NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Remotely Controlled Surfboards: Oil Spill Technology of the Future?

This is a post by the Office of Response and Restoration’s LTJG Rachel Pryor, Northwest Regional Response Officer.

A wave glider before being launched from the NOAA Ship Oscar Dyson.

NOAA is exploring how to use technology such as wave gliders, small autonomous robots that travel at the ocean surface via wave energy, to collect oceanographic data during oil spills. (NOAA)

What do remotely controlled surfboards have to do with oil spills? In the future, hopefully a lot more. These “remotely controlled surfboards” are actually wave gliders, small autonomous robots that travel at the ocean surface via wave energy, collecting oceanographic data. Solar panels on top of the gliders power the oceanographic sensors, which transmit the data back to us via satellites.

I recently learned how to use the software that (through the internet) remotely drives these wave gliders—and then actually started “driving” them out in the open ocean.

Gathering Waves of Information

On July 7, 2016, NOAA launched two wave gliders off the NOAA Ship Oscar Dyson to study ocean acidification through carbon analysis in the Bering Sea (which is off the southwest coast of Alaska).

A wave glider floating in the ocean.

One of the wave gliders recently deployed in the Bering Sea, with its solar panels on top powering the sensors. (NOAA)

One wave glider has “Conductivity Temperature Depth” (CTD) sensors, a fluorometer, water temperature sensors, and a meteorological sensor package that measures wind, temperature, and atmospheric pressure. The other glider has a sensor that measures the partial pressure of carbon (which basically tells us how much carbon dioxide the ocean is absorbing), an oxygen sensor, a CTD, pH instrumentation, and a meteorological package. The pair of gliders is following a long loop around the 60⁰N latitude line, with each leg of the loop about 200 nautical miles in length.

These wave gliders will be collecting data until the end of September 2016, when they will be retrieved by a research ship. The wave gliders require volunteer “pilots” to constantly (and remotely) monitor the wave gliders’ movements to ensure they stay on track and, as necessary, avoid any vessel traffic.

I’ve committed to piloting the wave gliders for multiple days during this mission. The pilot must be on call around the clock in order to adjust the gliders’ courses in case of an approaching ship or storm, as well as to keep an eye on instrument malfunctions, such as a low battery or failing Global Positioning System (GPS).

Screen view of software tracking and driving two wave gliders in the Bering Sea.

A view of the software used to track and pilot the wave gliders. The white cross is wave glider #1 and it is headed east. The orange cross marks show where it has been. The white star is wave glider #2, which is headed west, with the red stars showing where it has been. The blue lines indicate the vectors of where they will be and the direction they are headed. Wave glider #1 rounded the western portion of its path significantly faster than the other glider. As a result, the pilot rounded glider #2 to start heading east to catch up with glider #2. (NOAA)

The two wave gliders actually move through the water at different speeds, which means their pilot needs to be able to direct the vessels into U-turn maneuvers so that the pair stays within roughly 10 nautical miles of each other.

Remote Technologies, Real Applications

NOAA’s Pacific Marine Environmental Laboratory has been using autonomous surface vessels to do oceanographic research since 2011. These autonomous vessels include wave gliders and Saildrones equipped with multiple sensors to collect oceanographic data.

During the summer of 2016, there are two missions underway in the Bering Sea using both types of vessels but with very different goals. The wave gliders are studying ocean acidification. Saildrones are wind- and solar-powered vessels that are bigger and faster. Their size allows them to carry a large suite of oceanographic instrumentation and conduct multiple research studies from the same vehicle.

For their latest mission, Saildrones are using acoustic sensors to detect habitat information about important commercial fisheries, such as pollock, and monitor the movement of endangered right whales. (Follow along with the mission.)

NOAA’s Office of Response and Restoration is interested in the potential use of aquatic unmanned systems such as wave gliders and Saildrones as a spill response tool for measuring water quality and conditions at the site of an oil spill.

These remotely operated devices have a number of advantages, particularly for spills in dangerous or hard-to-reach locations. They would be cost-efficient to deploy, collect real-time data on oil compound concentrations during a spill, reduce people’s exposure to dangerous conditions, and are easier to decontaminate after oil exposure. Scientists have already been experimenting with wave gliders’ potential as an oil spill technology tool in the harsh and remote conditions of the Arctic.

NOAA’s Pacific Marine Environmental Laboratory is working closely with the designers of these two vehicles, developing them as tools for ocean research by outfitting them with a wide variety of oceanographic instrumentation. The lab is interested in outfitting Saildrones and wave gliders with special hydrocarbon sensors that would be able to detect oil for spill response. I’m excited to see—and potentially pilot—these new technologies as they continue to develop.

Woman in hard hat next to a tree on a boat.

NOAA Corps Officer LTJG Rachel Pryor has been with the Office of Response and Restoration’s Emergency Response Division as an Assistant Scientific Support Coordinator since the start of 2015. Her primary role is to support the West Coast Scientific Support Coordinators in responding to oil discharge and hazardous material spills.


Leave a comment

Oil Spills, Seeps, and the Early Days of Drilling Oil Along California’s Coast

Black and white photo of early oil derricks and piers at Summerland, California, 1902

Some of the earliest offshore oil wells were located at Summerland in Santa Barbara County, California. Shown here in 1902, you can see the early wharves that extended from the shore out to derricks over the wells. (U.S. Geological Survey)

One of the challenges of the 2015 pipeline oil spill near Santa Barbara, California, was distinguishing between oil released from the pipeline and oil released naturally from the many seeps in the area. This challenge could become even more complicated when you consider the history of oil drilling in southern California [PDF] that dates back to the 1860s.

Unless you are a history buff or study environmental pollution, you probably didn’t realize that the beautiful sand beaches of southern California were once home to some of the earliest offshore oil rigs.

Oil seeps both on the shore and in the ocean were clues to the underground oil reservoirs in the Santa Barbara Channel. Even today, natural seeps in Santa Barbara’s Coal Oil Point area release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011).

Drilling into History

The first offshore wells in the United States were drilled in 1896 in the Summerland region just east of Santa Barbara. Initial wells were built on piers sticking several hundred feet out into the ocean. Over the years, many more wells and offshore platforms were built in the region.

However, oil exploration and drilling was virtually unregulated at the time, and spills were common. California’s first out-of-control oil gusher occurred in February 1892 near Santa Paula, but since no one had a way to store so much oil (1,500 barrels were released per day), much of it eventually flowed into the ocean via the Santa Clara River.

Black and white photo of men building a pier over the ocean to reach oil derricks drilling offshore at Summerland, California, 1900.

A view looking down the Treadwell wharf toward shore and the central portion of the Summerland oil field in Santa Barbara County, California, in 1900. These early oil fields were essentially unregulated, resulting in spills and leaks back then as well as today. (U.S. Geological Survey)

In addition, many of these first flimsy piers and oil platforms at Summerland were destroyed by storms or fires or later abandoned without much thought about preventing spills in the future. The state’s first laws governing oil well abandonment came into place in 1915, in part to protect the oil and gas wells on neighboring properties. (Fortunately, the old and leaky Summerland wells were far enough away from the 2015 pipeline spill location that they didn’t add yet another possible source of oil in the area of the spill.)

By the 1960s offshore oil production began to take off in California, particularly along Santa Barbara County. That is, until January 1969, when Union Oil’s Platform A suffered a blowout six miles off the coast. The result was more than 3.2 million gallons of crude oil were released into the Santa Barbara Channel and on surrounding shorelines.

Public outcry was so great that not only did California ban new leases for offshore drilling in state-owned waters, but it helped catalyze a broader movement to protect the environment and prevent pollution in the United States. Still, natural seeps serve as a reminder of the area’s “Wild West” days of oil exploration.

Seep vs. Spill

Today, the region is much cleaner, but, as we saw after the 2015 pipeline spill at Refugio State Beach near Santa Barbara, that doesn’t mean it’s free of oil, either naturally released or spilled during extraction. While telling the two apart can be complicated, it isn’t impossible.

One clue for distinguishing seep oil from oil coming from production platforms is looking at how “weathered” the oil is. Oil being drilled by a platform is extracted directly from a deep underground reservoir and thus appears “fresher,” that is, less weathered by environmental processes.

The seep oil, on the other hand, generally appears more weathered, having migrated up through the seafloor and ocean depths. Seep oil is more weathered because many of its less stable compounds have been dissolved into the water column, oxidized by sunlight or evaporated into the atmosphere at the surface, or broken down by microbes that naturally metabolize hydrocarbon molecules.

Another method for distinguishing among oils is a process known as “fingerprinting,” which uses analytical chemistry to compare the relative quantities of hydrocarbons unique to petroleum in the spilled oil versus another oil.

Even though seeps release a lot of oil into the ocean, oil spills such as the 2015 pipeline spill near Santa Barbara have different and more significant impacts on the nearshore environment than the slower, steadier release of natural oil seeps. Spills often release relatively large volumes of oil suddenly into an area, which can overwhelm the ability of the environment (such as its oil-eating microbes) to adapt to the influx of oil.

That doesn’t mean seeps don’t have any environmental impacts themselves. Oil from seeps can be toxic to marine life, including fish, sea stars, shrimp, and seabirds, with impacts largely concentrated in the immediate area around a seep. While our job is to use science to minimize and evaluate potential environmental impacts during oil spills (and not seeps), knowing the history of an area like Santa Barbara can go a long way to helping us do just that.

NOAA environmental scientist Greg Baker also contributed to this post.


Leave a comment

Science of Oil Spills Training: Apply for Fall 2016

Two men speaking on a beach with a ferry in the background.

Science of Oil Spills classes help new and mid-level spill responders better understand the scientific principles underlying oil’s fate, behavior, and movement, and how that relates to various aspects of cleanup. The classes also inform responders of considerations to minimize environmental harm and promote recovery during an oil spill. (NOAA)

Science of Oil Spills (SOS) classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions.

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled an autumn Science of Oil Spills (SOS) class in Portsmouth, New Hampshire, October 3-7, 2016.

OR&R will accept applications for this class through Monday, August 15, and will notify accepted participants by email no later than Monday, August 22.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Washington Sea Grant Launches New Program to Prevent Small Oil Spills that Add Up

This is a guest post by Lauren Drakopulos of Washington Sea Grant.

Marina in Seattle with small boats.

Small recreational and commercial vessels account for 75 percent of the oil spilled in waters around Washington’s Puget Sound over the last 10 years. (NOAA)

To paraphrase an old saying, “There’s no use crying over spilled oil.” But many people in Washington worry a lot about oil pollution in Puget Sound and other coastal waters around the state.

What many don’t realize is that the biggest source of oil spills to date in Puget Sound isn’t tankers and freighters but small recreational and commercial vessels. Small oil spills from these types of vessels account for 75 percent of the oil spilled in local waters over the last 10 years.

How do these small oil spills happen? A common cause is when oil, along with water, builds up in the bottommost compartment of a boat, known as the bilge, which has a pump to keep rain and seawater from building up. Oil from broken oil lines in the engine area or spilled fuel on deck can get washed down into the bilge and then pumped into surrounding waters.

Taking Charge of Discharges

Aaron Barnett holds a bilge sock next to stacks of them.

Washington Sea Grant’s Aaron Barnett preparing to distribute small oil spill kits in 2015. (MaryAnn Wagner/Washington Sea Grant)

In the future, however, Washington boaters increasingly will have access to a simple remedy known as the Small Oil Spills Prevention Kit, which consists of a small absorbent pillow, or “bilge sock,” that is placed alongside bilge pumps to prevent oily discharges from entering the water. Washington boaters will be seeing and using a lot more of the kits.

The Clean Marina Program, a partnership of the Puget Soundkeeper Alliance, the Northwest Marine Trade Association, and Washington Sea Grant, has worked for 20 years to minimize small vessel spills. But the summer of 2016 marks a change: for the first time the campaigners are targeting private boaters rather than marina managers.

Washington Sea Grant, the Washington Department of Ecology, and Washington’s District 13 Coast Guard Auxiliary have launched the Small Spills Prevention Program to provide boaters with the knowledge and tools they need to stop oil pollution at the source. Last year, in a trial run, Washington Sea Grant Boating Program Specialist Aaron Barnett succeeded in distributing 1,000 oil spill prevention kits.

This year that labor is bearing fruit: according to Coast Guard Auxiliary Instructor Mike Brough, more and more boaters are requesting kits after seeing their friends and other boaters use them. As Barnett explains, the success of the program depends on first, getting the kits out to boaters, and second, word of mouth—with boaters educating each other about oil spills.

Pollution Prevention, Pollution Management

Boaters understand the importance of keeping their waterways clean. As frequent users, they serve as the first line of defense against pollution. “Boaters want to do the right thing,” says Brough, “and these [kits] make it easier.” He recently handed out spill prevention kits at a local marina on National Marina Day. “It’s like handing out candy on Halloween. Anyone with a bilge and inboard engine will take one.”

Brough also got a chance to see the kits in action. “At the marina office, one boater was getting a bilge sock to replace his old one from some extras I had given the yacht club a few months earlier,” he recounts. “The guy had gotten a crack in the lubrication oil line during a trip on the Sound. The broken line dumped a significant amount of oil into the bilge. The bilge sock he was using caught all of the oil, and none went overboard.”

Small spills can be expensive for boaters to clean up, and often cost is the first question boaters ask. In Washington the kits are funded through state oil taxes and made available to boaters at no cost, as part of the Small Spills Prevention Program. This summer, Washington Sea Grant hopes to hand out another 1,000 kits to boaters.

Lauren Drakopulos.Lauren Drakopulos is a Science Communications Fellow with Washington Sea Grant and is pursuing her Ph.D. in geography at the University of Washington. Lauren has worked for the Florida Fish and Wildlife Conservation Commission and her current research looks at community engagement in fisheries science. Washington Sea Grant, based at the University of Washington, provides statewide marine research, outreach, and education services. The National Sea Grant College Program is part of the National Oceanic and Atmospheric Administration (NOAA) U.S. Department of Commerce. Visit www.wsg.washington.edu for more information or join the conversation with @WASeaGrant on Facebook, Twitter, and Instagram.

The views expressed in this post reflect those of the author and do not necessarily reflect the official views of NOAA or the U.S. federal government.