandy in 2012. These kinds of oil spills typically result from a storm’s damage to coastal oil facilities, including refineries, as well as vessels being damaged or sunken and leaking their fuel.

The second, far less common scenario is a hurricane blowing in during an existing oil spill, which is what happened during the 2010 Deepwater Horizon oil spill.

Hurricane First, Then Oil Spills

Stranded and wrecked vessels are one of the iconic images showing the aftermath of a hurricane. In most cases those vessels have oil on board. And don’t forget about all the cars that get flooded. Each of these sources may contain relatively small amounts of fuel, but hurricanes can cause big oil spills too.

Additional damage is often caused by the storm surge, as big oil and chemical storage tanks can get lifted off their foundations (or sheared off in the case of the picture below).

A damaged boat setting on a  fuel dock.

A boat, displaced and damaged in the aftermath of Hurricane Katrina, in late summer of 2005 in the Gulf of Mexico, an area frequented by both hurricanes and oil spills. (NOAA)

Hurricanes Katrina and Rita in 2005 passed through the center of the Gulf of Mexico oil industry and caused dozens of major oil spills and thousands of small spills.

One of the largest stemmed from the Murphy Oil refinery in St. Bernard Parish, Louisiana. Dikes surrounding the oil tanks at the refinery were full from flood waters, so when a multi-million gallon tank failed, oil flowed easily into a nearby neighborhood, leaving oil on thousands of homes and businesses already reeling from the flood waters.

Hurricanes can also create navigation hazards that result in later spills. Hurricane Rita, hitting the Gulf in September 2005, sank several offshore oil platforms. While some were recovered, others were actually left missing. Several months later, the tank barge DBL 152 “found” one of these missing rigs, spilling nearly 2 million gallons of thick slurry oil after striking the sunken and displaced platform hiding below the ocean surface.

A large ship on its side, leaking dark oil on the ocean surface.

In November 2005, tank barge DBL 152 struck the submerged remains of a pipeline service platform that collapsed a few months earlier during Hurricane Rita. The double-hulled barge was carrying approximately 5 million gallons of slurry oil, a type of oil denser than seawater, which meant as the thick oil poured out of the barge, it sank to the seafloor. (Entrix)

Oil Spills and Then a Hurricane Hits

So what happens if a hurricane hits an existing oil spill?

This was a big concern during the summer of 2010 in the Gulf of Mexico. There was an ever-growing slick on the ocean surface, oil already on the shore, and lots of response equipment and personnel scattered across the Gulf cleaning up the Deepwater Horizon spill.

There was a lot of speculation as to what might happen as hurricane season began. Hurricane Alex, a relatively small storm, was the first test. The first impact came days before the storm, as response vessels evacuated the area. Hurricane Alex halted response efforts such as skimming and burning for several days. Hundreds of miles of oil booms protecting the shoreline were displaced by the growing surf.

As the hurricane passed through, floating oil was quickly dispersed by the powerful winds and waves, and the same wave energy buried, uncovered, and moved oil on the shore or in submerged mats of oil near the shoreline. Some oil was likely carried inland by sea spray and flood waters from the storm surge. Oil dissolved in the water column near the surface became even more dispersed, but the deep waters of the Gulf were well out of reach of the stormy commotion at the surface, and the leaking wellhead continued to gush.

But the Deepwater Horizon spill wasn’t the only time hurricanes have butted heads with a massive spill. In 1979, Mexico’s Ixtoc I well blowout in the southern Gulf of Mexico was hit by Hurricane Henri. The main impact of the hurricane’s winds was to dilute and weather the floating oil.

In some places along the Texas coast, beached oil was washed over the barrier islands into the bays behind them, while in other areas stranded oil was buried by clean sand. Many of these oiled areas were reworked a year later when Hurricane Allen battered the coast.

Preventing oil spills is a part of preparing for hurricanes. Coastal oil facilities and vessel owners do their best to batten down the hatches and get their vessels out of harm’s way, but we know that spills may still happen. Atlantic hurricane season, which runs from June 1 to November 30, is a busy time for those of us in oil spill response, and we breathe a sigh of relief when hurricane season ends—just in time for winter storm season to begin.


What Have We Learned About Using Dispersants During the Next Big Oil Spill?

The Deepwater Horizon Oil Spill: Five Years Later

This is the eighth in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

A U.S. Air Force plane drops an oil-dispersing chemical onto an oil slick on the Gulf of Mexico

A U.S. Air Force plane drops an oil-dispersing chemical onto an oil slick on the Gulf of Mexico May 5, 2010, as part of the Deepwater Horizon response effort. (NOAA)

Five years ago, in the middle of the response to the Deepwater Horizon oil spill, I was thrown into a scientific debate about the role of chemical dispersants in response to the spill. Dispersants are one of those things that are talked about a lot in the context of oil spills, but in reality used pretty rarely. Over my more than 20 years in spill response, I’ve only been involved with a handful of oil spills that used dispersants.

But the unprecedented use of chemical dispersants on and below the ocean’s surface during the Deepwater Horizon oil spill raised all sorts of scientific, public, and political questions. Questions about both their effectiveness in minimizing impacts from oil as well as their potential consequences for marine life in the Gulf of Mexico.

Did we understand how the ingredients and components of the dispersants behave? How toxic are they? What are the potential risks of dispersants and do they outweigh the benefits?

We knew the flood of questions wouldn’t end when the gushing oil well was capped; they would only intensify the next time there was a significant oil spill in U.S. waters. NOAA, as the primary scientific adviser to the U.S. Coast Guard, would need to keep abreast of the surge of new information and be prepared to answer those questions. Five years later, we know a lot more, but many of the scientific, public, and policy questions remain open to debate.

What Are Dispersants?

Dispersants are a class of chemicals specifically designed to remove oil from the water surface. One commonly used brand name is Corexit, but there are dozens of different dispersant mixtures (see this list of all the products available for use during an oil spill).

They work by breaking up oil slicks into lots of small droplets, similar to how dish detergent breaks up the greasy mess on a lasagna pan. These tiny droplets have a high surface area-to-volume ratio, making them easier for oil-eating microbes to break them down (through the process of biodegradation). Their small size also makes the oil droplets less buoyant, allowing them to scatter throughout the water column more easily.

Why Does Getting Oil off the Ocean Surface Matter?

Oil slicks on the water surface are particularly dangerous to seabirds, sea turtles, marine mammals, sensitive early life stages of fish (e.g., fish eggs and embryos), and intertidal resources (such as marshes and beaches and all of the plants and animals that live in those habitats). Oil, in addition to being toxic when inhaled or ingested, interferes with birds’ and mammals’ ability to stay waterproof and maintain a normal body temperature, often resulting in death from hypothermia. Floating oil can drift long distances and then strand on shorelines, creating a bigger cleanup challenge.

However, applying dispersants to an oil slick instead shifts the possibility of oil exposure to animals living in the water column beneath the ocean surface and on the sea floor. We talk about making a choice between either protecting shorelines and surface-dwelling animals or protecting organisms in the water column.

But during a large spill like the Deepwater Horizon, this is a false choice. No response technology is 100 percent effective, so it’s not either this or that; it’s how much of each? If responders do use dispersants, some oil will still remain on the surface (or reach the surface in the case of subsurface dispersants), and if they don’t use dispersants, some oil will still naturally mix into or remain in the water column.

Why Don’t We Just Clean up Oil with Booms and Skimmers?

Cleaning up oil with mechanical response methods like skimmers is preferable because these vessels actually remove the mess from the environment by skimming and collecting oil off the water surface. And in most spills, that is all we use. There are thousands of small and medium-sized spills annually, and mechanical cleanup is the norm for these incidents.

But these methods, known as “mechanical recovery,” can only remove some of the oil. Under ideal (rather than normal) circumstances, skimmers can recover—at best—only around 40 percent of an oil spill. During the Deepwater Horizon oil spill response, skimmers only managed to recover approximately 3 percent of the oil released.

Dispersants generally are only considered when mechanical cleanup would be swamped or is considered infeasible. During a big spill, mechanical recovery may only account for a small percentage of the oil. Booms (long floating barriers used to contain or soak up oil) and skimmers don’t work well in rough seas and take more time to deploy. Booms also require constant maintenance or they can become moved around by wind and waves away from their targeted areas. If they get washed onto shore, booms can cause significant damage, particularly in sensitive areas such as marshes and wetlands.

Aircraft spraying dispersant are able to treat huge areas of water quickly while a skimmer moves very slowly, only one to two miles per hour. In the open ocean spilled oil can spread as fast, or faster, than the equipment trying to corral it.

Isn’t There Something Better?

Chemical product label for Corexit dispersant.

Dispersants, such as Corexit, are a class of chemicals specifically designed to remove oil from the water surface by breaking up oil slicks into lots of small droplets. (NOAA)

Well, researchers are trying to develop more effective response tools, including safer dispersants. And the questions surrounding the potential benefits and risks of using dispersants in the Gulf of Mexico have led to substantial research in the Gulf and other waters at risk from spills, including the Arctic. That research is ongoing, and answering one question usually leads to several more.

Unfortunately, however, once an oil spill occurs, we don’t have the luxury of waiting for more research to address lingering scientific and technical concerns. A decision will have to be made quickly and with incomplete information, applied to the situation at the moment. And if, during a large spill, mechanical methods become overwhelmed, the question may be: Is doing nothing else better than using dispersants?

That summer of 2010, in between trips to the Gulf and to hearings in DC, we began to evaluate the observations and science conducted during the spill to build a foundation for planning and decision making in future spills. In 2011, NOAA and our partners held a national workshop of federal, state, industry, and academic scientists to discuss what was known about dispersants and considerations for their use in future spills. You can read the reports and background materials from that workshop.

That was not the only symposium focused on dispersant science and knowledge. Almost every major marine science conference over the past five years has devoted time to the issue. I’ve been involved in workshops and conferences from Florida to Alaska, all wrestling with this issue.

What Have We Learned?

Freshly spilled crude oil in the Ohmsett saltwater test tank starts turning brown after dispersants applied.

The Deepwater Horizon oil spill spawned a larger interest in researching dispersants. Here, you can see freshly spilled crude oil in the Ohmsett saltwater test tank in New Jersey, where the oil starts changing a few minutes after dispersants were applied. Note that some of the oil is still black, but some is turning brown. (NOAA)

Now, five years later, many questions remain and more research is coming out almost daily, including possible impacts from these chemicals on humans—both those active in the response as well as residents near the sites of oiling. Keeping up with this research is a major challenge, but we are working closely with our state and federal partners, including the U.S. Environmental Protection Agency and Coast Guard, as well as those in the academic community to digest the flow of information.

The biggest lesson learned is one we already knew. Once oil is spilled there are no good outcomes and every response technology involves trade-offs.

Dispersants don’t remove oil from the environment, but they do help reduce the concentration of the oil by spreading it out in the water (which ocean currents and other processes do naturally), while also increasing degradation rates of oil. They reduce the amount of floating oil, which reduces the risk for some organisms and environments, but increases the risk for others. We also know that some marine species are even more sensitive to oil than we previously thought, especially for some developmental stages of offshore fish including tuna and mahi mahi.

But we also know, from the Exxon Valdez and other spills, that oil on the shore can persist for decades and create a chronic source of oil exposure for birds, mammals, fish, and shellfish that live near shore. We don’t want oil in the water column, and we don’t want oil in our bays and shorelines. Basically, we don’t want oil spills at all. That sounds like something everyone can agree with.

But until we stop using, storing and transporting oil, we have the risk of spills. The decision to use dispersants or not use dispersants will never be clear cut. Nor will it be done without a lot of discussion of the trade-offs. The many real and heart-felt concerns about potential consequences aren’t dismissed lightly by the responders who have to make tough choices during a spill.

I am reminded of President Harry Truman who reportedly said he wanted a one-handed economist, since his economic advisers would always say, “on the one hand…on the other.”


Attempting to Answer One Question Over and Over Again: Where Will the Oil Go?

The Deepwater Horizon Oil Spill: Five Years Later

This is the first in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

Oil spills raise all sorts of scientific questions, and NOAA’s job is to help answer them.

We have a saying that each oil spill is unique, but there is one question we get after almost every spill: Where will the oil go? One of our primary scientific products during a spill is a trajectory forecast, which often takes the form of a map showing where the oil is likely to travel and which shorelines and other environmentally or culturally sensitive areas might be at risk.

Oil spill responders need to know this information to know which shorelines to protect with containment boom, or where to stage cleanup equipment, or which areas should be closed to fishing or boating during a spill.

To help predict the movement of oil, we developed the computer model GNOME to forecast the complex interactions among currents, winds, and other physical processes affecting oil’s movement in the ocean. We update this model daily with information gathered from field observations, such as those from trained observers tasked with flying over a spill to verify its often-changing location, and new forecasts for ocean currents and winds.

Modeling a Moving Target

One of the biggest challenges we’ve faced in trying to answer this question was, not surprisingly, the 2010 Deepwater Horizon oil spill. Because of the continual release of oil—tens of thousands of barrels of oil each day—over nearly three months, we had to prepare hundreds of forecasts as more oil entered the Gulf of Mexico each day, was moved by ocean currents and winds, and was weathered, or physically, biologically, or chemically changed, by the environment and response efforts. A typical forecast includes modeling the outlook of the oil’s spread over the next 24, 48, and 72 hours. This task began with the first trajectory our oceanographers issued early in the morning April 21, 2010 after being notified of the accident, and continued for the next 107 days in a row. (You can access all of the forecasts from this spill online.)

Once spilled into the marine environment, oil begins to move and spread surprisingly quickly but not necessarily in a straight line. In the open ocean, winds and currents can easily move oil 20 miles or more per day, and in the presence of strong ocean currents such as the Gulf Stream, oil and other drifting materials can travel more than 100 miles per day. Closer to the coast, tidal currents also can move and spread oil across coastal waters.

While the Deepwater Horizon drilling rig and wellhead were located only 50 miles offshore of Louisiana, it took several weeks for the slick to reach shore as shifting winds and meandering currents slowly moved the oil.

A Spill Playing on Loop

Over the duration of a typical spill, we’ll revise and reissue our forecast maps on a daily basis. These maps include our best prediction of where the oil might go and the regions of highest oil coverage, as well as what is known as a “confidence boundary.” This is a line encircling not just our best predictions for oil coverage but also a broader area on the map reflecting the full possible range in our forecasts [PDF].

Our oceanographers include this confidence boundary on the forecast maps to indicate that there is a chance that oil could be located anywhere inside its borders, depending on actual conditions for wind, weather, and currents. Why is there a range of possible locations in the oil forecasts? Well, the movement of oil is very sensitive to ocean currents and wind, and predictions of oil movement rely on accurate predictions of the currents and wind at the spill site.

In addition, sometimes the information we put into the model is based on an incomplete picture of a spill. Much of the time, the immense size of the Deepwater Horizon spill on the ocean surface meant that observations from specialists flying over the spill and even satellites couldn’t capture the full picture of where all the oil was each day.

Our inevitably inexact knowledge of the many factors informing the trajectory model introduces a certain level of expected variation in its predictions, which is the situation with many models. Forecasters attempt to assess all the possible outcomes for a given scenario, estimate the likelihood of the different possibilities, and ultimately communicate risks to the decision makers.

In the case of the Deepwater Horizon oil spill, we had the added complexity of a spill that spanned many different regions—from the deep Gulf of Mexico, where ocean circulation is dominated by the swift Loop Current, to the continental shelf and nearshore area where ocean circulation is influenced by freshwater flowing from the Mississippi River. And let’s not forget that several tropical storms and hurricanes crossed the Gulf that summer [PDF].

A big concern was that if oil got into the main loop current, it could be transported to the Florida Keys, Cuba, the Bahamas, or up the eastern coast of the United States. Fortunately (for the Florida Keys) a giant eddy formed in the Gulf of Mexico in June 2010 (nicknamed Eddy Franklin after Benjamin Franklin, who did some of the early research on the Gulf Stream). This “Eddy Franklin” created a giant circular water current that kept the oil largely contained in the Gulf of Mexico.

Some of the NOAA forecast team likened our efforts that spring and summer to the movie Groundhog Day, in which the main character is forced to relive the same day over and over again. For our team, every day involved modeling the same oil spill again and again, but with constantly changing results.  Thinking back on that intense forecasting effort brings back memories packed with emotion—and exhaustion. But mostly, we recall with pride the important role our forecast team in Seattle played in answering the question “where will the oil go?”

Leave a comment

What Does It Take to Clean up the Cleanup From an Oil Spill?

Bags of oiled waste on a beach next to a No Smoking sign.

Bags and bags of oiled waste on the beach of Prince William Sound, Alaska, following the Exxon Valdez oil spill in March 1989. (NOAA)

Imagine spilling a can of paint on your basement floor (note: I have done this more than once.). Luckily, you have some paper towels nearby, and maybe some rags or an old towel you can use to mop up the mess. When you’re finished, all of those items probably will end up in the garbage. Maybe along with some of the old clothes you had on.

You might not think much about the amount of waste you generated, but it was probably a lot more than the volume of paint you spilled—maybe even 10 times as much. That number is actually a rule of thumb for oil spill cleanup. The amount of waste generated is typically about 10 times the volume of oil spilled.

Our colleagues at the International Tanker Owners Pollution Federation (ITOPF) did a study on this very topic, looking at the oil-to-waste ratio for nearly 20 spills [PDF]. (A messy job, for sure.) ITOPF found that the general rule for estimating waste at oil spills still held true at about 10 times the amount spilled.

The Mess of a Cleanup

Cleanup workers collect oily debris in bags on the banks of the Mississippi River.

Responders collect oily debris during the M/V Westchester oil spill in the Mississippi River near Empire, Louisiana, in November 2000. (NOAA)

What kinds of wastes are we talking about? Well, there is the oil recovered itself. In many cases, this can be recycled. Then there are oily liquids. These are the result of skimming oil off of the water surface, which tends to recover a lot of water too, and this has to be processed before it can be properly disposed. Shoreline cleanup is even messier, due to the large amounts of oily sands and gravel, along with seaweed, driftwood, and other debris that can end up getting oiled and need to be removed from beaches.

Some response equipment such as hard containment booms can be cleaned and reused, but that cleaning generates oily wastes too. Then there are the many sorbent materials used to mop up oil; these sorbent pads and soft booms may not be reusable and would be sent to a landfill. Finally, don’t forget about the oil-contaminated protective clothing, plastic bags, and all of the domestic garbage generated by an army of cleanup workers at the site of a spill response.

Aiming for Less Mess

A large U.S. oil spill response will have an entire section of personnel devoted to waste management. Their job is to provide the necessary storage and waste processing facilities, figure out what can be recycled, what will need to be taken to a proper landfill or incineration facility, and how to get it all there. That includes ensuring everything is in compliance with the necessary shipping, tracking, and disposal paperwork.

The amount of waste generated is a serious matter, particularly because oil spills often can occur in remote areas. In far-off locales, proper handling and transport of wastes is often as big a challenge as cleaning up the oil. Dealing with oily wastes is even more difficult in the Arctic and remote Pacific Islands such as Samoa because of the lack of adequate landfill space. One of the common goals of a spill response is to minimize wastes and segregate materials as much as possible to reduce disposal costs.

In a 2008 article [PDF], the U.S. Coast Guard explores in more detail the various sources of waste during an oil spill response and includes suggestions for incentivizing waste reduction during a response.

Leave a comment

When Oil Spills Take You to Hawaii and the Yellowstone River in Two Days

Overview of the Yellowstone River at the site of the pipeline spill.

Overview of the Yellowstone River at the site of the pipeline spill on Jan. 19, 2015. (U.S. Environmental Protection Agency)

We get called for scientific support between 100 and 150 times a year for oil spills, chemical releases, and other marine pollution events around the nation. That averages to two or three calls per week from the U.S. Coast Guard or U.S. Environmental Protection Agency, but those calls aren’t nicely scheduled out during the week, or spread out regionally among staff in different parts of the country.

The date of an oil spill is just the starting point. Many of these pollution incidents are resolved in a day or two, but some can lead to years of work for our part of NOAA. Some oil spills make the national and regional news while others might only be a local story for the small coastal town where the spill took place.

To give you an idea, some of the incidents we worked on just last week took us from Hawaii one day to eastern Montana the next day—and we were already working on two others elsewhere. These incidents included a pipeline break and oil spill in the Yellowstone River in Montana; a mystery spill of an unknown, non-oil substance that resulted in birds stranded in San Francisco Bay, California; a tug boat sinking and releasing diesel fuel off of Oahu, Hawaii; and a fishing vessel grounded near Sitka, Alaska.

Aerial view of oil spilled along the edge of Yellowstone River.

View from an aerial survey of the spill site on the Yellowstone River, taken about six miles upstream from Glendive, Montana. (Montana Department of Environmental Quality)

The Yellowstone River spill involved a pipeline releasing oil as it ran under a frozen river. The source of the leaking oil has been secured, which means no more oil is leaking, but response operations are continuing. It is an interesting spill for several reasons. One is because the oil type, Bakken crude, is an oil that has been in the news a lot recently. More Bakken crude oil is being transported by train these days because the location of the oil fields is far from ports or existing pipelines. Several rail car accidents involving this oil have ended in explosions. Another reason the Yellowstone River spill is of particular interest is because the response has to deal with ice and snow conditions along with the usual challenges of dealing with an oil spill.

Watch footage of an aerial survey over the Yellowstone River and spilled oil:

The mystery spill in the San Francisco Bay Area is still a mystery at this point (both what it is and where it came from), but hundreds of birds are being cleaned in the meantime. The response is coordinating sampling and chemical analysis to figure out the source of the “mystery goo” coating these seabirds.

Marine diesel fuel dyed red in the ocean.

Marine diesel fuel, dyed red, is shown approximately seven miles south of Honolulu Airport on January 23, 2015. The spill came from a tugboat that sank off Barbers Point Harbor, Oahu, on January 22. (U.S. Coast Guard)

Meanwhile, the tugboat accident in Hawaii involved about 75,000 gallons of fuel oil leaking from a tugboat that sank in over 2,000 feet of water. All 11 crewmembers of the tugboat were safely rescued. We were helping forecast what was happening to the spilled oil and where it might be drifting. In addition, there was a lot of concern about endangered Hawaiian monk seals and sea turtles in the area, but no oiled wildlife have been reported.

And that brings us to the fishing vessel grounded in Alaska. At this time the vessel is still intact and hasn’t spilled any of the 700 gallons of fuel believed to be onboard. Salvors are working to refloat the vessel. Fortunately, the crew had time to cap some of the fuel tank vents before abandoning ship, which may be helping prevent oil from being released. All four crew were safely rescued.

That makes four very different spills in four very different areas … and we have to be ready to respond with oil spill models and environmental expertise for all of them at the same time. But that’s just all in a day’s work at NOAA.


Get every new post delivered to your Inbox.

Join 616 other followers