NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution

Leave a comment

Births Down and Deaths Up in Gulf Dolphins Affected by Deepwater Horizon Oil Spill

A mother bottlenose dolphin pushes her dead newborn calf at the water's surface.

Dolphin Y01 pushes a dead calf through the waters of Barataria Bay, Louisiana, in March 2013. This behavior is sometimes observed in female dolphins when their newborn calf does not survive. Barataria Bay dolphins have seen a disturbingly low rate of reproductive success in the wake of the Deepwater Horizon oil spill. (Louisiana Department of Wildlife and Fisheries)

In August of 2011, a team of independent and government scientists evaluating the health of bottlenose dolphins in Louisiana’s Barataria Bay gave dolphin Y35 a good health outlook.

Based on the ultrasound, she was in the early stages of pregnancy, but unlike many of the other dolphins examined that summer day, Y35 was in pretty good shape. She wasn’t extremely underweight or suffering from moderate-to-severe lung disease, conditions connected to exposure to Deepwater Horizon oil in the heavily impacted Barataria Bay.

Veterinarians did note, however, that she had alarmingly low levels of important stress hormones responsible for behaviors such as the fight-or-flight response. Normal levels of these hormones help animals cope with stressful situations. This rare condition—known as hypoadrenocorticism—had never been reported before in dolphins, which is why it was not used for Y35 and the other dolphins’ health prognoses.

Less than six months later, researchers spotted Y35 for the last time. It was only 16 days before her expected due date. She and her calf are now both presumed dead, a disturbingly common trend among the bottlenose dolphins that call Barataria Bay their year-round home.

This trend of reproductive failure and death in Gulf dolphins over five years of monitoring after the 2010 Deepwater Horizon oil spill is outlined in a November 2015 study led by NOAA and published in the peer-reviewed journal Proceedings of the Royal Society.

Of the 10 Barataria Bay dolphins confirmed to be pregnant during the 2011 health assessment, only two successfully gave birth to calves that have survived. This unusually low rate of reproductive success—only 20%—stands in contrast to the 83% success rate in the generally healthier dolphins being studied in Florida’s Sarasota Bay, an area not affected by Deepwater Horizon oil.

Baby Bump in Failed Pregnancies

While hypoadrenocorticism had not been documented previously in dolphins, it has been found in humans. In human mothers with this condition, pregnancy and birth—stressful and risky enough conditions on their own—can be life-threatening for both mother and child when the condition is left untreated. Wild dolphins with this condition would be in a similar situation.

Mink exposed to oil in an experiment ended up exhibiting very low levels of stress hormones, while sea otters exposed to the Exxon Valdez oil spill experienced high rates of failed pregnancies and pup death. These cases are akin to what scientists have observed in the dolphins of Barataria Bay after the Deepwater Horizon oil spill.

Among the pregnant dolphins being monitored in this study, at least two lost their calves before giving birth. Veterinarians confirmed with ultrasound that one of these dolphins, Y31, was carrying a dead calf in utero during her 2011 exam. Another pregnant dolphin, Y01, did not successfully give birth in 2012, and was then seen pushing a dead newborn calf in 2013. Given that dolphins have a gestation of over 12 months, this means Y01 had two failed pregnancies in a row.

The other five dolphins to lose their calves after the Deepwater Horizon oil spill, excluding Y35, survived pregnancy themselves but were seen again and again in the months after their due dates without any young. Dolphin calves stick close to their mothers’ sides in the first two or three months after birth, indicating that these pregnant dolphins also had calves that did not survive.

At least half of the dolphins with failed pregnancies also suffered from moderate-to-severe lung disease, a symptom associated with exposure to petroleum products. The only two dolphins to give birth to healthy calves had relatively minor lung conditions.

Survival of the Least Oiled

Dolphin Y35 wasn’t the only one of the 32 dolphins being monitored in Barataria Bay to disappear in the months following her 2011 examination. Three others were never sighted again in the 15 straight surveys tracking these dolphins. Or rather, they were never seen again alive. One of them, Y12, was a 16-year-old adult male whose emaciated carcass washed up in Louisiana only a few weeks before the pregnant Y35 was last seen. In fact, the number of dolphins washing up dead in Barataria Bay from August 2010 through 2011 was the highest ever recorded for that area.

Survival rate in this group of dolphins was estimated at only 86%, down from the 95-96% survival seen in dolphin populations not in contact with Deepwater Horizon oil. The marshy maze of Barataria Bay falls squarely inside the footprint of the Deepwater Horizon oil spill, and its dolphins and others along the northern Gulf Coast have repeatedly been found to be sick and dying in historically high numbers. Considering how deadly this oil spill has been for Gulf bottlenose dolphins and their young, researchers expect recovery for these marine mammals to be a long time coming.

Watch an updated video of the researchers as they temporarily catch and give health exams to some of the dolphins in Barataria Bay, Louisiana, in August of 2011 and read a 2013 Q&A with two of the NOAA researchers involved in these studies:

This study was conducted under the Natural Resource Damage Assessment for the Deepwater Horizon oil spill. These results are included in the injury assessment documented in the Draft Programmatic Assessment and Restoration Plan that is currently out for public comment. We will accept comments on the plan through December 4, 2015.

This research was conducted under the authority of Scientific Research Permit nos. 779-1633 and 932-1905/MA-009526 issued by NOAA’s National Marine Fisheries Service pursuant to the U.S. Marine Mammal Protection Act.

Leave a comment

Deepwater Horizon Oil Spill Tied to Further Impacts in Shallower Water Corals, New Study Reports

Sick sea fan with discolored branches and hydroids covering it.

After the Deepwater Horizon oil spill, researchers found significant injuries in at least four species of sea fans along the Gulf’s continental shelf. Damage primarily took the form of overgrowth by hydroids (fuzzy marine invertebrates characteristic of unhealthy corals) and broken or bare branches of coral. (Credit: Ian MacDonald/Florida State University)

In the months and years after the 2010 Deepwater Horizon oil spill, damage and poor health were found in a swath of deep-sea coral reefs and related marine life at the bottom of the Gulf of Mexico.

Within roughly 16 miles of the leaking wellhead, researchers discovered sickened and damaged deep-sea corals, often coated in a clumpy brown material containing petroleum, and the sediments showed evidence of out-of-balance communities of tiny invertebrates inhabiting the seafloor sediments, whose diversity took a nose dive after the spill.

Now, a study published in October 2015 in the journal Coral Reefs reveals that this footprint of damage also extends to coral communities in shallower Gulf waters, up to 67 miles from the wellhead. In this latest study, researchers from NOAA, Florida State University, and JHT Inc. used video and images from remotely operated vehicles (ROV) to compare the health of corals on hard-bottom reefs in the “mesophotic zone” before and after the oil spill.

The mesophotic zone of the ocean receives low levels of light but supports abundant fish, corals, and sponges. The reefs in this study are important sources of habitat, food, and shelter for various marine life. These vibrant reefs also support recreational and commercial fishing for species such as snapper and grouper. Located in a region called the “Pinnacle Trend,” they are at the edge of the continental shelf off Louisiana, Mississippi, and Alabama, roughly 200-300 feet below the surface.

Previous oil spill studies focused on deep-sea coral communities 4,000 feet under the ocean, located near the leaking wellhead. While the Pinnacle Trend reefs are shallower and more remote, they were below the surface oil slick that persisted for several weeks.

What Lies Beneath

Three of the largest reefs at Pinnacle Trend—bearing the colorful names Alabama Alps Reef, Roughtongue Reef, and Yellowtail Reef—were located beneath the surface slick of Deepwater Horizon oil for three to five weeks in the summer of 2010. Located between 35 and 67 miles from the leaking well, corals on the reefs were likely to have been exposed to oil and dispersant that sank from the surface down toward the seafloor. These reefs were measured against two other reef sites more than 120 miles beyond the leaking well and below the Deepwater Horizon oil slick less than three days.

Graphic showing a profile of the Gulf of Mexico's seafloor habitats from shore out to the leaking wellhead.

A profile of the Gulf of Mexico seafloor habitats extending from the shore to depths around the Macondo wellhead. The mesophotic coral reefs in this study were located at the edge of the continental shelf. (NOAA/Kate Sweeney)

Because researchers had access to ROV footage of these coral reefs dating back as far as 1989, they could directly measure what level of injury could be considered “normal” for each reef. After all, this area of the Gulf is known to be susceptible to impacts from fishing methods that contact the sea bottom. Researchers suspect that fishing was the cause of injuries observed at the two sites far from the spill because lines were wrapped around many of the coral colonies.

Not a (Sea) Fan of Damaged Corals

The three reefs closer to the wellhead had less evidence of fishing but showed major declines in health after the oil spill in 2010. More than half of the coral colonies at these sites showed signs of damage by 2011, compared with less than 10% before the spill. In comparison, the sites further from the wellhead had no significant change before and after the Deepwater Horizon oil spill.

In addition, injured corals the scientists noted in 2011 continued to deteriorate in the years that followed, “suggesting recovery of injured corals is unlikely,” said lead author Dr. Peter Etnoyer of NOAA. Healthy corals noted after the incident in 2011 remained healthy through the end of the study in 2014, suggesting the injured corals would have been healthy but for the spill.

The researchers in this most recent study noted significant injuries among at least four species of large gorgonian octocorals (sea fans) in the three impacted reefs. Injuries took the form of overgrowth by hydroids (fuzzy marine invertebrates characteristic of unhealthy corals) and broken or bare branches of coral. To a lesser extent, corals also appeared severely discolored, with eroded polyps, had lost limbs, or toppled over entirely.

An earlier study of these mesophotic reefs by some of the same scientists in the journal Deep Sea Research detected low levels of a petroleum compound known as polycyclic aromatic hydrocarbons (PAHs) in coral tissues and nearby seafloor sediments. The levels were low compared to sites near the wellhead, but at this point, no one yet has established what constitutes a toxic level of these compounds to marine life in mesophotic coral communities.

“The corals of the Pinnacle Trend require decades to reach maturity,” said Florida State University scientist Ian MacDonald, who also contributed to the study. “Recovery will require years and it may not be immediately apparent whether the injured colonies are being replaced with new settlements. Our task is to study the process—to learn as much as we can and to ensure that nothing impedes this vital natural process.”

“The results presented here may vastly underestimate the extent of impacts to mesophotic reefs in the northern Gulf of Mexico,”  the researchers commented, since the reefs in this study represent less than 3 percent of the mesophotic reef habitat that was known to occur beneath the oil slick. “The reefs have some prospects for recovery since many healthy colonies remain,” said Etnoyer. NOAA and its partners on this study recommend efforts to protect and restore the Pinnacles Trend reefs in order to conserve the corals and fish along this part of the ocean floor.

Leave a comment

What Happens When Oil Spills Meet Massive Islands of Seaweed?

Floating bits of brown seaweed at ocean surface

Floating rafts of sargassum, a large brown seaweed, can stretch for miles across the ocean. (Credit: Sean Nash/Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic license)

The young loggerhead sea turtle, its ridged shell only a few inches across, is perched calmly among the floating islands of large brown seaweed, known as sargassum. Casually, it nibbles on the leaf-like blades of the seaweed, startling a nearby crab. Open ocean stretches for miles around these large free-floating seaweed mats where myriad creatures make their home.

Suddenly, a shadow passes overhead. A hungry seabird?

Taking no chances, the small sea turtle dips beneath the ocean surface. It dives through the yellow-brown sargassum with its tangle of branches and bladders filled with air, keeping everything afloat.

Home Sweet Sargassum

This little turtle isn’t alone in seeking safety and food in these buoyant mazes of seaweed. Perhaps nowhere is this more obvious than a dynamic stretch of the Atlantic Ocean off the East Coast of North America named for this seaweed: the Sargasso Sea. Sargassum is also an important part of the Gulf of Mexico, which contains the second most productive sargassum ecosystem in the world.

Some shrimp, crabs, and fish are specially suited to life in sargassum. Certain species of eel, fish, and shark spawn there. Each year, humpback whales, tuna, and seabirds migrate across these fruitful waters, taking advantage of the gathering of life that occurs where ocean currents converge.

Cutaway graphic of ocean with healthy sargassum seaweed habitat supporting marine life.

Illustration of sargassum and associated marine life, including fish, sea turtles, birds, and marine mammals. Sargassum is a brown algae that forms a unique and highly productive floating ecosystem on the surface of the open ocean. (NOAA) Click to enlarge.

The Wide and Oily Sargasso Sea

However, an abundance of marine life isn’t the only other thing that can accumulate with these large patches of sargassum. Spilled oil, carried by currents, can also end up swirling among the seaweed.

If an oil spill made its way somewhere like the Sargasso Sea, a young sea turtle would encounter a much different scene. As the ocean currents brought the spill into contact with sargassum, oil would coat those same snarled branches and bladders of the seaweed. The turtles and other marine life living within and near the oiled sargassum would come into contact with the oil too, as they dove, swam, and rested among the floating mats.

That oil can be inhaled as vapors, be swallowed or consumed with food, and foul feathers, skin, scales, shell, and fur, which in turn smothers, suffocates, or strips the animal of its ability to stay insulated. The effects can be toxic and deadly.

Cutaway graphic of ocean with potential impacts of oil on sargassum seaweed habitat and marine life.

Illustration of the potential impacts of an oil spill on sargassum and associated marine life in the water column. (NOAA) Click to enlarge.

While sea turtles, for example, as cold-blooded reptiles, may enjoy the relatively warmer waters of sargassum islands, a hot sun beating down on an oiled ocean surface can raise water temperatures to extreme levels. What starts as soothing can soon become stressful.

Depending on how much oil arrived, the sargassum would grow less, or not at all, or even die. These floating seaweed oases begin shrinking. Where will young sea turtles take cover as they cross the unforgiving open ocean?

As life in the sargassum starts to perish, it may drop to the ocean bottom, potentially bringing oil and the toxic effects with it. Microbes in the water may munch on the oil and decompose the dead marine life, but this can lead to ocean oxygen dropping to critical levels and causing further harm in the area.

From Pollution to Protection

Young sea turtles swims through floating seaweed mats.

The floating habitat that sargassum creates provides food, refuge, and breeding grounds for an array of marine species, including sea turtles. (NOAA)

NOAA and the U.S. Fish and Wildlife Service have designated sargassum as a critical habitat for threatened loggerhead sea turtles.

Sargassum has also been designated as Essential Fish Habitat by Gulf of Mexico Fishery Management Council and National Marine Fisheries Service since it also provides nursery habitat for many important fishery species (e.g., dolphinfish, triggerfishes, tripletail, billfishes, tunas, and amberjacks) and for ecologically important forage fish species (e.g., butterfishes and flyingfishes).

Sargassum and its inhabitants are particularly vulnerable to threats such as oil spills and marine debris due to the fact that ocean currents naturally tend to concentrate all of these things together in the same places. In turn, this concentrating effect can lead to marine life being exposed to oil and other pollutants for more extended periods of time and perhaps greater impacts.

However, protecting sargassum habitat isn’t impossible and it isn’t out of reach for most people. Some of the same things you might do to lower your impact on the planet—using less plastic, reducing your demand for oil, properly disposing of trash, discussing these issues with elected officials—can lead to fewer oil spills and less trash turning these magnificent islands of sargassum into floating islands of pollution.

And maybe protect a baby sea turtle or two along the way.


Watch Divers Restore Coral Reefs Hit by a Huge Ship in Hawaii

Coral reefs are not to be confused with underwater highways. Unfortunately for the corals, however, navigating huge ships is a tricky business and sometimes reefs do end up on the wrong side of the “road.” (One reason why having up-to-date navigational charts is so important!)

This was the case for corals damaged off the Hawaiian island of Oahu in February of 2010 when the cargo ship M/V VogeTrader ran aground and was later removed from a coral reef in Kalaeloa/Barber’s Point Harbor.

NOAA’s Restoration Center and the State of Hawaii worked quickly to implement emergency restoration (using what look like laundry baskets), using special underwater scientific techniques and technologies, and ultimately restoring the reef after getting some help from vacuums, power washers, and even winter storms.

See divers transform these Hawaiian corals from crushed to flush with marine life:

In the end, these efforts are all part of how we work to help make the ocean a better place for corals and the many other types of marine life that rely on them.

Leave a comment

In Wake of Japan’s 2011 Tsunami, Citizen Scientists Comb California Beaches Counting Debris

Man with clipboard and bag walking on beach.

A volunteer counts and collects the marine debris washed up at Drakes Beach in the Greater Farallones National Marine Sanctuary. (NOAA)

It all started more than five years ago on the other side of the Pacific Ocean. A devastating earthquake and tsunami rocked Japan in 2011, ultimately sweeping millions of tons of debris from the coastline into the ocean. But it wasn’t until June the following year, in 2012, that a 66-foot-long Japanese dock settled on the Oregon coast and reminded the world how the ocean connects us.

NOAA’s Kate Bimrose explained how this event and the resulting concern over other large or hazardous items of Japanese debris spurred the start of NOAA monitoring programs on beaches up and down the West Coast and Pacific islands. She coordinates the program that monitors marine debris in the Greater Farallones National Marine Sanctuary off the north-central California coast.

Thanks to funding from NOAA’s Marine Debris Program, the first surveys in this sanctuary near San Francisco took place in July 2012, a month after the Oregon dock made an appearance. No previous baseline data on debris existed for the shores along this California sanctuary. The only way anyone would know if Japan tsunami marine debris started arriving is by counting how much marine debris was already showing up there on a regular basis.

Training a Wave of Citizen Scientists

Graphic showing an example 100 meter stretch of beach with four 5 meter transects.

Following NOAA Marine Debris Program monitoring protocols, volunteers survey the same 100 meter (328 foot) stretch of beach each month, randomly choosing four sections to cover. Next, they record every piece of trash bigger than a bottle cap in those areas. (NOAA)

To find out how much trash and other manmade debris was washing up, Bimrose trained a small group of dedicated, volunteer “citizen scientists” to perform monthly surveys at four regular California beach sites. Three are located in Point Reyes National Seashore and one is in Año Nuevo State Park, but all are fed by the waters of the Greater Farallones National Marine Sanctuary.

Following NOAA Marine Debris Program monitoring protocols, once a month two volunteers head to the same 100 meter (328 foot) stretch of beach, using GPS coordinates to locate it. Next, they randomly pick four sections, each five meters (nearly 16.5 feet) long, to survey that day. This ensures they cover 20 percent of the area each time.

For those areas, the volunteers record every piece of trash they find that is at least the size of a bottle cap, or roughly an inch long. Having this size standard increases the reliability of the data being collected, providing a more accurate picture of what the ocean is bringing to each beach. NOAA is confident that volunteers are able to scan the sand and find the majority of items larger than an inch sitting on the surface of the beach.

Taking Things to the Next Level

Bottle with Asian characters on the cap.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. (NOAA)

All of the data volunteers gather—from number of items to types of material found—gets entered into a national online database, which will allow NOAA to determine trends in where, what, and how much marine debris is showing up. Leaving the items behind reveals how debris concentrates and persists on shorelines, information which is lost when debris is hauled off the beach.

While gathering this information is useful, Bimrose admitted to one sticking point for her: none of the debris is cleaned up from these four beach locations.

“We want to be able to remove the debris,” she said. “It’s painful for all my volunteers to be out there and record it and not remove it.” However, the good news is that a June 2015 expansion to this monitoring program has added two new beach locations to the rotation, and after volunteers record the debris there, they pack it out. In addition, Bimrose takes out larger groups of one-time volunteers to those locations and trains them on site, creating a broader educational reach for the program.

Bimrose hopes to recruit local school groups as well as businesses to volunteer. Before each survey at the new locations, she introduces the sanctuary and the monitoring program, while passing around mason jars filled with the trash collected at past surveys to give volunteers an idea of what to expect.

These new monitoring sites receive more recreational use than the previous ones, and at least for the one at Ocean Beach, a heavily used shoreline in the heart of San Francisco, that means finding a lot more consumer trash left on the beach.

From clothes and cigarette butts to food wrappers and even toilet paper, the surveys at Ocean Beach are markedly different from those surveys further north at Drakes Beach, the other new site. There, volunteers count and remove mostly small, hard fragments of plastic that appear worn down by sun and sea, indicating the majority of the debris there is brought to shore by the waves, not beachgoers.

Survey Says

Long blue piece of boat insulation sitting on a table.

A volunteer surveying a beach in the Greater Farallones National Marine Sanctuary found this piece of insulation from an elite sailboat that broke apart in San Francisco Bay in 2012. The debris took two months to travel to a shoreline 60 miles north. (NOAA)

After four years of monitoring and roughly 150 surveys, what have they found so far on the north-central California coast? More than 5,000 debris items recorded in all, which, as Bimrose said, is “a good amount but not too crazy.”

Expanding to six survey sites from four only increases what they can learn about debris patterns in this area. As more data roll in, NOAA will able to outline the regional scope of the problem and see patterns between seasons, years, categories, and locations of debris accumulation. One thing that is likely not to change, however, is that plastic debris dominates. It constitutes about 80 percent of the trash found at all sites.

While volunteers occasionally turn up debris bearing Asian characters, no items reported from this program have been confirmed from the 2011 Japan tsunami. Through other partners associated with beach cleanups however, three pieces of Japan tsunami debris have been confirmed in California. The most recent was a large green pallet with Kanji lettering that landed on Mussel Beach just south of San Francisco. The discovery reinforces the importance of continuing to monitor debris along sanctuary beaches and shows us how items can persist in the ocean for years before sinking, breaking up, or landing on shore.

Another unusual example linking a piece of debris to the exact event that released it occurred in 2012. During a training run for the America’ Cup sailing race, an $8 million boat capsized and broke apart in San Francisco Bay on October 16, 2012. Two months later, one of Bimrose’s volunteers discovered a piece of insulation from that boat on a beach about 60 miles north.

Every month, Bimrose tags along with at least one pair of volunteers for their survey of one of the four “survey-only” beach sites. On one such occasion, one volunteer, an older gentleman, brought along his wife, who was puzzled by her husband’s constant chatter about “his” beach. According to Bimrose, a lot of the surveys could be considered rather clean or even monotonous. But even so, after a day walking and counting with him, the volunteer’s wife told her, “I totally get it, why he comes out here and rearranges his schedule to do this.”

Leave a comment

Podcast: What Was It Like Responding in the Aftermath of Hurricane Katrina?

On today’s episode of Diving Deeper, we remember one of the most devastating natural disasters to hit U.S. shores: Hurricane Katrina, which made landfall 10 years ago this week.

What was it like working in New Orleans and the surrounding area in the wake of such a storm?

In this podcast, we talk with Charlie Henry and Dave Wesley, two pollution responders from NOAA’s Office of Response and Restoration who were working in the area in the aftermath of not just one massive hurricane, but two, as Hurricane Rita swept across the Gulf Coast just a few short weeks later.

Hear about their experiences responding to these storms, find out which memories stand out the most for them, and reflect on the toll of working in a disaster zone:

Learn more about our work after Hurricanes Katrina and Rita, explore the progress made in the 10 years since, and see photos of the destruction these storms left across the heavily industrialized coast of the Gulf of Mexico.


From Board Games to Cookbooks, How the Exxon Valdez Oil Spill Infiltrated Pop Culture

Big oil spills, those of the magnitude which happen only once every few decades, often leave a legacy of sorts.

In the case of the 1989 Exxon Valdez oil spill, which dumped roughly 11 million gallons of crude oil into Alaska’s Prince William Sound, that legacy took many forms. Legislative, ecological, and even cultural—yes, that extends to pop culture too.

In short order, the Exxon Valdez oil spill prompted monumental changes in the laws governing maritime shipping and oil spill response. In 1990, Congress passed the Oil Pollution Act, empowering NOAA and the U.S. Environmental Protection Agency to better respond to and plan for spills and setting up a trust fund (paid for by an oil tax) to help with cleanup operations.

Furthermore, this important legislation mandated that oil tankers with single hulls (like the easily punctured Exxon Valdez) would no longer be permitted to operate in U.S. waters, instead requiring double-hull vessels to carry oil. (However, the full phaseout of single-hull tankers would take decades.)

More than 25 years later, researchers are still uncovering this spill’s ecological legacy, its stamp on the natural world, and learning what happens when oil interacts with that world. The spill affected some two dozen species and habitats, some of which have not yet recovered.

Of course, the Exxon Valdez oil spill also left a complicated cultural legacy, imparting health, social, psychological, and economic impacts on the people living and working in the area, particularly those whose livelihoods are closely tied to the ocean. Commercial fishers, the recreation and tourism industry, and more than a dozen predominantly Alaskan Native communities relying on fish, waterfowl, and other natural resources for subsistence were dramatically affected by the oil spill.

Yet the cultural echoes of this environmental disaster spread beyond Alaska. It inspired a second grader to write an impassioned letter about the plight of otters threatened by the spill to the Alaska director of the Fish and Wildlife Service. After working at this spill, it inspired one NOAA marine biologist to begin collecting some of the strange pieces of memorabilia related to the incident, from a piece of the ill-fated tanker to an Exxon safety calendar featuring the ship in the very month it would run aground.

These echoes even managed to permeate the ranks of pop culture. Take a look at these five ways that the Exxon Valdez oil spill has shown up in places most oil spills just don’t go:

A view of part of the board game “On the Rocks: The Great Alaska Oil Spill” with a map of Prince William Sound.

The game “On the Rocks: The Great Alaska Oil Spill” challenges players to clean all 200 miles of shoreline oiled by the Exxon Valdez — and do so with limits on time and money. (Credit: Alaska Resources Library and Information Services, ARLIS)

  1. A board game. Local bartender Richard Lynn of Valdez, Alaska, created the game “On the Rocks: The Great Alaska Oil Spill” after working part-time to clean up the spill. Each player navigates through the game using an authentic bit of rock from Prince William Sound. The goal was to be the first player to scrub all 200 miles of oily shore. The catch was that you only had about 6 months and $250 million in play money to accomplish this. You could pick up your own copy of the game for $16.69, which was the hourly rate Exxon’s contracted workers earned while cleaning up the spill.
  2. A movie. Dead Ahead: the Exxon Valdez Disaster was the 1992 made-for-TV movie that dramatized the events of the oil spill and ensuing cleanup. This film even featured some well-known actors, including John Heard as Alaska inspector Dan Lawn and Christopher Lloyd as Exxon Shipping Company President Frank Iarossi.
  3. A cookbook. Fortunately, the recipes in The Two Billion Dollar Cookbook don’t feature dishes like “oiled herring” or “otter on the rocks.” Instead, this 300 page cookbook compiled by Exxon Valdez cleanup workers and their friends and families highlights meals more along the lines of barbeque sandwich mix and steak tartare, in addition to being peppered with personal stories from its contributors. Proceeds from the sale of this cookbook benefit a homeless shelter and food bank based in Anchorage, Alaska. Why two billion dollars? That was how much Exxon had shelled out for responding to the spill when the cookbook hit the presses.
  4. A play. Two plays, in fact. Dick Reichman, resident of Valdez, Alaska, during the momentous spill, has twice written and directed plays that examined this disaster—and the high emotions that came with it—through the theatrical lens. His first play, written in 1992 and dubbed “The official Valdez oil spill melodrama,” was Tanker on the Rocks: or the Great Alaskan Bad Friday Fish-Spill of ’89. His second, The Big One: a Chronicle of the Exxon Valdez Oil Spill, was received with some acclaim during its 2009 run in Anchorage. You can watch a short video of the actors and director preparing for the 2009 performance (warning: some explicit language).
  5. Children’s books, novels, and poetry. From a children’s book about a young girl rescuing an oiled baby seal to a novel written by the tugboat captain who towed the Exxon Valdez out of Prince William Sound, there exists a bounty of literature exploring the many human and environmental themes of this oil spill. As you peruse them, keep in mind this NOAA scientist’s recommendations for evaluating what you’re reading about oil spills, especially when doing so with kids.

Have you seen other examples of the Exxon Valdez or perhaps, more recently, the Deepwater Horizon oil spill showing up in pop culture?

A special thanks to the Alaska Resources Library and Information Services (ARLIS) for compiling an excellent list of Exxon Valdez related information [PDF] and for helping procure an image of the rare “On the Rocks” board game.


Get every new post delivered to your Inbox.

Join 631 other followers